Homework 8 Due: Thursday, April 1 – 10:00 EST

Due: Thursday, April 1 – 10:00 ES

Problem 1: Hesse normal form [10 Points]

1. Be $\vec{a}, \vec{b} \in \mathbb{R}^3 \setminus \vec{0}$ two linearly independent vectors. For $\vec{x}_0 \in \mathbb{R}^3$ consider

$$S(\vec{x}_0) = \left\{ \mu \vec{a} + \nu \vec{b} + \vec{x}_0 \,|\, \mu, \nu \in \mathbb{R} \right\} \subseteq \mathbb{R}^3.$$
(1)

Show that there exist $\vec{n} \in \mathbb{R}^3$ and $d \in \mathbb{R}$ such that $\vec{n}^T \vec{n} = 1$ and

$$\vec{x} \in S(\vec{x}_0) \quad \Leftrightarrow \quad \langle \vec{n}, \vec{x} \rangle_{\text{std}} - d = 0.$$
 (2)

- 2. Give a geometric interpretation of $\vec{n} \in \mathbb{R}^3$ and $|d| \in \mathbb{R}$.
- 3. Are $\vec{n} \in \mathbb{R}^3$ and $d \in \mathbb{R}$ unique? If not, name conditions under which they are.
- 4. Under what condition is $S(\vec{x}_0)$ a linear subspace of \mathbb{R}^3 ?
- 5. Be $\vec{v} \in \mathbb{R}^3$ arbitrary but fixed. Compute the orthogonal projection of \vec{v} to $S(\vec{x}_0)$.

Problem 2: Determinants and applications [10 Points]

1. Use Cramer's rule to solve $A\vec{x} = \vec{b}$ for

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix} \in \mathbb{M}(3 \times 3, \mathbb{R}), \qquad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$
(3)

- 2. Repeat for A as above but $\vec{b} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$.
- 3. Show that the Vandermonde determinant satisfies $(a_i \in \mathbb{R})$

4. You are given points $\{(x_i, y_i) \in \mathbb{R}^2 | 1 \le i \le n \text{ and } x_i \ne x_j \text{ whenever } i \ne j\}$. We are looking for a polynomial

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1},$$
(5)

with $P(x_i) = y_i$ for all $1 \le i \le n$. Express this condition as matrix equation.

5. Under what condition does such a polynomial exist?

Problem 3: A first encounter with diagonalization [10 Points]

In this problem, we find a basis in which a linear transformation is diagonal.

1. Compute the polynomial $ch_A(\lambda) = det(A - \lambda I) \in \mathbb{R}[\lambda]$ for

$$A = \begin{bmatrix} -2 & -2 & -2 \\ -2 & 1 & -5 \\ -2 & -5 & 1 \end{bmatrix}.$$
 (6)

- 2. Find the three zeros $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ of this polynomial.
- 3. Find linearly independent vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$ with

$$A\vec{v}_1 = \lambda_1 \cdot \vec{v}_1, \qquad A\vec{v}_2 = \lambda_2 \cdot \vec{v}_2, \qquad A\vec{v}_3 = \lambda_3 \cdot \vec{v}_3.$$
(7)

- 4. Find the base change matrix $T_{\mathcal{B}_2\mathcal{B}_1}$ where $\mathcal{B}_2 = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ and $\mathcal{B}_1 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.
- 5. For the linear transformation $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ with $A_{\mathcal{B}_2\mathcal{B}_2} = A$, find $A_{\mathcal{B}_1\mathcal{B}_1}$ by use of $T_{\mathcal{B}_2\mathcal{B}_1}$. You should find that $A_{\mathcal{B}_1\mathcal{B}_1}$ is diagonal.

Problem 4: Basic diagonalization in Python [10 Points]

- 1. Use numpy to write a Python function BasicDiag which realizes the following algorithm:
 - Input: $A \in \mathbb{M}(n \times n, \mathbb{R})$,
 - Output: $A_{\mathcal{B}_1\mathcal{B}_1}, T_{\mathcal{B}_1\mathcal{B}_2}$.

The matrix $A_{\mathcal{B}_1\mathcal{B}_1}$ is to be computed by the following algorithm:

- a) Check that the input matrix A is a square matrix.
- b) The zeros of $ch_A(\lambda) = det(A \lambda I) \in \mathbb{R}[\lambda]$ are known as *eigenvalues* of A. For deep mathematical reasons, they are considered as complex numbers. Use the build in functions in **numpy** to compute the eigenvalues of A.
- c) Proceed if there are exactly *n* distinct and real eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Otherwise, raise a warning.
- d) For each λ_i compute a so-called *eigenvector* $\vec{v_i} \in \mathbb{R}^n$, that is $A\vec{v_i} = \lambda_i \cdot \vec{v_i}$.
- e) Proceed if $\mathcal{B}_1 = \{\vec{v}_1, \ldots, \vec{v}_n\}$ is a basis of \mathbb{R}^n . Otherwise, raise an error.
- f) Let $\mathcal{B}_2 = \{\vec{e}_1, \dots, \vec{e}_n\}$ be the standard basis of \mathbb{R}^n . Construct the base change matrix $T_{\mathcal{B}_2\mathcal{B}_1}$ and compute $A_{\mathcal{B}_1\mathcal{B}_1} = T_{\mathcal{B}_1\mathcal{B}_2}A_{\mathcal{B}_2\mathcal{B}_2}T_{\mathcal{B}_2\mathcal{B}_1}$.
- 2. Apply BasicDiag to $A = I_3$. "Too few eigenvalues" should be triggered.
- 3. Apply BasicDiag to eq. (6). You should find a result equivalent to yours in 3-5.
- 4. Apply BasicDiag to eq. (3) and rederive your answer to problem 2-2.