Homework 10 - Theory

Due: Tuesday, April 26 - 23:59 EST

Problem 1T: Matrix exponentials [20 Points]

Consider $X, Y \in \mathbb{M}(n \times n, \mathbb{R})$. We define $e^{X}:=\sum_{k=0}^{\infty} \frac{X^{k}}{k!}$ and set X^{0} to be the $n \times n$ identity matrix. In addition we define the so-called commutator $[X, Y]:=X Y-Y X$.

1. Suppose X is diagonalizable. Find an expression for e^{X} in terms of a base change change matrix $S \in \mathbb{M}(n \times n, \mathbb{R})$ and the eigenvalues of X.
2. Compute e^{X} for $X=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R})$.
3. There are remarkable results concerning matrix exponentials:

- $\left(e^{X}\right)^{T}=e^{\left(X^{T}\right)}$.
- $\left(e^{X}\right)^{-1}=e^{-X}$ (even when X is not invertible).
- If $X Y=Y X$, then $e^{X} e^{Y}=e^{X+Y}$. (In general $e^{X} e^{Y} \neq e^{Y} e^{X}$.)
- If $[X,[X, Y]]=[Y,[X, Y]]=0$, then $e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]}$.

Prove two of these four results.
Hint: The last result is a special instance of the so-called Campbell-BakerHausdorff formula and the toughest challenge. For a proof, consider $f(\lambda)=$ $e^{\lambda X} e^{\lambda Y} e^{-\lambda(X+Y)}$ and establish $f^{\prime}(\lambda)=\lambda[X, Y] \cdot f(\lambda)$.
4. Bonus: Find $X \in \mathbb{M}(2 \times 2, \mathbb{R})$ with $e^{X}=\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]$.

