Homework 3 - Theory

Due: Thursday, February 3-10:00 am EST

Problem 1T: PLU factorization [10 Points]

1. Consider k invertible matrices $A_{i} \in \mathbb{M}(n \times n, \mathbb{R})$. Prove that

$$
\begin{equation*}
\left(\prod_{i=1}^{k} A_{i}\right)^{-1}=\prod_{i=0}^{k-1} A_{k-i}^{-1} \tag{1}
\end{equation*}
$$

2. Prove that if a lower triangular matrix has an inverse, it is lower triangular.
3. Find the PLU factorization, pivots and rank of A :

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \tag{2}\\
2 & 5 & 8 & 11 \\
3 & 8 & 14 & 20 \\
4 & 11 & 20 & 30
\end{array}\right]
$$

Problem 2T: Nullspace [10 Points]

1. Compute the row reduced echelon form (RREF) of

$$
B=\left[\begin{array}{llll}
0 & 0 & 7 & 2 \tag{3}\\
0 & 1 & 5 & 2 \\
1 & 4 & 3 & 2
\end{array}\right]
$$

2. For each free column of the RREF, read off a non-trivial solution to $B \vec{x}=\overrightarrow{0}$.
3. Find all solutions to $B \vec{x}=\overrightarrow{0}$. Justify your answer.

Problem 3T: "Exotic" vector spaces [20 Points]

1. Consider $M:=\mathbb{M}(2 \times 2, \mathbb{R})$ and

$$
\begin{align*}
& +_{M}: M \times M \rightarrow M,(A, B) \mapsto\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right], \tag{4}\\
& \cdot_{M}: \mathbb{R} \times M \rightarrow M,(c, A) \mapsto\left[\begin{array}{ll}
c \cdot a_{11} & c \cdot a_{12} \\
c \cdot a_{21} & c \cdot a_{22}
\end{array}\right] . \tag{5}
\end{align*}
$$

Show that $\left(M,+_{M}, \cdot_{M}\right)$ is a vector space over \mathbb{R}.
2. $P:=\mathrm{Pol}_{n}$ is the set of polynomials in the variable x with degree at most n. Find operations $+_{P}$ and $\cdot{ }_{P}$ such that $\left(\operatorname{Pol}_{n},+_{P},{ }_{P}\right)$ is a vector space over \mathbb{R}.
3. Math 513:

Argue that $\left(\operatorname{Pol}_{n},+_{P}, \cdot{ }_{P}\right) \cong\left(\mathbb{R}^{m},+, \cdot\right)$ for a suitable $m \in \mathbb{Z}_{\geq 0} . \mathbb{R}^{m}$ is to be considered with its standard vector space operations.

