Homework 4

Due: Thursday, February 18 - 10:00 am EST

Problem 1: Solutions to linear systems [10 Points]

1. Consider the following linear systems:
(a) homogeneous system $A \vec{x}=\overrightarrow{0}$ of 2 equations in 2 unknowns,
(b) inhomogeneous system $A \vec{x}=\vec{b}$ of 7 equations in 7 unknowns,
(c) inhomogeneous system $A \vec{x}=\vec{b}$ of 4 equations in 7 unknowns,
(d) homogeneous system $A \vec{x}=\overrightarrow{0}$ of 4 equations in 7 unknowns,
(e) inhomogeneous system $A \vec{x}=\vec{b}$ of 5 equations in 2 unknowns,
(f) homogeneous system $A \vec{x}=\overrightarrow{0}$ of 5 equations in 2 unknowns.

For each of those situations, indicate all the possibilites that can occure:
(I) no solution,
(II) unique solution,
(III) infinitely many solutions.

No justification is required.
2. For $a_{1}, a_{2} \in \mathbb{R}$ we consider the linear system $A \vec{x}=\vec{b}$ with

$$
A=\left[\begin{array}{ccc}
1 & a_{1} & 0 \tag{1}\\
1 & 1 & 0 \\
0 & 0 & a_{2}
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Find all solutions to $A \vec{x}=\vec{b}$ as function of $a_{1}, a_{2} \in \mathbb{R}$.

Problem 2: Bases of vector spaces [10 Points]

1. Show that the following five vectors in \mathbb{R}^{3} are linearly dependent:

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \tag{2}\\
2 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \vec{v}_{4}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right], \vec{v}_{5}=\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right] .
$$

2. Find a basis of \mathbb{R}^{3} among the five vectors above. Justify your answer.
3. Find 4 linearly independent vectors in Pol_{4} and $\mathbb{M}(3 \times 3, \mathbb{R})$.
4. For Math 513: Derive $\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Pol}_{n}\right)$ and $\operatorname{dim}_{\mathbb{R}}(\mathbb{M}(m \times n, \mathbb{R}))$.

Problem 3: Inequalities for ranks [10 Points]

Consider $A \in \mathbb{M}(m \times n, \mathbb{R})$ and $B \in \mathbb{M}(n \times l, \mathbb{R})$.

1. Argue that $\operatorname{rk}(A) \leq n$ and $\operatorname{rk}(A) \leq m$.
2. Consider the map $\varphi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto A \vec{x}$. For all of the following cases, compare $\operatorname{rk}(A)$ with n and m :
(a) φ_{A} is injective,
(b) φ_{A} is surjective,
(c) φ_{A} is bijective.
3. For Math 513: Is it always true that $\operatorname{rk}(B) \leq \operatorname{rk}(A B)$?

Problem 4: A Markov process [10 Points]

We consider a network of three vessels A, B, C, which each contain 0.5 litre of water. Every hour, 90% of the water contained in A is being pumped into B. Similar transitions happen among all vessels. The transition rates are as follows:

1. Find $M \in \mathbb{M}(3 \times 3, \mathbb{R}), \vec{x} \in \mathbb{R}^{3}$ s.t. $M \vec{x}$ lists the water levels after one hour.
2. Assume there was a non-trivial vector \vec{x} with $M \vec{x}=\overrightarrow{0}$. Is this consistent with the above system? Compare with a Python-computation of $N(M)$.
3. After n-hours, the water levels are $\vec{x}^{(n)}:=M^{n} \vec{x}$. Write a Python-function to compute powers of a matrix. Use it to compute $\vec{x}^{(n)}$ for $n \in I=\{0,1, \ldots, 10\}$.
4. For each $n \in I$, compute the sum $\Sigma^{(n)}$ of the components of $\vec{x}^{(n)}$:

$$
\begin{equation*}
\Sigma^{(n)}:=x_{1}^{(n)}+x_{2}^{(n)}+x_{3}^{(n)} . \tag{4}
\end{equation*}
$$

5. Draw the three components of \vec{x}_{n} and the sum $\Sigma^{(n)}$ against $n \in I$. What do we learn about this vessel-system? In particular, interpret $\Sigma^{(n)}$.
