Midterm 2

Due: Thursday, March 25 - 10:00 am EST

Problem 1: QR-decomposition [10 Points]

1. Be $A \in \mathbb{M}(n \times n, \mathbb{R})$ invertible. Show that it admits a $Q R$-decomposition $A=Q R$ with $Q, R \in \mathbb{M}(n \times n, \mathbb{R}), Q$ orthogonal and R upper triangular.
2. Explain why $Q R$-decompositions are useful.
3. Find all lower triangular $A \in \mathbb{M}(n \times n, \mathbb{R})$ which are orthogonal.
4. Compute a $Q R$-decomposition for $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R})$.
5. Math 513: Is the $Q R$-decomposition unique? What conditions make it unique?

Problem 2: Determinants [10 Points]

1. Derive the determinant of $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16\end{array}\right]$.
2. You were given $A \in \mathbb{M}(3 \times 3, \mathbb{R})$ and performed the following row operations:

- Added the first row to the second row.
- Swapped rows 2 and 3.
- Scaled row 1 by the number 2 .

You arrived at $E=\left[\begin{array}{ccc}2 & 1 & 5 \\ 0 & -1 & 0 \\ 0 & 0 & 5\end{array}\right]$. What is $\operatorname{det}(A)$? Explain your answer.
3. Is $\{A \in \mathbb{M}(n \times n, \mathbb{R}) \mid \operatorname{det}(A)=0\}$ a vector space over \mathbb{R} ?
4. Is $\{A \in \mathbb{M}(n \times n, \mathbb{R}) \mid \operatorname{det}(A)=1\}$ a vector space over \mathbb{R} ?
5. Let $A, B \in \mathbb{M}(n \times n, \mathbb{R})$ with $A B=0$. Give a proof or counterexample for each of the following:

- $B A=0$,
- $A=0$ or $B=0$,
- If $\operatorname{det}(A)=-3$, then $B=0$,
- If B is invertible, then $A=0$.

Problem 3: Fourier series in Python [10 Points]

1. Write a function r :

- Input: $x \in[0,2 \pi]$
- Output: 1 if $0 \leq x \leq \pi$ and 0 otherwise.

2. Write a function FourierTransform:

- Input: A function f (such as r from part 1) and $d \in \mathbb{Z}_{\geq 0}$.
- Output: Scatter plot of $a_{0}, a_{k}, b_{k}(1 \leq k \leq d)$ in different colours.

3. Apply FourierTransform to r for $d=10$. Qualitatively, describe the plot.
4. Write a function FourierSeries:

- Input: A function f (such as r from part 1) and $d \in \mathbb{Z}_{\geq 0}$.
- Output:
- A Python function $F:[0,2 \pi] \rightarrow \mathbb{R}, x \mapsto F(x)$ with

$$
\begin{equation*}
F(x)=a_{0}+\sum_{k=1}^{d} a_{k} \cdot \cos (k x)+\sum_{k=1}^{d} b_{k} \cdot \sin (k x) . \tag{1}
\end{equation*}
$$

- Plot of $f(x)$ and $F(x)$ for $0 \leq x \leq 2 \pi$ - at least 500 values.

5. Apply FourierSeries to r for $d=3,10,50$ and describe the plots.
6. For $d=3,10$, apply FourierTransform and FourierSeries to

$$
\begin{equation*}
G:[0,2 \pi] \rightarrow \mathbb{R}, x \mapsto e^{-(x-\pi)^{2}} . \tag{2}
\end{equation*}
$$

7. FourierSeries converges much quicker for G than for r. Explain this.

Problem 4: True or false? Give a proof or counterexample.

1. Let $n>2$, then $\{A \in \mathbb{M}(n \times n, \mathbb{R}) \mid \operatorname{rk}(A) \leq 2\}$ is a vector space over \mathbb{R}.
2. Let $A, B \in \mathbb{M}(n \times n, \mathbb{R})$. Then $A B$ is invertible if and only if A, B are invertible.
3. Let $A \in \mathbb{M}(n \times(n+1), \mathbb{R}), B \in \mathbb{M}((n+1) \times n, \mathbb{R})$. Then $A B$ is not invertible.
4. Let $A \in \mathbb{M}(n \times n, \mathbb{R})$ s.t. $\exists k \in \mathbb{Z}_{>0}$ with $A^{k}=0$, then $I-A$ is invertible.
5. Math 513: Let $A \in \mathbb{M}(n \times n, \mathbb{R})$. If $A B=B A$ for all invertible matrices $B \in \mathbb{M}(n \times n, \mathbb{R})$, then $A=c \cdot I$ for a scalar $c \in \mathbb{R}$.
