Homework 7 - Theory

Due: Thursday, March 31 - 10:00 EST

Problem 1T: Determinants - Generalities [10 Points]

1. You were given $A \in \mathbb{M}(3 \times 3, \mathbb{R})$ and performed the following row operations:

- Added the first row to the third row.
- Swapped rows 2 and 3.
- Scaled row 2 by the number 4 .

You arrive at $E=\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 4\end{array}\right]$. What is $\operatorname{det}(A)$? Explain your answer.
2. Let $A \in \mathbb{M}(4 \times 4, \mathbb{R})$ with $\operatorname{det}(A)=7$ and $\vec{b} \in \mathbb{R}^{4}$. Argue that $A \vec{x}=\vec{b}$ has exactly one solution.
3. Solve $A \vec{x}=\vec{b}$ with Cramer's rule for

$$
A=\left[\begin{array}{ccc}
-1 & 3 & 1 \tag{1}\\
2 & 3 & 3 \\
3 & 5 & 6
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R}), \quad \vec{b}=\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right]
$$

Hint: Verify $\operatorname{det}(A) \neq 0$, as otherwise Cramer's rule does not apply.

Problem 2T: Determinants and applications [10 Points]

1. Show that the Vandermonde determinant satisfies ($a_{i} \in \mathbb{R}$)

$$
\operatorname{det}\left(\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \tag{2}\\
1 & a_{2} & a_{2}^{2} & \ldots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n-1}
\end{array}\right]\right)=\prod_{1 \leq i<j \leq n}^{n}\left(a_{j}-a_{i}\right)
$$

2. You are given points $\left\{\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2} \mid 1 \leq i \leq n\right.$ and $x_{i} \neq x_{j}$ whenever $\left.i \neq j\right\}$. We are looking for a polynomial

$$
\begin{equation*}
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \tag{3}
\end{equation*}
$$

with $P\left(x_{i}\right)=y_{i}$ for all $1 \leq i \leq n$. Under what condition does a unique P exist?

Problem 3T: A first encounter with diagonalization [20 Points]

In this problem, we find a basis in which a linear transformation is diagonal.

1. Compute the polynomial $\operatorname{ch}_{A}(\lambda)=\operatorname{det}(A-\lambda I) \in \mathbb{R}[\lambda]$ for

$$
A=\left[\begin{array}{ccc}
-2 & -2 & -2 \tag{4}\\
-2 & 1 & -5 \\
-2 & -5 & 1
\end{array}\right]
$$

2. Find the three zeros $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ of this polynomial.
3. Find linearly independent vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{3}$ with

$$
\begin{equation*}
A \vec{v}_{1}=\lambda_{1} \cdot \vec{v}_{1}, \quad A \vec{v}_{2}=\lambda_{2} \cdot \vec{v}_{2}, \quad A \vec{v}_{3}=\lambda_{3} \cdot \vec{v}_{3} . \tag{5}
\end{equation*}
$$

4. Find the base change matrix $T_{\mathcal{B}_{2} \mathcal{B}_{1}}$ where $\mathcal{B}_{2}=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ and $\mathcal{B}_{1}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
5. For the linear transformation $\varphi_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $A=A_{\mathcal{B}_{2} \mathcal{B}_{2}}$, compute $A_{\mathcal{B}_{1} \mathcal{B}_{1}}$. Hint: You should find that $A_{\mathcal{B}_{1} \mathcal{B}_{1}}$ is diagonal.
