Math 313/513, Spring 2022

Martin Bies

Homework 9 – Theory

Due: Thursday, April 15 – 10:00 EST

Problem 1: More on diagonalization [20 Points]

1. Diagonalize $A_1, A_2, A_3 \in \mathbb{M}(3 \times 3, \mathbb{R})$ or prove that this is impossible:

$$A_{1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad A_{3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$
(1)

- 2. Matrices $A, B \in \mathbb{M}(n \times n, \mathbb{R})$ are similar if there is an invertible $S \in \mathbb{M}(n \times n, \mathbb{R})$ such that $A = SBS^{-1}$. (Hence, A and B describe the same linear map in different bases and the base change is mediated by the matrix S.)
 - If A is diagonalizable and A, B are similar, prove that B is diagonalizable.
 - If A, B are similar, then show that det(A) = det(B).
 - Are there A_i in eq. (1) which are similar?
- 3. Matrices $A, B \in \mathbb{M}(n \times n, \mathbb{R})$ are simultaneously diagonalizable if there is an invertible $S \in \mathbb{M}(n \times n, \mathbb{R})$ such that $S^{-1}AS$ and $S^{-1}BS$ are both diagonal.
 - Show that simultaneously diagonalizable matrices commute: AB = BA.
 - Are there A_i in eq. (1) which are simultaneously diagonalizable?
 - Math 513: Show that if AB = BA and all eigenvalues of A have algebraic multiplicity 1, then A, B are simultaneously diagonalizable.

Problem 2: Markov meets Christmas [20 Points]

Suppose your mood is categorized in exactly three classes (good, even-tempered, bad). We assume the following daily transition probabilities:

	good	even-tempered	bad
good even-tempered bad	$\frac{3}{41}$	3 8 1 2 1 8	$\frac{1}{8}$

Let $\vec{x}^{(k)} = \begin{bmatrix} g_k & e_k & b_k \end{bmatrix}^T \in \mathbb{R}^3$ correspond to your mood in k-days.

1. Find $M \in \mathbb{M}(3 \times 3, \mathbb{R})$ such that $\vec{x}^{(k)} = M\vec{x}^{(k-1)}$ (for k = 1, 2, ...).

2. Today is April 7. Find the number N of days until Christmas eve.

3. Diagonalize M and use it to find an algebraic expression for $\vec{x}^{(k)}$.

4. For $\vec{x}^{(0)} = \begin{bmatrix} 0.6 & 0.3 & 0.1 \end{bmatrix}^T$, approximate the mood on Christmas eve.

5. Math 513: Verify that the components $\vec{x}^{(k)}$ add to one and find $\lim_{k \to \infty} M^k$.