Homework 5 - Coding

Due: Thursday, February 24 - 10:00 am EST

Problem 1C: Transformation matrix [20 Points]

1. Write a Python function:

Input: Two basis $\mathcal{B}_{1}, \mathcal{B}_{2}$ of \mathbb{R}^{n}. Output: $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$.
2. Write a Python function:

Input: Two basis $\mathcal{B}_{1}, \mathcal{B}_{2}$ of \mathbb{R}^{n} and $A_{\mathcal{B}_{1} \mathcal{B}_{1}}$
Output: $A_{\mathcal{B}_{2} \mathcal{B}_{2}}$.
3. We will now identify a basis \mathcal{B}^{\prime} such that $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is easy:

$$
A_{\mathcal{B B}}=\left[\begin{array}{ccc}
3 / 2 & 1 / 2 & 0 \tag{1}\\
1 / 2 & 3 / 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

- Rotate the standard basis \mathcal{B} by $\alpha \in I=\left\{0^{\circ}, 1^{\circ}, \ldots, 720^{\circ}\right\}$ about the z-axis:

$$
\mathcal{B}^{\prime}=\left\{R_{z} \overrightarrow{e_{1}}, R_{z} \overrightarrow{e_{2}}, R_{z} \overrightarrow{e_{3}}\right\}, \quad R_{z}=\left[\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \tag{2}\\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

For all $\alpha \in I$, verify that \mathcal{B}^{\prime} is a basis.
Hint: Use your function from homework 4.

- Compute $A_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}$ with 5 digit precision for all angles $\alpha \in I$.
- For which $\alpha \in I$ is $A_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}$, as computed by Python, approximately diagonal?

