Martin Bies

Homework 4

Due: Thursday, February 17 – 10:00 am EST

Problem 1T: More about ranks [10 Points]

Consider $A \in \mathbb{M}(m \times n, \mathbb{R})$ and $\varphi_A \colon \mathbb{R}^n \to \mathbb{R}^m, \vec{x} \mapsto A\vec{x}$.

- 1. Argue that:
 - φ_A is injective iff $N(A) = \{0\},\$
 - φ_A is surjective iff $N(A^T) = \{0\}.$

Use this and the rank-nullity theorem to compare rk(A) with n, m for the following cases:

- (a) φ_A is injective, (b) φ_A is surjective, (c) φ_A is bijective.
- 2. Is it always true that $\operatorname{rk}(B) \leq \operatorname{rk}(AB)$ for $B \in \mathbb{M}(n \times l, \mathbb{R})$?
- 3. Math 513: Is it always true that $rk(AB) \leq rk(A)$ for $B \in \mathbb{M}(n \times l, \mathbb{R})$?
- 4. The rank-nullity theorem states that for any $A \in \mathbb{M}(m \times n, \mathbb{R})$ it holds

$$\dim_{\mathbb{R}}(N(A)) + \dim_{\mathbb{R}}(C(A)) = \dim_{\mathbb{R}}(\operatorname{Source}(\varphi_A)) .$$
(1)

Argue that this is equivalent to $\dim_{\mathbb{R}}(N(A)) + \operatorname{rk}(A) = n$.

Problem 2T: The four linear subspaces [20 Points]

Every map $\varphi_A \colon \mathbb{R}^n \to \mathbb{R}^m$, $\vec{x} \mapsto A\vec{x}$, $A \in \mathbb{M}(m \times n, \mathbb{R})$ can be factored as

We compute this factorization for $A = \begin{bmatrix} 1 & 4 & 7 & 10 & 5 \\ 2 & 5 & 8 & 11 & 10 \\ 3 & 6 & 9 & 12 & 15 \end{bmatrix} \in \mathbb{M}(3 \times 5, \mathbb{R}).$

- 1. Kernel embedding of φ_A :
 - Verify $N(A) = \operatorname{Span}_{\mathbb{R}}\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$. Form $K = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} \in \mathbb{M}(5 \times 3, \mathbb{R})$.
 - Argue that $im(\varphi_K) = N(A)$ and that φ_K is injective.
- 2. Coimage projection of φ_A :
 - Verify $R(A) = \operatorname{Span}_{\mathbb{R}}\{\vec{b}_1, \vec{b}_2\}$ and form $M_1 = [\vec{b}_1 \ \vec{b}_2]^T \in \mathbb{M}(2 \times 5, \mathbb{R}).$
 - Argue that φ_{M_1} is surjective.

- 3. Image embedding of φ_A :
 - Verify $C(A) = \operatorname{Span}_{\mathbb{R}} \{ \vec{c_1}, \vec{c_2} \}$ and form $M_2 = [\vec{c_1} \ \vec{c_2}] \in \mathbb{M}(3 \times 2, \mathbb{R}).$
 - Argue that $im(\varphi_{M_2}) = C(A)$ and that φ_{M_2} is injective.
- 4. Cokernel projection of φ_A :
 - Verify $N(A^T) = \operatorname{Span}_{\mathbb{R}}\{\vec{d}_1\}$. Form $P = [\vec{d}_1]^T \in \mathbb{M}(1 \times 3, \mathbb{R})$.
 - Argue that φ_P is surjective.
- 5. Compare your findings with the rank-nullity theorem for A and A^{T} .
- 6. Math 513: Isomorphism φ_X : Find an invertible $X \in \mathbb{M}(2 \times 2, \mathbb{R})$ with $A = M_2 \cdot X \cdot M_1$.

Problem 3T: Bases of vector spaces [10 Points]

1. Which subsets
$$S' \subseteq \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} \right\}$$
 extend to a basis of \mathbb{R}^4 ?

- 2. Find $n \times m$ linearly independent vectors in $\mathbb{M}(m \times n, \mathbb{R})$.
- 3. Prove dim_{\mathbb{R}} ($\mathbb{M}(m \times n, \mathbb{R})$) = $m \times n$.
- 4. Find n + 1 linearly independent vectors in Pol_n .
- 5. Prove $\dim_{\mathbb{R}}(\operatorname{Pol}_n) = n + 1$.