Homework 7

Due: Thursday, March 18 - 10:00 EST

Problem 1: Orthogonal projections [10 Points]

1. Show that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{M}(2 \times 2, \mathbb{R})$ is invertible iff $a d-b c \neq 0$. Find A^{-1}.
2. In \mathbb{R}^{3}, compute the orthogonal projection P to $S=\left\{[x, y, z]^{T} \in \mathbb{R}^{3} \mid x-y-2 z=0\right\}$.
3. Compute the orthogonal projection Q to S^{\perp} and show that $P+Q=I$.
4. Math 513: Formulate the following as orthogonal projection and solve it: Find $f \in \operatorname{Span}_{\mathbb{R}}\{1, \sin (x), \cos (x)\}$ which minimizes $\int_{0}^{2 \pi}(\sin (2 x)-f(x))^{2}$.

Problem 2: Least square approximation [10 Points]

We compute the parabola $P(D, E, F)=\left\{\left.\left[\begin{array}{c}t \\ D+E t+F t^{2}\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}$ closest to

$$
\vec{b}_{1}=\left[\begin{array}{l}
0 \tag{1}\\
1
\end{array}\right], \quad \vec{b}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \vec{b}_{3}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \vec{b}_{4}=\left[\begin{array}{l}
3 \\
5
\end{array}\right] .
$$

1. First consider a general $A \in \mathbb{M}(n \times m, \mathbb{R})$ and $\vec{b} \in \mathbb{R}^{n}$.

- By repeating the steps in the lecture, argue that the orthogonal projection $A \vec{x}$ of \vec{b} to $C(A)$ is defined by the demand that $A^{T} A \vec{x}=A^{T} \vec{b}$.
- Consider the length of the error vector $l_{e}: \mathbb{R}^{3} \rightarrow \mathbb{R}, \vec{x} \mapsto l_{e}(\vec{x})=\langle A \vec{x}-\vec{b}, A \vec{x}-\vec{b}\rangle_{\mathrm{Std}}$. Prove that the Jacobian matrix of l_{e} vanishes at $\vec{x} \in \mathbb{R}^{n}$ iff $A^{T} A \vec{x}=A^{T} \vec{b}$.
- Explain the significance of the relation among $A^{T} A \vec{x}=A^{T} \vec{b}$ and l_{e}.

2. Now focus on the \vec{b}_{i} in eq. (1) and the parabola $P(D, E, F)$. Find $A \in \mathbb{M}(4 \times 3, \mathbb{R})$, $\vec{b} \in \mathbb{R}^{4}$ such that

$$
\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}, \vec{b}_{4}\right\} \subset P(D, E, F) \Leftrightarrow \vec{x}=\left[\begin{array}{ccc}
D & E & F \tag{2}
\end{array}\right]^{T} \text { satisfies } A \vec{x}=\vec{b} .
$$

3. Show that no parabola contains $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ and \vec{b}_{4}.
4. Find the best approximation parabola. You may assume that the Hessian matrix of l_{e} is positive definite.
5. Plot the best approximation parabola and the points \vec{b}_{i}.

Problem 3: Least square approximation in Python [10 Points]

1. Write a function LineFit which accepts $\left[\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{n}, b_{n}\right)\right]$ and fits a line to this data by the method of least square. You may assume that the Hessian matrix is positive definite. Plot the line and the data points $\left(t_{i}, b_{i}\right)$.
2. Similarly, write a function ParaFit, which fits a parabola $C+D t+E t^{2}$ to $\left[\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{n}, b_{n}\right)\right]$, plots the parabola and the data points.
3. Apply LineFit and ParaFit to $[(1,2),(2,2),(3,5),(4,3),(4.5,8)]$. By looking at the plots, does the line or the parabola describe the data better?
4. Expand your functions by a criterion for the quality of the fit. Justify your criterion and use it to tell if the line or parabola fits the data better.
5. Math 513: Compare your line fit with the linear regression fit in scikit-learn.

Problem 4: Gram-Schmidt procedure [10 Points]

1. Be $\{\vec{a}, \vec{b}, \vec{c}\}$ a family of linearly independent vectors in an inner product space $(V,\langle\cdot, \cdot\rangle)$. Show that $\vec{U}, \vec{V}, \vec{W}$ are orthogonal:

$$
\begin{equation*}
\vec{U}=\vec{a}, \quad \vec{V}=\vec{b}-\frac{\langle\vec{U}, \vec{b}\rangle}{\langle\vec{U}, \vec{U}\rangle} \cdot \vec{U}, \quad \vec{W}=\vec{c}-\frac{\langle\vec{U}, \vec{c}\rangle}{\langle\vec{U}, \vec{U}\rangle} \cdot \vec{U}-\frac{\langle\vec{V}, \vec{c}\rangle}{\langle\vec{V}, \vec{V}\rangle} \cdot \vec{V} . \tag{3}
\end{equation*}
$$

2. In \mathbb{R}^{4}, let $W=\operatorname{Span}_{\mathbf{R}}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$ with

$$
\begin{equation*}
\vec{v}_{1}=2 \vec{e}_{1}+\vec{e}_{3}, \quad \vec{v}_{2}=-\vec{e}_{1}+3 \vec{e}_{2}, \quad \vec{v}_{3}=2 \vec{e}_{1}-\vec{e}_{2}+3 \vec{e}_{3}, \tag{4}
\end{equation*}
$$

where $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}\right)$ is the standard basis of \mathbb{R}^{4}.

- Find an orthonormal basis of W.
- Find an orthonormal basis of $N\left(A^{T}\right)$ where $A=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$.
- Use these results to find an orthonormal basis of \mathbb{R}^{4}.
- Compute the projection of $\vec{b}=\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]^{T} \in \mathbb{R}^{4}$ to W.

