Homework 3 - Coding

Due: Thursday, February 3-10:00 am EST

Problem 1C (Python): Elementary row operations [20 Points]

In this exercise, \mathcal{A} denotes a numpy-array.

1. Write a function add_rows with the following properties:

- Input: \mathcal{A}, k, i, j.
- Output: Numpy-array resulting from adding k times row j to row i.

For $i=j$, rescale row i by $k+1$.
2. Write a function scale_row with the following properties:

- Input: \mathcal{A}, k, i.
- Output: Numpy-array resulting from k times row i.

3. Write a function switch_rows with the following properties:

- Input: \mathcal{A}, i, j.
- Output: Numpy-array resulting from switching rows i and j.

4. Use these functions to compute the row reduced echelon form of C :

$$
C=\left[\begin{array}{cccc}
0 & 2 & 3 & 5 \tag{1}\\
5 & 6 & 7 & 13 \\
9 & 10 & 11 & 21 \\
13 & 14 & 15 & 29
\end{array}\right]
$$

5. Let $i, j \in \mathbb{Z}_{>0}$ with $i>j$. Consider the elementary matrix $E_{i j}(k)$, whose nontrivial entries are 1's along the diagonal and k in row i column j. Write a function elementary_matrix with the following properties:

- Input: k, i, j
- Output: 4×4 numpy-array matching $E_{i j}(k)$.

6. Use the above functions to compute a PLU-factorization of A in problem 1T. Do this step-by-step by Gauss elimination. Print L, U and verify that $L U=A$.
