Homework 9 - Theory

Due: Thursday, April 15 - 10:00 EST

Problem 1: More on diagonalization [20 Points]

1. Diagonalize $A_{1}, A_{2}, A_{3} \in \mathbb{M}(3 \times 3, \mathbb{R})$ or prove that this is impossible:

$$
A_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \tag{1}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

2. Matrices $A, B \in \mathbb{M}(n \times n, \mathbb{R})$ are similar if there is an invertible $S \in \mathbb{M}(n \times n, \mathbb{R})$ such that $A=S B S^{-1}$. (Hence, A and B describe the same linear map in different bases and the base change is mediated by the matrix S.)

- If A is diagonalizable and A, B are similar, prove that B is diagonalizable.
- If A, B are similar, then show that $\operatorname{det}(A)=\operatorname{det}(B)$.
- Are there A_{i} in eq. (11) which are similar?

3. Matrices $A, B \in \mathbb{M}(n \times n, \mathbb{R})$ are simultaneously diagonalizable if there is an invertible $S \in \mathbb{M}(n \times n, \mathbb{R})$ such that $S^{-1} A S$ and $S^{-1} B S$ are both diagonal.

- Show that simultaneously diagonalizable matrices commute: $A B=B A$.
- Are there A_{i} in eq. (1) which are simultaneously diagonalizable?
- Math 513: Show that if $A B=B A$ and all eigenvalues of A have algebraic multiplicity 1 , then A, B are simultaneously diagonalizable.

Problem 2: Markov meets Christmas [20 Points]

Suppose your mood is categorized in exactly three classes (good, even-tempered, bad). We assume the following daily transition probabilities:

	good	even-tempered	bad
good	$\frac{3}{4}$	$\frac{3}{8}$	$\frac{1}{8}$
even-tempered	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{8}$
bad	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{4}$

Let $\vec{x}^{(k)}=\left[\begin{array}{lll}g_{k} & e_{k} & b_{k}\end{array}\right]^{T} \in \mathbb{R}^{3}$ correspond to your mood in k-days.

1. Find $M \in \mathbb{M}(3 \times 3, \mathbb{R})$ such that $\vec{x}^{(k)}=M \vec{x}^{(k-1)}($ for $k=1,2, \ldots)$.
2. Today is April 7. Find the number N of days until Christmas eve.
3. Diagonalize M and use it to find an algebraic expression for $\vec{x}^{(k)}$.
4. For $\vec{x}^{(0)}=\left[\begin{array}{lll}0.6 & 0.3 & 0.1\end{array}\right]^{T}$, approximate the mood on Christmas eve.
5. Math 513: Verify that the components $\vec{x}^{(k)}$ add to one and find $\lim _{k \rightarrow \infty} M^{k}$.
