Homework 5

Due: Thursday, March 4-10:00 am EST

Problem 1: Base change [10 Points]

In this exercise, you will find that in some basis it is easy to understand a linear transformation. We exemplify this for the linear transformation $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
\mathcal{B}_{1}=\left\{\vec{u}_{1}=\left[\begin{array}{l}
1 \tag{1}\\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \quad A_{\mathcal{B}_{1} \mathcal{B}_{1}}=\frac{1}{2} \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

1. Here I am interested in your intuition: What do you expect this linear transformation φ to do? Is it a rotation? Or maybe a reflection? Something else?
2. Consider the basis $\mathcal{B}_{2}=\left\{\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$:

- Find the transformation matrix $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$ for the base change from \mathcal{B}_{1} to \mathcal{B}_{2}.
- Compute $T_{\mathcal{B}_{1} \mathcal{B}_{2}}$ and $A_{\mathcal{B}_{1} \mathcal{B}_{2}}=A_{\mathcal{B}_{1} \mathcal{B}_{1}} T_{\mathcal{B}_{1} \mathcal{B}_{2}}$.
- From your intuition and $A_{\mathcal{B}_{1} \mathcal{B}_{2}}$: Formulate a hypothesis for how φ acts.

3. Compute $A_{\mathcal{B}_{2} \mathcal{B}_{2}}=T_{\mathcal{B}_{2} \mathcal{B}_{1}} A_{\mathcal{B}_{1} \mathcal{B}_{1}} T_{\mathcal{B}_{1} \mathcal{B}_{2}}$ and verify your hypothesis.

Problem 2: Transformation matrix in Python [10 Points]

1. Write a Python function:

Input: Two basis $\mathcal{B}_{1}, \mathcal{B}_{2}$ of \mathbb{R}^{n}. Output: $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$.
2. Write a Python function:

Input: Two basis $\mathcal{B}_{1}, \mathcal{B}_{2}$ of \mathbb{R}^{n} and $A_{\mathcal{B}_{1} \mathcal{B}_{1}} \quad$ Output: $A_{\mathcal{B}_{2} \mathcal{B}_{2}}$.
3. We will identify in Python basis \mathcal{B}^{\prime} such that $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is easy:

$$
A_{\mathcal{B B}}=\left[\begin{array}{ccc}
3 / 2 & 1 / 2 & 0 \tag{2}\\
1 / 2 & 3 / 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

- Rotate the standard basis \mathcal{B} by $\alpha \in I=\left\{0^{\circ}, 1^{\circ}, \ldots, 720^{\circ}\right\}$ about the z -axis:

$$
\mathcal{B}^{\prime}=\left\{R_{z} \overrightarrow{e_{1}}, R_{z} \overrightarrow{e_{2}}, R_{z} \overrightarrow{e_{3}}\right\}, \quad R_{z}=\left[\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \tag{3}\\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

For all $\alpha \in I$, verify that \mathcal{B}^{\prime} is a basis (use your function from the midterm).

- Compute $A_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}$ with 5 digit precision for all angles $\alpha \in I$.
- For which $\alpha \in I$ is $A_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}$, as computed in Python, approximately diagonal?

4. Math 513 We supplement these observations by a theoretical analysis. By hand, verify $R_{z}^{-1}=R_{z}^{T}$ and compute $A_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}$. Show that $A_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}=R_{z}^{T} A_{\mathcal{B}} R_{z}$ is diagonal if and only if $\alpha \in\left\{\left.-\frac{\pi}{4}+\frac{\pi}{2} \cdot k \right\rvert\, k \in \mathbb{Z}\right\}$.

Problem 3: Orthogonal vector spaces and decomposition [10 Points]

1. For the standard inner product $\langle\cdot, \cdot\rangle_{\text {Std }}$ in \mathbb{R}^{n}, verify all axioms of inner products.
2. Name another inner product $\langle\cdot, \cdot\rangle_{2}$ in \mathbb{R}^{n} and verify that it satisfies all axioms.
3. Find two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ such that $\langle\vec{x}, \vec{y}\rangle_{2}=0$ and $\langle\vec{x}, \vec{y}\rangle_{\mathrm{Std}} \neq 0$.
4. Consider $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 6 & 5 & 4\end{array}\right] \in \mathbb{M}(2 \times 3, \mathbb{R})$.

- Verify that $N(A)$ and $R(A)$ are orthogonal in $\langle\cdot, \cdot\rangle_{\mathrm{Std}}$.
- For every $\vec{x} \in \mathbb{R}^{3}$, compute $\vec{x}_{N} \in N(A)$ and $\vec{x}_{R} \in R(A)$ with $\vec{x}=\vec{x}_{N}+\vec{x}_{R}$.

Problem 4: Inner products in exotic vector spaces [10 Points]

1. Prove that the following is an inner product in Pol_{n} :

$$
\begin{equation*}
\langle\cdot, \cdot\rangle_{1}: \operatorname{Pol}_{n} \times \operatorname{Pol}_{n} \rightarrow \mathbb{R},(p, q) \mapsto \int_{0}^{1} p(x) \cdot q(x) d x \tag{4}
\end{equation*}
$$

2. Compute the length of the vectors $1, x, x^{2}, x^{3}, x^{4}$ of Pol_{4} with $\langle\cdot, \cdot\rangle_{1}$.
3. Bonus Find a basis $\mathcal{B}=\left\{P_{1}, P_{2}, P_{3}\right\}$ of Pol_{2} such that $\left\langle P_{i}, P_{j}\right\rangle_{1}=0$ whenever $i \neq j$ and such that $\left\langle P_{i}, P_{i}\right\rangle_{1}=1$ for all $P_{i} \in \mathcal{B}$.
4. Argue that also the following is an inner product in Pol_{n} :

$$
\begin{equation*}
\langle\cdot, \cdot\rangle_{2}: \operatorname{Pol}_{n} \times \operatorname{Pol}_{n} \rightarrow \mathbb{R},\left(\sum_{i=0}^{n} a_{i} x^{i}, \sum_{j=0}^{n} b_{j} x^{j}\right) \mapsto \sum_{i=0}^{n} a_{i} b_{i} . \tag{5}
\end{equation*}
$$

Find a basis $\mathcal{B}=\left\{P_{1}, P_{2}, P_{3}\right\}$ of Pol_{2} with $\left\langle P_{i}, P_{i}\right\rangle_{2}=1$ and $\left\langle P_{i}, P_{j}\right\rangle_{2}=0, i \neq j$.
5. Math 513: Find an inner product in $\mathbb{M}(m \times n, \mathbb{R})$. Justify your answer.

