Homework 4

Due: Thursday, February 17 - 10:00 am EST

Problem 1T: More about ranks [10 Points]

Consider $A \in \mathbb{M}(m \times n, \mathbb{R})$ and $\varphi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto A \vec{x}$.

1. Argue that:

- φ_{A} is injective iff $N(A)=\{0\}$,
- φ_{A} is surjective iff $N\left(A^{T}\right)=\{0\}$.

Use this and the rank-nullity theorem to $\operatorname{compare} \operatorname{rk}(A)$ with n, m for the following cases:
(a) φ_{A} is injective,
(b) φ_{A} is surjective,
(c) φ_{A} is bijective.
2. Is it always true that $\operatorname{rk}(B) \leq \operatorname{rk}(A B)$ for $B \in \mathbb{M}(n \times l, \mathbb{R})$?
3. Math 513: Is it always true that $\operatorname{rk}(A B) \leq \operatorname{rk}(A)$ for $B \in \mathbb{M}(n \times l, \mathbb{R})$?
4. The rank-nullity theorem states that for any $A \in \mathbb{M}(m \times n, \mathbb{R})$ it holds

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{R}}(N(A))+\operatorname{dim}_{\mathbb{R}}(C(A))=\operatorname{dim}_{\mathbb{R}}\left(\operatorname{Source}\left(\varphi_{A}\right)\right) \tag{1}
\end{equation*}
$$

Argue that this is equivalent to $\operatorname{dim}_{\mathbb{R}}(N(A))+\operatorname{rk}(A)=n$.

Problem 2T: The four linear subspaces [20 Points]

Every map $\varphi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto A \vec{x}, A \in \mathbb{M}(m \times n, \mathbb{R})$ can be factored as

$$
\begin{align*}
& \operatorname{ker}\left(\varphi_{A}\right) \cong N(A) \xrightarrow{\varphi_{K}} \mathbb{R}^{n} \xrightarrow{\varphi_{A}} \mathbb{R}^{m} \xrightarrow{\varphi_{P}} N\left(A^{T}\right) \cong \operatorname{coker}\left(\varphi_{A}\right) \\
& \stackrel{\varphi_{M_{1}}}{\varphi_{M_{2}}} \uparrow \tag{2}\\
& \operatorname{coim}\left(\varphi_{A}\right) \cong R(A) \xrightarrow{\varphi_{X}} C(A) \cong \operatorname{im}\left(\varphi_{A}\right)
\end{align*}
$$

We compute this factorization for $A=\left[\begin{array}{ccccc}1 & 4 & 7 & 10 & 5 \\ 2 & 5 & 8 & 11 & 10 \\ 3 & 6 & 9 & 12 & 15\end{array}\right] \in \mathbb{M}(3 \times 5, \mathbb{R})$.

1. Kernel embedding of φ_{A} :

- Verify $N(A)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$. Form $K=\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}\end{array}\right] \in \mathbb{M}(5 \times 3, \mathbb{R})$.
- Argue that $\operatorname{im}\left(\varphi_{K}\right)=N(A)$ and that φ_{K} is injective.

2. Coimage projection of φ_{A} :

- Verify $R(A)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ and form $M_{1}=\left[\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array}\right]^{T} \in \mathbb{M}(2 \times 5, \mathbb{R})$.
- Argue that $\varphi_{M_{1}}$ is surjective.

3. Image embedding of φ_{A} :

- Verify $C(A)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{c}_{1}, \vec{c}_{2}\right\}$ and form $M_{2}=\left[\begin{array}{ll}\vec{c}_{1} & \vec{c}_{2}\end{array}\right] \in \mathbb{M}(3 \times 2, \mathbb{R})$.
- Argue that $\operatorname{im}\left(\varphi_{M_{2}}\right)=C(A)$ and that $\varphi_{M_{2}}$ is injective.

4. Cokernel projection of φ_{A} :

- Verify $N\left(A^{T}\right)=\operatorname{Span}_{\mathbb{R}}\left\{\vec{d}_{1}\right\}$. Form $P=\left[\vec{d}_{1}\right]^{T} \in \mathbb{M}(1 \times 3, \mathbb{R})$.
- Argue that φ_{P} is surjective.

5. Compare your findings with the rank-nullity theorem for A and A^{T}.
6. Math 513: Isomorphism φ_{X} :

Find an invertible $X \in \mathbb{M}(2 \times 2, \mathbb{R})$ with $A=M_{2} \cdot X \cdot M_{1}$.

Problem 3T: Bases of vector spaces [10 Points]

1. Which subsets $S^{\prime} \subseteq\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right]\right\}$ extend to a basis of \mathbb{R}^{4} ?
2. Find $n \times m$ linearly independent vectors in $\mathbb{M}(m \times n, \mathbb{R})$.
3. Prove $\operatorname{dim}_{\mathbb{R}}(\mathbb{M}(m \times n, \mathbb{R}))=m \times n$.
4. Find $n+1$ linearly independent vectors in Pol_{n}.
5. Prove $\operatorname{dim}_{\mathbb{R}}\left(\mathrm{Pol}_{n}\right)=n+1$.
