Final exam

Due: Friday, May $7-23: 59$ EST
Justify all your answers.

Problem 1: Linear algebra questionary [10 Points]

1. Consider $A \in \mathbb{M}(n \times n, \mathbb{R})$ with $\operatorname{ch}_{A}(\lambda)=-\lambda^{2}(\lambda+4)^{2}(\lambda-3)$.

- What is the determinant and trace of A ?
- What values can $\operatorname{rk}(A)$ have? For each value, give one example matrix A.
- What are the possible numbers of linearly independent eigenvectors of A ? For each number, provide an example matrix A.

2. Consider $A \in \mathbb{M}(3 \times 3, \mathbb{R})$ with eigenvalues 1,2 , 3. For which $\mu \in \mathbb{R}$ is the matrix $A-\mu I \in \mathbb{M}(3 \times 3, \mathbb{R})$ invertible?
3. Consider $A \in \mathbb{M}(n \times n, \mathbb{C})$. We perform elementary row operations on A and obtain $B \in \mathbb{M}(n \times n, \mathbb{C})$. Is $\operatorname{ch}_{A}(\lambda)=\operatorname{ch}_{B}(\lambda)$?
4. Compute the singular-value-decomposition of

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 6 \tag{1}\\
0 & 1 & 0 & 2
\end{array}\right] \in \mathbb{M}(2 \times 4, \mathbb{R})
$$

If $\vec{x} \in \mathbb{R}^{4}$ is such that $|\vec{x}|=1$, what is the minimal and maximal length of $A \vec{x}$?

Problem 2: Nilpotents and roots [10 Points]

1. We study a nilpotent $A \in \mathbb{M}(n \times n, \mathbb{R})$, i.e., $A^{k}=0$ for some $k \in \mathbb{Z}_{>0}$.

- Find 3 nilpotent matrices which are linearly independent in $\mathbb{M}(2 \times 2, \mathbb{R})$.
- If A is nilpotent, $S \in \mathbb{M}(n \times n, \mathbb{R})$ invertible, prove that $S A S^{-1}$ is nilpotent.
- Compute e^{A} for $A=\left[\begin{array}{cccc}2 & 2 & 2 & -3 \\ 6 & 1 & 1 & -4 \\ 1 & 6 & 1 & -4 \\ 1 & 1 & 6 & -4\end{array}\right] \in \mathbb{M}(4 \times 4, \mathbb{R})$.

2. Let $k \in \mathbb{Z}_{\geq 2}$ be arbitrary but fixed. We focus on matrices $A \in \mathbb{M}(n \times n, \mathbb{R})$ with $A^{k}=I$, i.e., k-th roots of the identity matrix I.

- Find 6 different 2 nd roots of $I \in \mathbb{M}(2 \times 2, \mathbb{R})$.
- Math 513: Find infinitely many 3rd roots of $I \in \mathbb{M}(3 \times 3, \mathbb{R})$.

Problem 3: Damped spring-mass system [10 Points]

The dynamics of a damped spring-mass system - damping $\delta \in \mathbb{R}_{>0}-$ is described by

$$
\begin{equation*}
x^{\prime \prime}(t)=-2 \delta x^{\prime}(t)-\omega^{2} x(t) \tag{2}
\end{equation*}
$$

We will solve this ODE with linear algebra techniques. Recall that for $a \in \mathbb{R}$:

$$
\begin{equation*}
e^{i a}=\cos (a)+i \sin (a), \quad \cosh (a)=\frac{e^{a}+e^{-a}}{2}, \quad \sinh (a)=\frac{e^{a}-e^{-a}}{2} \tag{3}
\end{equation*}
$$

Use these three identities without proof to simplify your computations.

1. Find $A \in \mathbb{M}(2 \times 2, \mathbb{R})$ such that $\vec{z}^{\prime}(t)=A \cdot \vec{z}(t)$ where $\vec{z}(t)=\left[\begin{array}{c}x(t) \\ x^{\prime}(t)\end{array}\right]$.
2. Focus on $\delta^{2}<\omega^{2}$:

- Diagonalize A with a \mathbb{C}-valued base change. Thereby compute $e^{A t}$.
- Parametrize the solution $x(t)$ to eq. (2) by $x(0)=x_{0}, x^{\prime}(0)=v_{0}$.
- Plot $x(t)$ for $0 \leq t \leq 250, \delta=0.02, \omega=0.5, x_{0}=v_{0}=1$ in Python.

3. Repeat for $\delta^{2}>\omega^{2}$ and plot $x(t)$ for $0 \leq t \leq 250, \delta=2, \omega=0.3, x_{0}=v_{0}=1$.
4. Qualitatively, compare and describe the solutions for $\delta^{2}<\omega^{2}$ and $\delta^{2}>\omega^{2}$.

Problem 4: Quadrics and trajectories of asteroids [10 points]

Consider a symmetric $S \in \mathbb{M}(n \times n, \mathbb{R}), \vec{b} \in \mathbb{R}^{n}$ and $R \in \mathbb{R}_{>0}$. We study the quadric

$$
\begin{equation*}
Q(S, \vec{b}, R):=\left\{\vec{x} \in \mathbb{R}^{n} \mid \vec{x}^{T} S \vec{x}+\vec{b}^{T} \vec{x}=R\right\} \subseteq \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

1. Use the spectral theorem to prove that there is a bijection of sets

$$
\begin{equation*}
\varphi: Q(S, \vec{b}, R) \rightarrow\left\{\vec{y} \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} \lambda_{i} y_{i}^{2}+\vec{c}^{T} \vec{y}=R\right\}, \quad \lambda_{i} \in \mathbb{R}, \vec{c} \in \mathbb{R}^{n} \text { suitable. } \tag{5}
\end{equation*}
$$

2. Under simplifying assumptions, the trajectory of an asteroid in the gravitational field of a planet is described by

$$
T(\epsilon)=\left\{\vec{y} \in \mathbb{R}^{2} \left\lvert\, \vec{y}^{T}\left[\begin{array}{cc}
1-\epsilon^{2} & 0 \tag{6}\\
0 & 1
\end{array}\right] \vec{y}+\left[\begin{array}{c}
2 \epsilon \\
0
\end{array}\right]^{T} \vec{y}=1\right.\right\} \subseteq \mathbb{R}^{2}
$$

where $\epsilon \in \mathbb{R}_{\geq 0}$ is the eccentricity. For $\epsilon=0$, we have

$$
\begin{equation*}
T(\epsilon)=\left\{\vec{y} \in \mathbb{R}^{2} \mid y_{1}^{2}+y_{2}^{2}=1\right\} \subseteq \mathbb{R}^{2}, \tag{7}
\end{equation*}
$$

which clearly defines a circle. Similarly, identify the geometric shape of $T(\epsilon)$ for

$$
\begin{equation*}
0<\epsilon<1, \quad \epsilon=1, \quad 1<\epsilon . \tag{8}
\end{equation*}
$$

Make a contour plot in Python for $\epsilon \in\{0,0.5,1,1.5\}$.

