Homework 8

Due: Thursday, April 1 - 10:00 EST

Problem 1: Hesse normal form [10 Points]

1. Be $\vec{a}, \vec{b} \in \mathbb{R}^{3} \backslash \overrightarrow{0}$ two linearly independent vectors. For $\vec{x}_{0} \in \mathbb{R}^{3}$ consider

$$
\begin{equation*}
S\left(\vec{x}_{0}\right)=\left\{\mu \vec{a}+\nu \vec{b}+\vec{x}_{0} \mid \mu, \nu \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

Show that there exist $\vec{n} \in \mathbb{R}^{3}$ and $d \in \mathbb{R}$ such that $\vec{n}^{T} \vec{n}=1$ and

$$
\begin{equation*}
\vec{x} \in S\left(\vec{x}_{0}\right) \quad \Leftrightarrow \quad\langle\vec{n}, \vec{x}\rangle_{\mathrm{std}}-d=0 \tag{2}
\end{equation*}
$$

2. Give a geometric interpretation of $\vec{n} \in \mathbb{R}^{3}$ and $|d| \in \mathbb{R}$.
3. Are $\vec{n} \in \mathbb{R}^{3}$ and $d \in \mathbb{R}$ unique? If not, name conditions under which they are.
4. Under what condition is $S\left(\vec{x}_{0}\right)$ a linear subspace of \mathbb{R}^{3} ?
5. Be $\vec{v} \in \mathbb{R}^{3}$ arbitary but fixed. Compute the orthogonal projection of \vec{v} to $S\left(\vec{x}_{0}\right)$.

Problem 2: Determinants and applications [10 Points]

1. Use Cramer's rule to solve $A \vec{x}=\vec{b}$ for

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \tag{3}\\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R}), \quad \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

2. Repeat for A as above but $\vec{b}=\left[\begin{array}{lll}1 & -1 & 2\end{array}\right]^{T}$.
3. Show that the Vandermonde determinant satisfies $\left(a_{i} \in \mathbb{R}\right)$

$$
\operatorname{det}\left(\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \tag{4}\\
1 & a_{2} & a_{2}^{2} & \ldots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n-1}
\end{array}\right]\right)=\prod_{1 \leq i<j \leq n}^{n}\left(a_{j}-a_{i}\right) .
$$

4. You are given points $\left\{\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2} \mid 1 \leq i \leq n\right.$ and $x_{i} \neq x_{j}$ whenever $\left.i \neq j\right\}$. We are looking for a polynomial

$$
\begin{equation*}
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \tag{5}
\end{equation*}
$$

with $P\left(x_{i}\right)=y_{i}$ for all $1 \leq i \leq n$. Express this condition as matrix equation.
5. Under what condition does such a polynomial exist?

Problem 3: A first encounter with diagonalization [10 Points]

In this problem, we find a basis in which a linear transformation is diagonal.

1. Compute the polynomial $\operatorname{ch}_{A}(\lambda)=\operatorname{det}(A-\lambda I) \in \mathbb{R}[\lambda]$ for

$$
A=\left[\begin{array}{ccc}
-2 & -2 & -2 \tag{6}\\
-2 & 1 & -5 \\
-2 & -5 & 1
\end{array}\right]
$$

2. Find the three zeros $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ of this polynomial.
3. Find linearly independent vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{3}$ with

$$
\begin{equation*}
A \vec{v}_{1}=\lambda_{1} \cdot \vec{v}_{1}, \quad A \vec{v}_{2}=\lambda_{2} \cdot \vec{v}_{2}, \quad A \vec{v}_{3}=\lambda_{3} \cdot \vec{v}_{3} . \tag{7}
\end{equation*}
$$

4. Find the base change matrix $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$ where $\mathcal{B}_{2}=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ and $\mathcal{B}_{1}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
5. For the linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $A_{\mathcal{B}_{2} \mathcal{B}_{2}}=A$, find $A_{\mathcal{B}_{1} \mathcal{B}_{1}}$ by use of $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$. You should find that $A_{\mathcal{B}_{1} \mathcal{B}_{1}}$ is diagonal.

Problem 4: Basic diagonalization in Python [10 Points]

1. Use numpy to write a Python function BasicDiag which realizes the following algorithm:

- Input: $A \in \mathbb{M}(n \times n, \mathbb{R})$,
- Output: $A_{\mathcal{B}_{1} \mathcal{B}_{1}}, T_{\mathcal{B}_{1} \mathcal{B}_{2}}$.

The matrix $A_{\mathcal{B}_{1} \mathcal{B}_{1}}$ is to be computed by the following algorithm:
a) Check that the input matrix A is a square matrix.
b) The zeros of $\operatorname{ch}_{A}(\lambda)=\operatorname{det}(A-\lambda I) \in \mathbb{R}[\lambda]$ are known as eigenvalues of A. For deep mathematical reasons, they are considered as complex numbers. Use the build in functions in numpy to compute the eigenvalues of A.
c) Proceed if there are exactly n distinct and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. Otherwise, raise a warning.
d) For each λ_{i} compute a so-called eigenvector $\vec{v}_{i} \in \mathbb{R}^{n}$, that is $A \vec{v}_{i}=\lambda_{i} \cdot \vec{v}_{i}$.
e) Proceed if $\mathcal{B}_{1}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis of \mathbb{R}^{n}. Otherwise, raise an error.
f) Let $\mathcal{B}_{2}=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ be the standard basis of \mathbb{R}^{n}. Construct the base change matrix $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$ and compute $A_{\mathcal{B}_{1} \mathcal{B}_{1}}=T_{\mathcal{B}_{1} \mathcal{B}_{2}} A_{\mathcal{B}_{2} \mathcal{B}_{2}} T_{\mathcal{B}_{2} \mathcal{B}_{1}}$.
2. Apply BasicDiag to $A=I_{3}$. "Too few eigenvalues" should be triggered.
3. Apply BasicDiag to eq. (6). You should find a result equivalent to yours in 3-5.
4. Apply BasicDiag to eq. (3) and rederive your answer to problem 2-2.

