## Homework 1 - Coding

Due: Thursday, January 20-10:00 am EST

## Problem 1C: Installation, configuration and first steps [20 points]

1. Install Python 3 and verify that your version is $\geq 3.0$.
2. Install the packages numpy and scipy for Python 3.
3. Install Jupyter and start a notebook with Python 3. Perform the following tasks in this Jupyter notebook, which supports headings and, in markdown mode, even $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. Use this to add interpretations and explanations.

- Add a cell with the following content and execute it:
from platform import python_version
print (python_version () )
- Add a cell with the following content and execute it:
print ("HelloWorld!")
print "HelloWorld!"
Explain why the second line triggers an error.
- Execute the following code in a cell. It uses the packages numpy and scipy for linear algebra:

```
# import numpy and the linear algebra tools in scipy
import numpy as np
import scipy.linalg as la
# create a matrix and a vector
M = np.array ([[1,3],[2, 8]])
v = np.array ([[1],[2]])
# compute the product of }M\mathrm{ and v
print( "M*v:")
print( str( M @ v ) + "\n")
# compute the inverse of M
print( "M^-1:")
print( str( la.inv(M) ) + "\n")
```

- Extend the notebook to compute and print the matrix products $M \cdot M^{-1}$ and $M^{-1} \cdot M$. Compare the computed results with your expectation.
- Extend your notebook to solve the first two tasks of problem 1T.

