Midterm 1

Due: Thursday, February 25 - 10:00 am EST

Problem 1: The four linear subspaces [10 Points]

Every map $\varphi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto A \vec{x}, A \in \mathbb{M}(m \times n, \mathbb{R})$ can be factored as

$$
\begin{align*}
\operatorname{ker}\left(\varphi_{A}\right) \cong N(A) \xrightarrow{\varphi_{K}} & \mathbb{R}^{n} \xrightarrow{\varphi_{A}} \mathbb{R}^{m} \xrightarrow{\varphi_{P}} N\left(A^{T}\right) \cong \operatorname{coker}\left(\varphi_{A}\right) \\
& \stackrel{\varphi_{M_{1}}}{\varphi_{M_{2}}} \uparrow \tag{1}\\
\operatorname{coim}\left(\varphi_{A}\right) \cong & R(A) \xrightarrow{\varphi_{X}} C(A) \cong \operatorname{im}\left(\varphi_{A}\right)
\end{align*}
$$

We compute this factorization for $A=\left[\begin{array}{ccccc}1 & 4 & 7 & 10 & 5 \\ 2 & 5 & 8 & 11 & 10 \\ 3 & 6 & 9 & 12 & 15\end{array}\right] \in \mathbb{M}(3 \times 5, \mathbb{R})$.

1. Kernel embedding of φ_{A} :

- Verify $N(A)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$. Form $K=\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}\end{array}\right] \in \mathbb{M}(5 \times 3, \mathbb{R})$.
- Argue that $\operatorname{im}\left(\varphi_{K}\right)=N(A)$ and that φ_{K} is injective.

2. Coimage projection of φ_{A} :

- Verify $R(A)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ and form $M_{1}=\left[\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array}\right]^{T} \in \mathbb{M}(2 \times 5, \mathbb{R})$.
- Argue that $\varphi_{M_{1}}$ is surjective.

3. Image embedding of φ_{A} :

- Verify $C(A)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{c}_{1}, \vec{c}_{2}\right\}$ and form $M_{2}=\left[\begin{array}{ll}\vec{c}_{1} & \vec{c}_{2}\end{array}\right] \in \mathbb{M}(3 \times 2, \mathbb{R})$.
- Argue that $\operatorname{im}\left(\varphi_{M_{2}}\right)=C(A)$ and that $\varphi_{M_{2}}$ is injective.

4. Cokernel projection of φ_{A} :

- Verify $N\left(A^{T}\right)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{d}_{1}\right\}$. Form $P=\left[\vec{d}_{1}\right]^{T} \in \mathbb{M}(1 \times 3, \mathbb{R})$.
- Argue that φ_{P} is surjective.

5. Draw eq. (1) for A. Indicate the dimension of all vector spaces.
6. Math 513: Isomorphism φ_{X} :

Find an invertible $X \in \mathbb{M}(2 \times 2, \mathbb{R})$ with $A=M_{2} \cdot X \cdot M_{1}$.
7. Bonus: Write a Python function image-coimage-factorization:

Input: Arbitrary matrix $B \in \mathbb{M}(m \times n, \mathbb{R})$
Output:

- The matrices K, M_{1}, M_{2}, P in the image-coimage factorization of φ_{B}.
- Nice image of eq. (11). Indicate the vector spaces by their dimension.

Apply it to the matrix $B=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 8 & 10 \\ 9 & 10 & 11 & 12 & 15\end{array}\right] \in \mathbb{M}(3 \times 5, \mathbb{R})$.

Problem 2: Basis extension theorem [10 Points]

1. Which subsets $S^{\prime} \subseteq\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$ extend to a basis of \mathbb{R}^{4} ?
2. Extend one such subset S^{\prime} to a basis \mathcal{B} of \mathbb{R}^{4}. Verify that \mathcal{B} is a basis of \mathbb{R}^{4}.
3. Write a Python function lin_independent and justify why it operates correctly:

- Input: k vectors in \mathbb{R}^{n}.
- Output: True if the vectors are linearly independent and false otherwise.

4. Write a Python function basis_check and justify why it operates correctly:

- Input: k vectors in \mathbb{R}^{n}.
- Output: True if the vectors are a basis of \mathbb{R}^{n} and false otherwise.

5. Use these functions to verify your answers to (1) and (2).

Problem 3: Rank-nullity theorem [10 Points]

The rank-nullity theorem states that for $A \in \mathbb{M}(m \times n, \mathbb{R})$ it holds

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{R}}(N(A))+\operatorname{dim}_{\mathbb{R}}(C(A))=\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Source}\left(\varphi_{A}\right)\right) . \tag{2}
\end{equation*}
$$

1. Argue that this is equivalent to $\operatorname{dim}_{\mathbb{R}}(N(A))+\operatorname{rk}(A)=n$.
2. Test the rank-nullity theorem for $A=\left[\begin{array}{cccc}1 & 3 & 2 & 6 \\ -1 & 1 & 2 & 2 \\ 3 & 7 & 4 & 14\end{array}\right] \in \mathbb{M}(3 \times 4, \mathbb{R})$.
3. In Python, generate a family \mathcal{A} of 1000 random matrices in $\mathbb{M}(5 \times 5, \mathbb{R})$. The entries of these matrices are required to be the integers 0 or 1 . Compute the dimension of the null space of all matrices \mathcal{A}. What dimensions occur?
4. Write a Python function:

$$
\text { Input: } A \in \mathbb{M}(m \times n, \mathbb{R}) . \quad \text { Output: } \operatorname{dim}_{\mathbb{R}}(N(A))+\operatorname{rk}(A)-n
$$

Use this function to test the rank-nullity theorem for all matrices in \mathcal{A}.
5. Formulate a hypothesis how $\operatorname{dim}_{\mathbb{R}}\left(N\left(A^{T}\right)\right), \operatorname{dim}_{\mathbb{R}}\left(C\left(A^{T}\right)\right)$ and $\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Range}\left(\varphi_{A}\right)\right)$ are related. With Python, verify your hypothesis for all matrices in \mathcal{A}.
6. Bonus: Use eq. (2) to prove your hypothesis.

Problem 4: A matrix questionary [10 Points]

Suppose A is a matrix with a two-dimensional null space and a one-dimensional column space. Suppose \vec{b} belongs to the column space of A. Answer each of the following questions as true, false, or not enough information. Justify your answer.

1. The system $A \vec{x}=\vec{b}$ is solvable.
2. A has three columns.
3. A has three rows.
4. $\operatorname{rk}(A)$ is divisible by three.
5. The solutions to $A \vec{x}=\vec{b}$ form a plane $P \subset \mathbb{R}^{3}$.
