## Homework 7 - Coding

Due: Thursday, March 31 - 10:00 EST

## Problem 1C: Basic diagonalization in Python [20 Points]

1. Use numpy to write a Python function BasicDiag which realizes the following algorithm:

- Input: $A \in \mathbb{M}(n \times n, \mathbb{R})$,
- Output: $A_{\mathcal{B}_{1} \mathcal{B}_{1}}, T_{\mathcal{B}_{1} \mathcal{B}_{2}}$.

The matrix $A_{\mathcal{B}_{1} \mathcal{B}_{1}}$ is to be computed by the following algorithm:
a) Check that the input matrix $A$ is a square matrix.
b) The zeros of $\operatorname{ch}_{A}(\lambda)=\operatorname{det}(A-\lambda I) \in \mathbb{R}[\lambda]$ are known as eigenvalues of $A$. For deep mathematical reasons, they are considered as complex numbers. Use the build in functions in numpy to compute the eigenvalues of $A$.
c) Proceed if there are exactly $n$ distinct and real eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. Otherwise, raise a warning.
d) For each $\lambda_{i}$ compute a so-called eigenvector $\vec{v}_{i} \in \mathbb{R}^{n}$, that is $A \vec{v}_{i}=\lambda_{i} \cdot \vec{v}_{i}$.
e) Proceed if $\mathcal{B}_{1}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis of $\mathbb{R}^{n}$. Otherwise, raise an error.
f) Let $\mathcal{B}_{2}=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ be the standard basis of $\mathbb{R}^{n}$. Construct the base change matrix $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$ and compute $A_{\mathcal{B}_{1} \mathcal{B}_{1}}=T_{\mathcal{B}_{1} \mathcal{B}_{2}} A_{\mathcal{B}_{2} \mathcal{B}_{2}} T_{\mathcal{B}_{2} \mathcal{B}_{1}}$.
2. Apply BasicDiag to $A=I_{3}$. "Too few eigenvalues" should be triggered.
3. Apply BasicDiag to $A \in \mathbb{M}(3 \times 3, \mathbb{R})$ with

$$
A=\left[\begin{array}{ccc}
-2 & -2 & -2  \tag{1}\\
-2 & 1 & -5 \\
-2 & -5 & 1
\end{array}\right]
$$

You should find a result equivalent to your answer in problem 3T.
4. Apply BasicDiag to solve $A \vec{x}=\vec{b}$ with

$$
A=\left[\begin{array}{ccc}
-1 & 3 & 1  \tag{2}\\
2 & 3 & 3 \\
3 & 5 & 6
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R}), \quad \vec{b}=\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right]
$$

Compare with your answer to problem 1T.

