Homework 8

Due: Thursday, April 7 – 10:00 EST

Problem 1T: General properties of Eigenvalues [20 Points]

- 1. Consider $A \in \mathbb{M}(n \times n, \mathbb{R})$ and prove the following:
 - Be $k \in \mathbb{Z}_{\geq 0}$ and λ eigenvalue of A. Then λ^k is eigenvalue of A^k .
 - If A is invertible, then λ is eigenvalue of A iff λ^{-1} is eigenvalue of A^{-1} .
- 2. Take n = 3. For each of the following, name one matrix $A \in \mathbb{M}(n \times n, \mathbb{R})$:
 - A has n distinct eigenvalues.
 - A has less than n distinct eigenvalues.
 - At least one eigenvalue of A is not real.
- 3. Math 513: Repeat for arbitrary but fixed $n \in \mathbb{Z}$ with $n \geq 4$.

Problem 2T: An Eigenbasis [10 Points]

In this exercise we compute the *Eigenbasis* of a projection $\varphi_P \colon \mathbb{R}^3 \to \mathbb{R}^3$ with

$$P_{\mathcal{B}_{\mathrm{std}}\mathcal{B}_{\mathrm{std}}} = \begin{bmatrix} 0.5 & 0 & 0.5\\ 0 & 0 & 0\\ 0.5 & 0 & 0.5 \end{bmatrix} \in \mathbb{M}(3 \times 3, \mathbb{R}), \quad \mathcal{B}_{\mathrm{std}} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}.$$
(1)

- 1. Compute the eigenvalues and eigenvectors of $P_{\mathcal{B}_{std}\mathcal{B}_{std}}$.
- 2. Verify that the eigenvectors of $P_{\mathcal{B}_{\text{std}}\mathcal{B}_{\text{std}}}$ furnish a basis of \mathbb{R}^3 . Remark: This basis is the so-called *eigenbasis* \mathcal{B}_{eig} .
- 3. Find the mapping matrix $P_{\mathcal{B}_{eig}\mathcal{B}_{eig}}$ with respect to the eigenbasis. Hint: The eigenvalues of the vectors in \mathcal{B}_{eig} are sufficient to identify this matrix.

Problem 3T: Eigenvalues, traces and determinants [10 Points]

In this exercise, we compare the eigenvalues, the trace and the determinant.

1. For $A \in \mathbb{M}(n \times n, \mathbb{R})$ one can show that the eigenvalues λ_i satisfy

$$\operatorname{tr}(A) = \sum_{i=1}^{N} \lambda_i, \qquad \det(A) = \prod_{i=1}^{N} \lambda_i.$$
(2)

Verify these results for
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 2 & 3 \\ 5 & 6 & 3 \end{bmatrix} \in \mathbb{M}(3 \times 3, \mathbb{R}).$$
 (Hint: $\lambda_1 = -2.$)

- 2. Show that all eigenvalues of $A \in \mathbb{M}(2 \times 2, \mathbb{R})$ are real iff $\operatorname{tr}(A)^2 4 \cdot \det(A) \ge 0$. Hint: Use eq. (2) and express the eigenvalues in terms of $\det(A)$ and $\operatorname{tr}(A)$.
- 3. Bonus (for both 313 and 513): Prove eq. (2) for arbitrary $A \in \mathbb{M}(n \times n, \mathbb{R})$.