Homework 8 - Coding

Due: Thursday, April 7 - 10:00 am EST

Problem 1C: A Markov process [20 Points]

We consider three towns A, B, C with 1 million inhabitants each. Every month, 70% of the inhabitants of A move to B. Similar movements exist among all pairs of the cities. The monthly rates are as follows:

For completeness, we have marked those people that do not move by an arrow from their city back to itself.

1. Find $M \in \mathbb{M}(3 \times 3, \mathbb{R})$ and $\vec{x} \in \mathbb{R}^{3}$ s.t. the components of $M \vec{x}$ match the number of inhabitants after one month.
Hint: Fractional citizens are not meaningful. Still, round to 3 decimal places.
2. After n months, the number of people in A, B, C are given by the components of $\vec{x}^{(n)}:=M^{n} \vec{x}$. Compute $\vec{x}^{(n)}$ for $n \in I=\{0,1, \ldots, 10\}$.
3. Draw the three components of \vec{x}_{n} against $n \in I$.
4. For each $n \in I$, verify that the total number of people

$$
\begin{equation*}
\Sigma^{(n)}:=x_{1}^{(n)}+x_{2}^{(n)}+x_{3}^{(n)}, \tag{1}
\end{equation*}
$$

is constant. To this end, draw $\Sigma^{(n)}$ against $n \in I$.
5. Is the existence of $\vec{x} \in \mathbb{R}^{3}$ with $x_{i} \geq 0$ and $M \vec{x}=\overrightarrow{0}$ consistent with part 4?
6. Math 513: Find $\vec{x} \in \mathbb{R}^{3}$ such that $M \vec{x}=\vec{x}$. Interpret the components of \vec{x}. Hint: Compare with your plot in part 2.
7. Bonus (for 313 and 513): Find transition rates s.t. $\lim _{n \rightarrow \infty}\left(M^{n} \vec{x}\right)$ does not exist. Plot the components of \vec{x}_{n} and the sum $\Sigma^{(n)}$ for $n \in I$.

