Homework 6 - Coding

Due: Thursday, March 24 - 10:00 EST

Problem 1C: Least square approximation in Python [20 Points]

1. Write a function LineFit which accepts $\left[\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{n}, b_{n}\right)\right]$, fits a line to this data, plot this line and the data points $\left(t_{i}, b_{i}\right)$.
Hint: Use orthogonal projection as discussed in class.
2. Similarly, write a function ParaFit, which fits a parabola $C+D t+E t^{2}$ to $\left[\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{n}, b_{n}\right)\right]$, plots this parabola and the data points.
3. Apply LineFit and ParaFit to $[(1,2),(2,2),(3,5),(4,3),(4.5,8)]$. By looking at the plots, does the line or the parabola describe the data better?
4. Expand your functions by a criterion for the quality of the fit. Justify your criterion and use it to tell if the line or parabola fits the data better.
5. Math 513: Compare your line fit with the linear regression fit in scikit-learn.

Problem 2C: Fourier series in Python [20 Points]

1. Write a function r :

- Input: $x \in[0,2 \pi]$
- Output: 1 if $0 \leq x \leq \pi$ and 0 otherwise.

2. Write a function FourierTransform:

- Input: A function f (such as r from part 1) and $d \in \mathbb{Z}_{\geq 0}$.
- Output: Scatter plot of $a_{0}, a_{k}, b_{k}(1 \leq k \leq d)$ in different colours.

3. Apply FourierTransform to r for $d=10$. Qualitatively, describe the plot.
4. Write a function FourierSeries:

- Input: A function f (such as r from part 1) and $d \in \mathbb{Z}_{\geq 0}$.
- Output:
- A Python function $F:[0,2 \pi] \rightarrow \mathbb{R}, x \mapsto F(x)$ with

$$
\begin{equation*}
F(x)=a_{0}+\sum_{k=1}^{d} a_{k} \cdot \cos (k x)+\sum_{k=1}^{d} b_{k} \cdot \sin (k x) . \tag{1}
\end{equation*}
$$

- Plot of $f(x)$ and $F(x)$ for at least 500 position x with $0 \leq x \leq 2 \pi$.

5. Apply FourierSeries to r for $d=3,10,50$ and describe the plots.
6. For $d=3,10$, apply FourierTransform and FourierSeries to

$$
\begin{equation*}
g:[0,2 \pi] \rightarrow \mathbb{R}, x \mapsto e^{-(x-\pi)^{2}} \tag{2}
\end{equation*}
$$

7. Math 513: Why does FourierSeries converge much quicker for g than for r ?
