Homework 8

Due: Thursday, April 7-10:00 EST

Problem 1T: General properties of Eigenvalues [20 Points]

1. Consider $A \in \mathbb{M}(n \times n, \mathbb{R})$ and prove the following:

- Be $k \in \mathbb{Z}_{\geq 0}$ and λ eigenvalue of A. Then λ^{k} is eigenvalue of A^{k}.
- If A is invertible, then λ is eigenvalue of A iff λ^{-1} is eigenvalue of A^{-1}.

2. Take $n=3$. For each of the following, name one matrix $A \in \mathbb{M}(n \times n, \mathbb{R})$:

- A has n distinct eigenvalues.
- A has less than n distinct eigenvalues.
- At least one eigenvalue of A is not real.

3. Math 513: Repeat for arbitrary but fixed $n \in \mathbb{Z}$ with $n \geq 4$.

Problem 2T: An Eigenbasis [10 Points]

In this exercise we compute the Eigenbasis of a projection $\varphi_{P}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with

$$
P_{\mathcal{B}_{\mathrm{std}}} \mathcal{B}_{\mathrm{std}}=\left[\begin{array}{ccc}
0.5 & 0 & 0.5 \tag{1}\\
0 & 0 & 0 \\
0.5 & 0 & 0.5
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R}), \quad \mathcal{B}_{\text {std }}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

1. Compute the eigenvalues and eigenvectors of $P_{\mathcal{B}_{\text {std }}} \mathcal{B}_{\text {std }}$.
2. Verify that the eigenvectors of $P_{\mathcal{B}_{\text {std }}} \mathcal{B}_{\text {std }}$ furnish a basis of \mathbb{R}^{3}.

Remark: This basis is the so-called eigenbasis $\mathcal{B}_{\text {eig }}$.
3. Find the mapping matrix $P_{\mathcal{B}_{\text {eig }} \mathcal{B}_{\text {eig }}}$ with respect to the eigenbasis.

Hint: The eigenvalues of the vectors in $\mathcal{B}_{\text {eig }}$ are sufficient to identify this matrix.

Problem 3T: Eigenvalues, traces and determinants [10 Points]

In this exercise, we compare the eigenvalues, the trace and the determinant.

1. For $A \in \mathbb{M}(n \times n, \mathbb{R})$ one can show that the eigenvalues λ_{i} satisfy

$$
\begin{equation*}
\operatorname{tr}(A)=\sum_{i=1}^{N} \lambda_{i}, \quad \operatorname{det}(A)=\prod_{i=1}^{N} \lambda_{i} . \tag{2}
\end{equation*}
$$

Verify these results for $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 4 & 2 & 3 \\ 5 & 6 & 3\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R})$. (Hint: $\lambda_{1}=-2$.)
2. Show that all eigenvalues of $A \in \mathbb{M}(2 \times 2, \mathbb{R})$ are real iff $\operatorname{tr}(A)^{2}-4 \cdot \operatorname{det}(A) \geq 0$. Hint: Use eq. (22) and express the eigenvalues in terms of $\operatorname{det}(A)$ and $\operatorname{tr}(A)$.
3. Bonus (for both 313 and 513): Prove eq. (2) for arbitrary $A \in \mathbb{M}(n \times n, \mathbb{R})$.

