Martin Bies

Homework 3

Due: Thursday, February 11 – 10:00 am EST

Problem 1: PLU factorization [10 Points]

1. Consider n invertible matrices $A_i \in \mathbb{M}(n \times n, \mathbb{R})$. Prove that

$$\left(\prod_{i=1}^{n} A_i\right)^{-1} = \prod_{i=0}^{n-1} A_{n-i}^{-1} \,. \tag{1}$$

2. Let $i, j \in \mathbb{Z}_{>0}$ with i > j. Consider the elementary matrix $E_{ij}(k)$, whose non-trivial entries are 1's along the diagonal and k in row i column j. Find $E_{ij}^{-1}(k)$.

3. For Math 513:

Prove that if a lower triangular matrix has an inverse, it is lower triangular.

4. Find a lower triangular matrix L such that LA is upper trangular:

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 4 & 6 & 1 & 0 \\ -2 & 2 & 0 & 4 \\ 1 & 3 & 5 & 7 \end{bmatrix}.$$
 (2)

- 5. Find the PLU factorization of A. What are the pivots of A? Find rk(A).
- 6. Explain how the PLU factorization efficiently solves $A\vec{x} = \vec{b}$ for varying $\vec{b} \in \mathbb{R}^4$.

Problem 2: Exotic vector spaces [10 Points]

1. Consider $M := \mathbb{M}(2 \times 2, \mathbb{R})$ and

$$+_{M}: M \times M \to M, (A, B) \mapsto \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix},$$
(3)

$$\cdot_M \colon \mathbb{R} \times M \to M \,, \, (c, A) \mapsto \left[\begin{array}{cc} c \cdot a_{11} & c \cdot a_{12} \\ c \cdot a_{21} & c \cdot a_{22} \end{array} \right] \,. \tag{4}$$

Show that $(M, +_M, \cdot_M)$ is a vector space over \mathbb{R} .

2. $P := \text{Pol}_n$ is the set of polynomials in the variable x with degree at most n. Find operations $+_P$ and \cdot_P such that $(\text{Pol}_n, +_P, \cdot_P)$ is a vector space over \mathbb{R} .

3. Math 513:

Argue that $(\operatorname{Pol}_n, +_P, \cdot_P) \cong (\mathbb{R}^m, +, \cdot)$ for a suitable $m \in \mathbb{Z}_{\geq 0}$. \mathbb{R}^m is considered with its standard vector space operations.

Problem 3: Nullspace [10 Points]

1. Compute the row echelon form (REF):

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 0 & 0 & 7 & 2 \\ 0 & 1 & 5 & 2 \\ 1 & 4 & 3 & 2 \end{bmatrix}.$$
(5)

- 2. For each free column, find a non-trivial solution to $A_i \vec{x} = \vec{0}$.
- 3. Compute the row *reduced* echelon form (RREF).
- 4. For each free column, read off a non-trivial solution to $A_i \vec{x} = \vec{0}$ from the RREF.
- 5. Find all solutions to $A_1 \vec{x} = \vec{0}$ and $A_2 \vec{x} = \vec{0}$, respectively. Justify your answer.

Problem 4: Elementary row operations in Python [10 Points]

In this exercise, \mathcal{A} denotes a numpy-array. We perform computations with the matrices

$$B = \begin{bmatrix} 0 & 2 & 3 & 5 \\ 5 & 6 & 7 & 13 \\ 9 & 10 & 11 & 21 \\ 13 & 14 & 15 & 29 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 4 & -2 & 1 \\ 4 & 6 & 1 & 0 \\ 0 & 1 & 0 & 5 \\ 1 & 3 & 5 & 7 \end{bmatrix}.$$
 (6)

- 1. Write a function *add_rows* with the following properties:
 - Input: \mathcal{A}, k, i, j .
 - Output: Numpy-array resulting from adding k times row j to row i.

For i = j, rescale row i by k + 1.

2. Write a function *scale_row* with the following properties:

- Input: \mathcal{A}, k, i .
- Output: Numpy-array resulting from k times row i.
- 3. Write a function *switch_rows* with the following properties:
 - Input: \mathcal{A} , i, j.
 - Output: Numpy-array resulting from switching rows i and j.
- 4. Use these functions to compute the row reduced echelon form of B.
- 5. Write a function *elementary_matrix* with the following properties:
 - Input: k, i, j
 - Output: 4×4 numpy-array matching $E_{ij}(k)$ as defined in exercise 1.
- 6. Use the above functions to compute the LU-factorization of C step-by-step by Gauss elimination. Print your matrices L, U and verify that LU = C.