
Math 313/513, Spring 2021 Martin Bies

(Last) Homework 11
Due: Thursday, April 22 – 10:00 EST

Problem 1: Matrix exponentials [10 Points]

In this question we investigate matrix exponentials of X, Y ∈M(n×n,R). We define
the commutator [X, Y ] := XY − Y X and recall eX =

∑∞
k=0

Xk

k!
.

1. Prove that
(
eX
)T

= e(X
T ).

2. Show that in general eXeY 6= eX+Y .

3. Show the following:

• If XY = Y X, then eXeY = eX+Y .

•
(
eX
)−1

= e−X (even when X is not invertible).

4. Use these results to proof the following instance of the Campbell-Baker-Hausdorff
formula:
If [X, [X, Y ]] = [Y, [X, Y ]] = 0, then eXeY = eX+Y+ 1

2
[X,Y ].

Hint: Consider f(λ) = eλXeλY e−λ(X+Y ) and establish f ′(λ) = λ[X, Y ] · f(λ).

5. Math 513: Can you find X ∈M(2× 2,R) such that eX =

[
1 1
0 1

]
?

Problem 2: so(3) and SO(3) [10 Points]

In this question we employ linear algebra to investigate the relationship between the
Lie algebra so(3) and the Lie group SO(3). In general, Lie algebras can be understood
as the tangent space of Lie groups at the identity. In this sense, they linearize a Lie
group. An important application is to study properties of Lie groups from their Lie
algebra. Of particular interest to quantum mechanics and quantum field theory are
representations of Lie groups, which in essence are the mathematical counterpart of
elementary particles, such as quarks, electrons, neutrinos and even the Higgs itself.

1. A matrix A ∈ M(n × n,R) is skew-symmetric iff AT = −A. Verify that the
following is a basis of the R-vector space of the skew-symmetric 3× 3-matrices:

Lx =

 0 0 0
0 0 −1
0 1 0

 , Ly =

 0 0 1
0 0 0
−1 0 0

 , Lz =

 0 −1 0
1 0 0
0 0 0

 . (1)

2. Verify the commutation relations ([·, ·] is the above-defined commutator):

[Lx, Ly] = Lz , [Lz, Lx] = Ly , [Ly, Lz] = Lx . (2)



3. The vector-space of skew-symmetric 3×3-matrices with the commutators eq. (2)
defines the Lie algebra so(3). Show the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 , A,B,C ∈ so(3) . (3)

4. Show that for everyX ∈ so(3), eX ∈ O(3) = {M ∈M(3× 3,R)|M orthogonal}.

5. Compute eαLx , eβLy , eγLz . What is the geometric meaning of these matrices?

One can show that the matrix exponentials of matrices in so(3) give matrices in SO(3),
i.e have determinant equal to one. An even less trivial result is that exp: so(3) →
SO(3) is surjective. In general, the exponential map from a Lie algebra to its Lie
group is not surjective. However, exp: so(3) → SO(3) is surjective because SO(3) is
compact and connected.

Problem 3: A coupled spring-mass-system [10 Points]

In this exercise we investigate the following spring-mass system:

ma mb

0 1
4
s 1

2
s 3

4
s s x(t)

k1 k2 k1

The dynamics of this system is described by a coupled system of ordinary differential
equations (ODEs). We will formulate and solve this system and finally interpret the
solutions. In the following ma,mb, k1, k2 > 0.

1. A mass on a spring:
The motion x : R → R , t 7→ x(t) of a mass m attached to a spring with Hook
constant k is governed by the ODE (the so-called equation of motion)

m · x′′(t) = −k · x(t) . (4)

• Show that x(t) = A · cos(ωt) +B · sin(ωt) with ω =
√

k
m

solves this ODE.

• Relate A and B to x0 = x(0) and v0 = x′(0).

2. Coupled equal masses on springs:
At time t, the mass ma is at position s

4
+ xa(t) and mb at position 3s

4
+ xb(t).

The displacements xa(t), xb(t) are governed by the system of ODEs:

ma · x′′a(t) = −k1xa(t) + k2 (xb(t)− xa(t)) ,
mb · x′′b (t) = −k1xb(t) + k2 (xa(t)− xb(t)) .

(5)

We define ~x(t) =
[
xa(t) xb(t)

]T and assume ma = mb.



• Find A ∈M(2× 2,R) such that eq. (5) is equivalent to ~x′′(t) = A~x(t).

• Find S,Λ ∈M(2× 2,R), S invertible and Λ diagonal, with A = SΛS−1.

• Solve eq. (5) in terms of ~y(t) =
[
ya(t) yb(t)

]T
= S−1~x(t).

• Use ~y(t) = S−1~x(t) to solve eq. (5) for ~x(t). Express all constants by

xa = xa(0) , va = x′a(0) , xb = xb(0) , vb = x′b(0) . (6)

Problem 4: A coupled spring-mass-system in Python [10 Points]

We will now repeat exercise 3-2 in Python to study how rich the dynamics of this
simple system is.

1. Write a Python function:

• Input: Initial values xa, va, xb, vb, positive spring constants k1, k2, positive
masses ma, mb, the positive box length s and times tmin, tmax ∈ R.
• Processing 1: Compute ~y(t) and ~x(t) as discussed in problem 3-2.

• Processing 2: Construct the set T := {tmin, tmin + 0.1, tmin + 0.2, . . . , tmax].

• Output 1: Plot s
4

+ ya(t) and 3·s
4

+ yb(t) in one diagram for t ∈ T .
• Output 2: Plot s

4
+ xa(t) and 3·s

4
+ xb(t) in a second diagram for t ∈ T .

Test your function for

k1 = k2 = 1 , ma = mb = 1 xa = xb = 1 , va = vb = 1 , (7)

tmin = 0, tmax = 100 and s = 16. Does the plot fit with your expectation?

2. Let us now study the limit mb → ∞. To this end, set mb = 10 and describe
how the plot changes. Qualitatively, explain the changed behavior.

3. Without using your function, explain what behavior to expect for mb → 0.

4. Let us plot the system for asymmetric initial conditions. To this end, we consider

k1 = k2 = 1 , ma = mb = 1 xa = va = 1 , xb = vb = 2 , (8)

and tmin = 0, tmax = 100, s = 16. Qualitatively, describe how the diagrams
change relative to the symmetric case in 4-2. Does this fit your expectation?

5. Finally, let us consider the plots for a choice with different spring constants:

k1 = 10, k2 = 1 , ma = mb = 1 xa = va = 1 , xb = vb = 2 , (9)

and tmin = 0, tmax = 100, s = 24. Qualitatively, describe the plots.


