Math 313/513, Spring 2022

Homework 8 – Coding

Due: Thursday, April 7 – 10:00 am EST

Problem 1C: A Markov process [20 Points]

We consider three towns A, B, C with 1 million inhabitants each. Every month, 70% of the inhabitants of A move to B. Similar movements exist among all pairs of the cities. The monthly rates are as follows:

For completeness, we have marked those people that do not move by an arrow from their city back to itself.

1. Find $M \in \mathbb{M}(3 \times 3, \mathbb{R})$ and $\vec{x} \in \mathbb{R}^3$ s.t. the components of $M\vec{x}$ match the number of inhabitants after one month.

Hint: Fractional citizens are not meaningful. Still, round to 3 decimal places.

- 2. After *n* months, the number of people in *A*, *B*, *C* are given by the components of $\vec{x}^{(n)} := M^n \vec{x}$. Compute $\vec{x}^{(n)}$ for $n \in I = \{0, 1, \dots, 10\}$.
- 3. Draw the three components of \vec{x}_n against $n \in I$.
- 4. For each $n \in I$, verify that the total number of people

$$\Sigma^{(n)} := x_1^{(n)} + x_2^{(n)} + x_3^{(n)}, \qquad (1)$$

is constant. To this end, draw $\Sigma^{(n)}$ against $n \in I$.

- 5. Is the existence of $\vec{x} \in \mathbb{R}^3$ with $x_i \ge 0$ and $M\vec{x} = \vec{0}$ consistent with part 4?
- 6. Math 513: Find $\vec{x} \in \mathbb{R}^3$ such that $M\vec{x} = \vec{x}$. Interpret the components of \vec{x} . Hint: Compare with your plot in part 2.
- 7. Bonus (for 313 and 513): Find transition rates s.t. $\lim_{n\to\infty} (M^n \vec{x})$ does not exist. Plot the components of \vec{x}_n and the sum $\Sigma^{(n)}$ for $n \in I$.