Martin Bies

Homework 4

Due: Thursday, February 18 – 10:00 am EST

Problem 1: Solutions to linear systems [10 Points]

1. Consider the following linear systems:

- (a) homogeneous system $A\vec{x} = \vec{0}$ of 2 equations in 2 unknowns,
- (b) inhomogeneous system $A\vec{x} = \vec{b}$ of 7 equations in 7 unknowns,
- (c) inhomogeneous system $A\vec{x} = \vec{b}$ of 4 equations in 7 unknowns,
- (d) homogeneous system $A\vec{x} = \vec{0}$ of 4 equations in 7 unknowns,
- (e) inhomogeneous system $A\vec{x} = \vec{b}$ of 5 equations in 2 unknowns,
- (f) homogeneous system $A\vec{x} = \vec{0}$ of 5 equations in 2 unknowns.

For each of those situations, indicate all the possibilities that can occure:

(I) no solution, (II) unique solution, (III) infinitely many solutions.

No justification is required.

2. For $a_1, a_2 \in \mathbb{R}$ we consider the linear system $A\vec{x} = \vec{b}$ with

$$A = \begin{bmatrix} 1 & a_1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & a_2 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$
(1)

Find all solutions to $A\vec{x} = \vec{b}$ as function of $a_1, a_2 \in \mathbb{R}$.

Problem 2: Bases of vector spaces [10 Points]

1. Show that the following five vectors in \mathbb{R}^3 are linearly dependent:

$$\vec{v}_1 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \vec{v}_4 = \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \ \vec{v}_5 = \begin{bmatrix} 3\\-1\\0 \end{bmatrix}.$$
(2)

- 2. Find a basis of \mathbb{R}^3 among the five vectors above. Justify your answer.
- 3. Find 4 linearly independent vectors in Pol_4 and $\mathbb{M}(3 \times 3, \mathbb{R})$.
- 4. For Math 513: Derive $\dim_{\mathbb{R}} (\operatorname{Pol}_n)$ and $\dim_{\mathbb{R}} (\mathbb{M} (m \times n, \mathbb{R}))$.

Problem 3: Inequalities for ranks [10 Points]

Consider $A \in \mathbb{M}(m \times n, \mathbb{R})$ and $B \in \mathbb{M}(n \times l, \mathbb{R})$.

- 1. Argue that $rk(A) \leq n$ and $rk(A) \leq m$.
- 2. Consider the map $\varphi_A \colon \mathbb{R}^n \to \mathbb{R}^m$, $\vec{x} \mapsto A\vec{x}$. For all of the following cases, compare $\operatorname{rk}(A)$ with n and m:
 - (a) φ_A is injective, (b) φ_A is surjective, (c) φ_A is bijective.
- 3. For Math 513: Is it always true that $rk(B) \le rk(AB)$?

Problem 4: A Markov process [10 Points]

We consider a network of three vessels A, B, C, which each contain 0.5 litre of water. Every hour, 90% of the water contained in A is being pumped into B. Similar transitions happen among all vessels. The transition rates are as follows:

- 1. Find $M \in \mathbb{M}(3 \times 3, \mathbb{R}), \vec{x} \in \mathbb{R}^3$ s.t. $M\vec{x}$ lists the water levels after one hour.
- 2. Assume there was a non-trivial vector \vec{x} with $M\vec{x} = \vec{0}$. Is this consistent with the above system? Compare with a Python-computation of N(M).
- 3. After *n*-hours, the water levels are $\vec{x}^{(n)} := M^n \vec{x}$. Write a Python-function to compute powers of a matrix. Use it to compute $\vec{x}^{(n)}$ for $n \in I = \{0, 1, \dots, 10\}$.
- 4. For each $n \in I$, compute the sum $\Sigma^{(n)}$ of the components of $\vec{x}^{(n)}$:

$$\Sigma^{(n)} := x_1^{(n)} + x_2^{(n)} + x_3^{(n)} \,. \tag{4}$$

5. Draw the three components of \vec{x}_n and the sum $\Sigma^{(n)}$ against $n \in I$. What do we learn about this vessel-system? In particular, interpret $\Sigma^{(n)}$.