Homework 2

Due: Thursday, February 4-10:00 am EST

Problem 1: Solving linear systems [10 Points]

1. Solve $A \vec{x}=\vec{b}$ with the method of elimination and back substitution:

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \tag{1}\\
4 & 6 & 1 & 0 \\
-2 & 2 & 0 & 4 \\
1 & 3 & 5 & 7
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
3
\end{array}\right]
$$

2. The parabola $y=a+b x+c x^{2}$ goes through the points $(x, y)=(1,6),(2,3)$ and $(-1,0)$. Find and solve a matrix equation for the unknowns (a, b, c).
3. Find A^{-1} and B^{-1} (if they exist) by Gauss-Jordan elimination:

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \tag{2}\\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]
$$

Problem 2: "Order" of elimination with back substitution [10 Points]

Consider $A \in \mathbb{M}(n \times n, \mathbb{R})$ and $\vec{b} \in \mathbb{R}^{n}$. We apply the method of elimination with back substitution (MEB) to $[A \mid \vec{b}]$. It is assumed that no permutations of the rows of A are required and that $A \vec{x}=\vec{b}$ is non-singular. Hence, we perform the transformation

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \tag{3}\\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
u_{11} & u_{12} & \cdots & u_{1 n} & c_{1} \\
& u_{22} & \cdots & u_{2 n} & c_{2} \\
& & \ddots & \vdots & \\
& & & u_{n n} & c_{n}
\end{array}\right]
$$

followed by back substitution. The first step is to turn the second row into the form

$$
\left[\begin{array}{llll}
0 & a_{22}-\frac{a_{21}}{a_{11}} \cdot a_{12} & \ldots & \left.a_{2 n}-\frac{a_{21}}{a_{11}} \cdot a_{1 n} \right\rvert\, b_{2}-\frac{a_{21}}{a_{11}} \cdot b_{1} \tag{4}
\end{array}\right] .
$$

For this we first compute $\frac{a_{21}}{a_{11}}$ and then use this result to perform the remaining additions and multiplications. At most, this requires n additions and $n+1$ multiplications. The first back substitution $x_{n}=\frac{c_{n}}{u_{n n}}$ requires (at most) one multiplication.

1. Consider $A \in \mathbb{M}(2 \times 2, \mathbb{R}), \vec{b} \in \mathbb{R}^{2}$:

- Show that MEB requires at most 6 multiplications and 3 additions.
- Find A, \vec{b} for which MEB requires stricly less than 9 operations.

2. Repeat for $A \in \mathbb{M}(3 \times 3, \mathbb{R}), \vec{b} \in \mathbb{R}^{3}$.
3. MEB for $A \in \mathbb{M}(n \times n, \mathbb{R}), \vec{b} \in \mathbb{R}^{n}$ requires (at most) $\frac{n \cdot\left(n^{2}+3 n-1\right)}{3}$ multiplications and $\frac{(n-1) \cdot n \cdot(2 n+5)}{6}$ additions.

- Find the total number of operations.
- Use the computer science \mathcal{O}-notation to classify MEB.

4. For Math 513:

Show that for $A \in \mathbb{M}(n \times n, \mathbb{R}), \vec{b} \in \mathbb{R}^{n}$, MEB requires (at most) $\frac{n \cdot\left(n^{2}+3 n-1\right)}{3}$ multiplications and $\frac{(n-1) \cdot n \cdot(2 n+5)}{6}$ additions.

Problem 3: Speed of LU factorizations in Python [10 Points]

Perform the following steps in a Jupyter notebook:

1. Create a matrix $A \in \mathbb{M}(3 \times 3, \mathbb{R})$ with random entries.
2. Compute the PLU-factorization $A=P L U$. Print P, L, U.
3. Verify that $P \cdot P^{T}=I$. What type of matrix is P ?
4. Write a function LUtime which accepts an integer n as input, creates a matrix $M \in \mathbb{M}(n \times n, \mathbb{R})$ with random entries and returns the time that it takes to compute the PLU factorization of this matrix M.
5. Execute this function for $n \in\{1,2, \ldots, 2000\}$ and plot LUtime (n).
6. Fit a cubic to this data and interpret the result (cf. problem 2).

Problem 4: Column picture [10 points]

Consider the following vectors in \mathbb{R}^{3} :

$$
\vec{u}=\left[\begin{array}{c}
-3 \tag{5}\\
-2 \\
4
\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right], \quad \vec{w}=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right] .
$$

1. Verify or falsify if these vectors are contained in a plane in \mathbb{R}^{3}.
2. Consider the matrix

$$
A=\left[\begin{array}{ccc}
-3 & 1 & 2 \tag{6}\\
-2 & 2 & 0 \\
4 & -3 & -1
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\vec{u} & \vec{v} & \vec{w} \\
\mid & \mid & \mid
\end{array}\right] .
$$

- Use the result of 1 . to verify or falsify that $A \vec{x}=\overrightarrow{0}$ has a solution $\vec{x} \neq \overrightarrow{0}$.
- Suppose that $A \vec{x}=\vec{b}$ has a solution. Explain if it has other solutions.

