Homework 10 - Coding

Due: Tuesday, April 26 - 23:59 EST

Problem 1C: Walking on a diamond [20 Points]

A young ant Y walks along a diamond. With each step, it moves from one vertex to a neighbouring vertex along one of the edges of the diamond. It picks the edges that it passes along at random and with equal probability.

1. Y explores the diamond in 2022 steps. Which vertex does Y reach with what probability after these 2022 steps? (Hint: Markov chain.)
2. Y challenges an old ant O to a race. O needs to rest with probability 0.2 and moves to neighbouring vertices with equal probability. In favor of O, the ants agree on a race in 5 steps. They start in the red vertex R. The goal is to reach the green vertex G in exactly 5 steps:

- How likely is it at Y arrives at G after exactly 5 steps?
- How likely is it at O arrives at R after exactly 5 steps?
- Who is more likely to win this race?

3. In ant school, Y learns about paths - ordered sequences of edges where any two consecutive edges share a common vertex.

- Count the paths of length 3 between R and G in eq. (11).
- Explain that for any $n \in \mathbb{Z}_{\geq 2}$, there is a path of length n from R to G.

4. Y is fascinated by paths. It decides to count paths between the green and red vertex. We help it by computing their number.

- Familiarize yourself with adjacency matrices.
- Find the adjacency matrix $A \in \mathbb{M}(6 \times 6, \mathbb{Z})$ for the diamond in eq. (1).
- Compute an appropriate entry of A^{3} to find the number of paths of length 3 between R and G.
- How many paths of length 30 exist between R and G ?
- Bonus (for 313 and 513): How many paths of length 2023 are there between R and G ? (Hint: The answer is not zero.)

Problem 2C: A coupled spring-mass-system [20 Points]

We will continue on the coupled spring-mass system discussed in section 6.4.3 of the lecture notes. The goal is to see how rich the dynamics of this simple system is:

1. Write a Python function:

- Input: Initial values $x_{a}, v_{a}, x_{b}, v_{b}$, positive spring constants k_{1}, k_{2}, positive masses m_{a}, m_{b}, the positive box length s and times $t_{\min }, t_{\max } \in \mathbb{R}$.
- Processing 1: Compute $\vec{y}(t)$ and $\vec{x}(t)$ as discussed in the lecture.
- Processing 2: Construct the set $T:=\left\{t_{\min }, t_{\min }+0.1, t_{\min }+0.2, \ldots, t_{\text {max }}\right]$.
- Output 1: Plot $\frac{s}{4}+y_{a}(t)$ and $\frac{3 \cdot s}{4}+y_{b}(t)$ in one diagram for $t \in T$.
- Output 2: Plot $\frac{s}{4}+x_{a}(t)$ and $\frac{3 \cdot s}{4}+x_{b}(t)$ in a second diagram for $t \in T$.

Test your function for

$$
\begin{equation*}
k_{1}=k_{2}=1, \quad m_{a}=m_{b}=1 \quad x_{a}=x_{b}=1, \quad v_{a}=v_{b}=1 \tag{2}
\end{equation*}
$$

$t_{\min }=0, t_{\max }=100$ and $s=16$. Does the plot fit with your expectation?
2. Let us now study the limit $m_{b} \rightarrow \infty$. To this end, set $m_{b}=10$ and describe how the plot changes. Qualitatively, explain the changed behavior.
3. Without using your function, explain what behavior to expect for $m_{b} \rightarrow 0$.
4. Let us plot the system for asymmetric initial conditions. To this end, we consider

$$
\begin{equation*}
k_{1}=k_{2}=1, \quad m_{a}=m_{b}=1 \quad x_{a}=v_{a}=1, \quad x_{b}=v_{b}=2, \tag{3}
\end{equation*}
$$

and $t_{\text {min }}=0, t_{\text {max }}=100, s=16$. Qualitatively, describe how the diagrams change relative to the symmetric case in $4-2$. Does this fit your expectation?
5. Finally, let us consider the plots for a choice with different spring constants:

$$
\begin{equation*}
k_{1}=10, \quad k_{2}=1, \quad m_{a}=m_{b}=1 \quad x_{a}=v_{a}=1, \quad x_{b}=v_{b}=2 \tag{4}
\end{equation*}
$$

and $t_{\min }=0, t_{\max }=100, s=24$. Qualitatively, describe the plots.

Problem 3C: Gradient descent [20 Points]

We will code a gradient descent method to find the global minima of

$$
\begin{equation*}
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto 2-2 x^{2}+x^{4}+x y-2 y^{2}+y^{4} \tag{5}
\end{equation*}
$$

1. Write a function move (p, r) :

- Input: A point $p=(x, y) \in \mathbb{R}^{2}$ and $r \in \mathbb{R}_{>0}$.
- Processing:

Let C be a circle with radius r about p. Construct a family $F \subseteq C$ of 360 equally-spaced points. For each point $q=\left(x_{q}, y_{q}\right) \in F$ compute $\Delta_{q}=f\left(x_{q}, y_{q}\right)-f(x, y)$.

- Output:
- If for all $q \in F$ it holds $\Delta_{q} \geq 0$, return p.
- Otherwise return the (or, if at least two exist, one) point $q \in F$ for which Δ_{q} is smallest among all points in F.

2. Write a function chain (p, r) :

- Input: A point $p_{0}=(x, y) \in \mathbb{R}^{2}$ and $r \in \mathbb{R}_{>0}$.
- Output: Family $F=\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{N}\right\}$ where $p_{i+1}=\operatorname{move}\left(p_{i}, \mathrm{r}\right)$ and p_{N} is defined by $p_{N}=\operatorname{move}\left(p_{N}, \mathrm{r}\right)$.

3. Write a function plot_descent (p, r) :

- Input: A point $p_{0}=(x, y) \in \mathbb{R}^{2}$ and $r \in \mathbb{R}_{>0}$.
- Output:
- Contour plot of f for $(x, y) \in R=[-1.5,1.5] \times[-1.5,1.5]$ including the maxima, minima and saddle points identified on assignment 9 and all points of in chain (p, r). Indicate maxima in red, saddle points in green, minima in blue and the points in chain (p, r) in orange color.
- Print the length of chain (p, r) and the value of f at its last point.

4. Let $S=\{(0.1,0.1),(-0.2,-0.4),(-0.1,-0.2)\}$. Execute plot_descent (p,r) for $r=0.2$ and each point in S. Qualitatively describe the chains.
5. There are two local minima $m_{1}, m_{2} \in R=[-1.5,1.5] \times[-1.5,1.5]$ with $f\left(m_{i}\right)=$ -1.125 . We consider those the global minima of f in R. Let us estimate the chances to find those points m_{1}, m_{2} with our gradient descent algorithm.

- Construct a family T of 50×50 uniformly distributed points in R.
- For each $q \in T$ and $r=0.2$ execute chain (p, r). If f at the final point of the chain is between -1.15 and -1.10 we consider a global minimum found. Use T to estimate the chances to find m_{1}, m_{2}. Comment on your result. How could we improve the chances?

