Homework 1

Due: Thursday, January $28-10{:}00~{\rm am}~{\rm EST}$

Conventions

- Submit your handwritten solutions in a *single* pdf-file to *Canvas*. Indicate on each page which exercise is being solved.
- For historic reasons, Python 2 and Python 3 are available. For reasons of consistency, we agree to use Python 3 code in Jupyter notebooks. Once the computations are completed, download your notebook as html-file.
- A complete solution for this assignment consists of one pdf-file with your handwritten notes and the html-file corresponding to your Jupyter notebook.

Problem 1: Installation and configuration of Python [10 points]

- 1. Install Python 3 and verify that your version is ≥ 3.0 .
- 2. Install the packages *numpy* and *scipy* for Python 3.
- 3. Install Jupyter and start a notebook with Python 3.
- 4. Perform the following tasks in this Jupyter notebook. Jupyter supports headings and, in markdown mode, even LATEX. Use this to add interpretations and explanations directly to your notebook.
 - Add a cell with the following content and execute it:

```
from platform import python_version
print(python_version())
```

• Add a cell with the following content and execute it:

```
print( "HelloWorld!" )
print "HelloWorld!"
```

Explain why the second line triggers an error.

• Execute the following code in a cell. It uses the packages *numpy* and *scipy* for linear algebra:

```
# import numpy and the linear algebra tools in scipy
import numpy as np
import scipy.linalg as la
# create a matrix and a vector
M = np.array([[1,2],[3,7]])
```

```
v = np.array([[1],[2]])
# compute the product of M and v
print( "M*v:")
print( str( M @ v ) + "\n")
# compute the inverse of M
print( "M^-1:")
print( str( la.inv(M) ) + "\n")
```

• Extend the notebook to compute and print the matrix products $M \cdot M^{-1}$ and $M^{-1}M$. Compare the computed results with your expectation. Interpret your findings.

Problem 2: Elementary operations with vectors and matrices [10 points] Perform the following tasks without Python.

- 1. For $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \in \mathbb{R}^2$ compute $\vec{x} + \vec{y}$ and $2 \cdot \vec{x}$.
- 2. Draw an image containing $\vec{x}, \vec{y}, \vec{x} + \vec{y}$ and $2 \cdot \vec{x}$.
- 3. Find $a, b \in \mathbb{R}$ with $a\vec{x} + b\vec{y} = \begin{bmatrix} 2\\4 \end{bmatrix}$.
- 4. For $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, compute $P\vec{x}$ and $P\vec{y}$. Interpret the result.
- 5. For $R = \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, compute $R\vec{x}$ and $R\vec{y}$. Interpret the result.

Problem 3: Automation with Python/Jupyter [10 points]

Extend your Jupyter notebook such that it executes the tasks in problem 2 and prints the results. This includes a plot of the vectors!

Problem 4: Interesting matrices [10 points]

Find 2×2 matrices $M \in \mathbb{M}(2 \times 2, \mathbb{R})$ and vectors $\vec{b} \in \mathbb{R}^2$ with the following properties:

- $M\vec{x} = \vec{b}$ has no solution \vec{x} ,
- $M\vec{x} = \vec{b}$ has exactly one solution \vec{x} ,
- $M\vec{x} = \vec{b}$ has infinitely many solutions \vec{x} , but for at least one $\vec{x} \in \mathbb{R}^2$: $M\vec{x} \neq \vec{b}$.
- $M\vec{x} = \vec{b}$ holds true for all $\vec{x} \in \mathbb{R}^2$.

Give a geometric interpretation ("row picture") of each case.