Homework 1

Due: Thursday, January 28 - 10:00 am EST

Conventions

- Submit your handwritten solutions in a single pdf-file to Canvas. Indicate on each page which exercise is being solved.
- For historic reasons, Python 2 and Python 3 are available. For reasons of consistency, we agree to use Python 3 code in Jupyter notebooks. Once the computations are completed, download your notebook as html-file.
- A complete solution for this assignment consists of one pdf-file with your handwritten notes and the html-file corresponding to your Jupyter notebook.

Problem 1: Installation and configuration of Python [10 points]

1. Install Python 3 and verify that your version is ≥ 3.0.
2. Install the packages numpy and scipy for Python 3.
3. Install Jupyter and start a notebook with Python 3.
4. Perform the following tasks in this Jupyter notebook. Jupyter supports headings and, in markdown mode, even $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. Use this to add interpretations and explanations directly to your notebook.

- Add a cell with the following content and execute it:
from platform import python_version
print (python_version ())
- Add a cell with the following content and execute it:
print ($(" H e l l o W o r l d!")$
print $" H e l l o W o r l d!")$
Explain why the second line triggers an error.
- Execute the following code in a cell. It uses the packages numpy and scipy for linear algebra:

```
# import numpy and the linear algebra tools in scipy
import numpy as np
import scipy.linalg as la
# create a matrix and a vector
M = np.array ([[1, 2],[3,7]])
```

```
v = np.array ([[1],[2]])
# compute the product of M and v
print( "M*v:" )
print( str( M @ v ) + "\n")
# compute the inverse of M
print( "M^-1:")
print( str( la.inv(M) ) +"\n")
```

- Extend the notebook to compute and print the matrix products $M \cdot M^{-1}$ and $M^{-1} M$. Compare the computed results with your expectation. Interpret your findings.

Problem 2: Elementary operations with vectors and matrices [10 points]

Perform the following tasks without Python.

1. For $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{y}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \in \mathbb{R}^{2}$ compute $\vec{x}+\vec{y}$ and $2 \cdot \vec{x}$.
2. Draw an image containing $\vec{x}, \vec{y}, \vec{x}+\vec{y}$ and $2 \cdot \vec{x}$.
3. Find $a, b \in \mathbb{R}$ with $a \vec{x}+b \vec{y}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$.
4. For $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, compute $P \vec{x}$ and $P \vec{y}$. Interpret the result.
5. For $R=\frac{1}{\sqrt{2}} \cdot\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$, compute $R \vec{x}$ and $R \vec{y}$. Interpret the result.

Problem 3: Automation with Python/Jupyter [10 points]

Extend your Jupyter notebook such that it executes the tasks in problem 2 and prints the results. This includes a plot of the vectors!

Problem 4: Interesting matrices [10 points]

Find 2×2 matrices $M \in \mathbb{M}(2 \times 2, \mathbb{R})$ and vectors $\vec{b} \in \mathbb{R}^{2}$ with the following properties:

- $M \vec{x}=\vec{b}$ has no solution \vec{x},
- $M \vec{x}=\vec{b}$ has exactly one solution \vec{x},
- $M \vec{x}=\vec{b}$ has infinitely many solutions \vec{x}, but for at least one $\vec{x} \in \mathbb{R}^{2}: M \vec{x} \neq \vec{b}$.
- $M \vec{x}=\vec{b}$ holds true for all $\vec{x} \in \mathbb{R}^{2}$.

Give a geometric interpretation ("row picture") of each case.

