Homework 9

Due: Thursday, April 8 - 10:00 EST

Problem 1: General properties of Eigenvalues [10 Points]

1. Consider $A \in \mathbb{M}(n \times n, \mathbb{R}), \vec{x} \in \mathbb{R}^{n} \backslash \overrightarrow{0}$ and $\lambda \in \mathbb{C}$. Show the following equivalence:

$$
\begin{equation*}
A \vec{x}=\lambda \vec{x} \quad \Leftrightarrow \quad \operatorname{det}(A-\lambda I)=0 . \tag{1}
\end{equation*}
$$

2. Show that $A \in \mathbb{M}(n \times n, \mathbb{R})$ can have at most n distinct eigenvalues.
3. Name $A \in \mathbb{M}(n \times n, \mathbb{R})$ with strictly less than n distinct eigenvalues.
4. Name $A \in \mathbb{M}(n \times n, \mathbb{R})$ for which all eigenvalues are complex numbers.
5. Be $k \in \mathbb{Z}_{\geq 0}$. Show the following implication:

$$
\begin{equation*}
\lambda \text { eigenvalue of } A \quad \Rightarrow \quad \lambda^{k} \text { eigenvalue of } A^{k} \text {. } \tag{2}
\end{equation*}
$$

6. Be A invertible. Show the following equivalence:

$$
\begin{equation*}
\lambda \text { is an eigenvalue of } A \quad \Leftrightarrow \quad \lambda^{-1} \text { is an eigenvalue of } A^{-1} \text {. } \tag{3}
\end{equation*}
$$

Problem 2: Towards Eigenbasis [10 Points]

In this exercise, we study the Eigenbasis a projection matrix $P \in \mathbb{M}(n \times n, \mathbb{R})$.

1. Show that all eigenvalues λ of $P \in \mathbb{M}(n \times n, \mathbb{R})$ satisfy $\lambda \in\{0,1\}$.
2. Show that \mathbb{R}^{n} admits a basis $\mathcal{B}_{\text {eig }}$ of eigenvectors of P.
3. Describe the mapping matrix of P in this so-called Eigenbasis $\mathcal{B}_{\text {eig }}$ of P.
4. Compute the eigenvalues and eigenspaces of the projection matrix

$$
P=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{4}\\
0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R})
$$

5. Find the eigenbasis $\mathcal{B}_{\text {eig }}$ of P in eq. (4) and its mapping matrix in $\mathcal{B}_{\text {eig }}$.

Problem 3: Eigenvalues, traces and determinants [10 Points]

Be $A \in \mathbb{M}(n \times n, \mathbb{R})$. We denote its eigenvalues as $\left\{\lambda_{i}\right\}_{1 \leq i \leq N}$. The trace $\operatorname{tr}(A)$ of the square matrix A is defined as the sum of its diagonal entries.

1. Compute the eigenvalues of the following two matrices:

$$
A_{1}=\left[\begin{array}{lll}
1 & 3 & 3 \tag{5}\\
3 & 1 & 8 \\
3 & 8 & 1
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R}), \quad A_{2}=\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 4 & 8 \\
0 & 0 & 4
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R})
$$

2. Compare the sum of the eigenvalues of A_{1} to $\operatorname{tr}\left(A_{1}\right)$. Repeat for A_{2}.
3. Compare the product of the eigenvalues of A_{1} to $\operatorname{det}\left(A_{1}\right)$. Repeat for A_{2}.
4. For a general matrix $A \in \mathbb{M}(n \times n, \mathbb{R})$, show that

$$
\begin{equation*}
\operatorname{tr}(A)=\sum_{i=1}^{N} \lambda_{i}, \quad \operatorname{det}(A)=\prod_{i=1}^{N} \lambda_{i} . \tag{6}
\end{equation*}
$$

Problem 4: The type of local extremum [10 Points]

In this exercise we study local extrema of maps

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \vec{x}=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n} \tag{7}
\end{array}\right]^{T} \mapsto f\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

At a local extremum \vec{a} of f, the Jacobian $J(f)(\vec{a}) \in \mathbb{M}(n \times 1, \mathbb{R})$ necessarily vanishes:

$$
0 \equiv J(f)(\vec{a})=\left[\begin{array}{lll}
\left(\frac{\partial f}{\partial x_{1}}\right)(\vec{a}) & \ldots & \left(\frac{\partial f}{\partial x_{n}}\right)(\vec{a}) \tag{8}
\end{array}\right]^{T}
$$

The type of local extremum is identified by studying the Hessian matrix of f at \vec{a} :

$$
H(f)(\vec{a})=\left[\begin{array}{cccc}
\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}\right)(\vec{a}) & \left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\right)(\vec{a}) & \ldots & \left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}\right)(\vec{a}) \tag{9}\\
\vdots & \vdots & \ddots & \vdots \\
\left(\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}\right)(\vec{a}) & \left(\frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}\right)(\vec{a}) & \cdots & \left(\frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}\right)(\vec{a})
\end{array}\right] \in \mathbb{M}(n \times n, \mathbb{R}) .
$$

Namely, it can be shown that the following holds true:

$$
\begin{array}{rll}
\vec{a} \text { is local maximum } & \Leftrightarrow & H(f)(\vec{a}) \text { negative definite }, \\
\vec{a} \text { is local minimum } & \Leftrightarrow & H(f)(\vec{a}) \text { positive definite }, \tag{10}\\
\vec{a} \text { is saddle point } & \Leftrightarrow & H(f)(\vec{a}) \text { indefinite } .
\end{array}
$$

There can be local extrema, which are none of the above types.

We will eventually prove that a symmetric matrix $A \in \mathbb{M}(n \times n, \mathbb{R})$ (i.e. $\left.A=A^{T}\right)$ has only real eigenvalues. By definition, it then holds:

A is positive definite	\Leftrightarrow	all eigenvalues of A are positive,
A is negative definite	\Leftrightarrow	all eigenvalues of A are negative,
A is indefinite	\Leftrightarrow	A has positive and negative eigenvalues.

Use this information to complete the following tasks:

1. Write a Python function PositiveDefinite:

- Input: $A \in \mathbb{M}(n \times n, \mathbb{R})$
- Output:
- Check if $A=A^{T}$. If not, raise an error and exit.
- Otherwise, return True if A is positive definite and false otherwise.

2. Similarly, write a Python function NegativeDefinite and Indefinite.
3. Use analytic arguments to find all local extrema of

$$
\begin{equation*}
V: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto\left(1-x^{2}-y^{2}\right)^{2} \tag{12}
\end{equation*}
$$

Aside: This is the potential V of the famous Higgs boson.
4. Use the above Python functions to study the type of at least 3 local extrema.

Bonus: Study the type of all local extrema analytically.
5. Make a plot of V in Python for $(x, y) \in[-1,1] \times[-1,1]$. Compare this plot with the type of local extrema analyzed in the previous part of this exercise.

