Homework 6 - Theory

Due: Thursday, March 24-10:00 EST

Problem 1T: Hesse normal form [10 Points]

1. Be $\vec{a}, \vec{b} \in \mathbb{R}^{3} \backslash \overrightarrow{0}$ two linearly independent vectors. For $\vec{x}_{0} \in \mathbb{R}^{3}$ consider

$$
\begin{equation*}
S\left(\vec{x}_{0}\right)=\left\{\mu \vec{a}+\nu \vec{b}+\vec{x}_{0} \mid \mu, \nu \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

Show that there exist $\vec{n} \in \mathbb{R}^{3} \backslash \overrightarrow{0}$ and $d \in \mathbb{R}$ such that $\vec{n}^{T} \vec{n}=1$ and

$$
\begin{equation*}
\vec{x} \in S\left(\vec{x}_{0}\right) \quad \Leftrightarrow \quad\langle\vec{n}, \vec{x}\rangle_{\mathrm{std}}-d=0 \tag{2}
\end{equation*}
$$

2. Give a geometric interpretation of $\vec{n} \in \mathbb{R}^{3} \backslash \overrightarrow{0}$ and $|d| \in \mathbb{R}$.
3. Assume $\vec{x}_{0} \neq \overrightarrow{0}$: Are $\vec{n} \in \mathbb{R}^{3}$ and $d \in \mathbb{R}$ unique? If not, name conditions under which they are.
4. Bonus (for 313 and 513 students)

Assume $\vec{x}_{0}=\overrightarrow{0}$. Is there a condition which fixes $\vec{n} \in \mathbb{R}^{3}$ and $d \in \mathbb{R}$ uniquely?

Problem 2T: QR-decomposition [10 Points]

1. Explain why $Q R$-decompositions are useful.
2. Compute a $Q R$-decomposition for $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R})$.
3. Is the $Q R$-decomposition unique? If not, what conditions make it unique?
