Homework 1 - Theory

Due: Thursday, January 20-10:00 am EST

Problem 1T: Elementary operations with vectors and matrices [20 points]

1. For $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{y}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \in \mathbb{R}^{2}$, draw an image of $\vec{x}, \vec{y}, \vec{x}+\vec{y}, 2 \cdot \vec{x}$.
2. Find $a, b \in \mathbb{R}$ with $a \vec{x}+b \vec{y}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$.
3. For $P=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, compute $P \vec{x}$ and $P \vec{y}$. Interpret the result.
4. For $R=\frac{1}{\sqrt{2}} \cdot\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$, compute $R \vec{x}$ and $R \vec{y}$. Interpret the result.

Problem 2T: Interesting matrices [20 points]

Find 2×2 matrices $M \in \mathbb{M}(2 \times 2, \mathbb{R})$ and vectors $\vec{b} \in \mathbb{R}^{2}$ with the following properties:

- $M \vec{x}=\vec{b}$ has no solution \vec{x},
- $M \vec{x}=\vec{b}$ has exactly one solution \vec{x},
- $M \vec{x}=\vec{b}$ holds true for all $\vec{x} \in \mathbb{R}^{2}$.
- For Math 513:
$M \vec{x}=\vec{b}$ has infinitely many solutions \vec{x}, but for at least one $\vec{x} \in \mathbb{R}^{2}: M \vec{x} \neq \vec{b}$.
Give a geometric interpretation ("row picture") of each case.

