Final exam

Monday, May 2, 2022: 12:00-14:00 EST
Unless explicitly stated differently, justify all your answers!

Instructions

- Allowed materials: Pen and paper.
- Required materials: Penn card/ID.
- Forbidden materials: Anything not listed above.
- Fill in your information below.
- On each piece of paper, state your name and student ID.

Student information

First name \qquad

Last name \qquad

Penn ID \qquad

Result

Exercise	1	2	3	4	5	6	Σ
Points							

Problem 1: True or false? No justification necessary. [10 Points]
We consider $A \in \mathbb{M}(n \times n, \mathbb{R})$.

1. If $\operatorname{det}(A)=0$, then there exists $\vec{b} \in \mathbb{R}^{n}$ s.t. $A \vec{x}=\vec{b}$ has no solution.
2. If $\operatorname{ch}_{A}(\lambda)=\lambda^{2}(\lambda+4)^{2}(\lambda-3)$, then $\operatorname{rk}(A)=4$.
3. If A is a Markov matrix, then $N(A-I) \neq\{\overrightarrow{0}\}$.
4. The singular values of A coincide with the eigenvalues of A.

Problem 2: Singular value decomposition (SVD) [10 points]

1. Sketch an algorithm which computes the SVD.
2. How is the SVD related to the four fundamental vector spaces of a matrix?
3. Use the SVD to compute an approximation of $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \in \mathbb{M}(2 \times 3, \mathbb{R})$.

Problem 3: Help the matrix police [10 Points]

The matrix police are seeking $A \in \mathbb{M}(m \times n, \mathbb{R})$ for speeding. A witness described A :
" $\operatorname{dim}\left(N\left(A^{T}\right)\right)=0$, the singular values of A are $\sigma_{1}=\sqrt{2}, \sigma_{2}=1$ and the singular vectors are $\vec{v}_{1}=\frac{1}{5}\left[\begin{array}{l}0 \\ 4 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. Also, I clearly observed $A \vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] .$,

Use this information to help the matrix police: Find all A with these properties.

Problem 4: The special orthogonal group [10 Points]

We consider the special orthogonal group

$$
\begin{equation*}
\mathrm{SO}(n)=\left\{A \in \mathbb{M}(n \times n, \mathbb{R}) \mid A^{-1}=A^{T} \text { and } \operatorname{det}(A)=1\right\} \tag{1}
\end{equation*}
$$

1. If $R_{1}, R_{2} \in \mathrm{SO}(n)$, argue that $R_{1} \cdot R_{2} \in \mathrm{SO}(n)$.
2. For all $\alpha \in[0,2 \pi)$, show that $R(\alpha):=\left[\begin{array}{cc}\cos (\alpha) & \sin (\alpha) \\ -\sin (\alpha) & \cos (\alpha)\end{array}\right] \in \mathrm{SO}(2)$.
3. Verify that $f:[0,2 \pi) \rightarrow \mathrm{SO}(2), \alpha \mapsto R(\alpha)$ is injective.

Hint: You have to show that $R\left(\alpha_{1}\right)=R\left(\alpha_{2}\right)$ implies $\alpha_{1}=\alpha_{2}$.
4. Math 513: Find all $\alpha \in[0,2 \pi)$ such that $R(\alpha)\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] R(\alpha)^{-1}$ is diagonal.

Problem 5: Damped spring-mass system [10 Points]

The dynamics of a damped spring-mass system - damping $\delta \in \mathbb{R}_{>0}-$ is described by

$$
\begin{equation*}
x^{\prime \prime}(t)=-2 \delta x^{\prime}(t)-\omega^{2} x(t) . \tag{2}
\end{equation*}
$$

1. Find $A \in \mathbb{M}(2 \times 2, \mathbb{R})$ such that $\vec{z}^{\prime}(t)=A \cdot \vec{z}(t)$, where $\vec{z}(t)=\left[\begin{array}{c}x(t) \\ x^{\prime}(t)\end{array}\right]$.
2. Let $\vec{z}_{0} \in \mathbb{R}^{2}$. Show that $\vec{z}(t): \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto e^{A t} \cdot \vec{z}_{0}$ solves $\vec{z}^{\prime}(t)=A \cdot \vec{z}(t)$.

For $\omega>\delta$ (i.e. weak damping) and $z_{0}=\left[\begin{array}{l}C \\ D\end{array}\right] \in \mathbb{R}^{2}$, an explicit computation shows

$$
\begin{equation*}
x(t)=e^{-\delta t}\left[C \cos (\widetilde{\omega} t)+\frac{\delta C+D}{\widetilde{\omega}} \cdot \sin (\widetilde{\omega} t)\right], \quad \widetilde{\omega}=\sqrt{\omega^{2}-\delta^{2}} . \tag{3}
\end{equation*}
$$

We fix the initial configuration at time $t=0$ such that the mass is at position $x_{0} \in \mathbb{R}$ and moves with velocity $v_{0} \in \mathbb{R}$.
3. Evaluate $x(t)$ and $x^{\prime}(t)$ at time $t=0$.

Hint: You should find expressions linear in C and D.
4. Math 513: Find $C, D \in \mathbb{R}$ such that $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$.

Problem 6: Complex diagonalization [10 Points]

Consider $\omega, \delta \in \mathbb{R}$ with $\omega>\delta>0$ and set $\widetilde{\omega}=\sqrt{\omega^{2}-\delta^{2}}$. We want to exponentiate

$$
A=\left[\begin{array}{cc}
0 & 1 \tag{4}\\
-\omega^{2} & -2 \delta
\end{array}\right] \in \mathbb{M}(2 \times 2, \mathbb{R})
$$

1. Compute the characteristic polynomial $\operatorname{ch}_{A}(\lambda)$ of A.
2. Consider $\lambda_{1}=-\delta+i \widetilde{\omega} \in \mathbb{C}, \lambda_{2}=-\delta-i \widetilde{\omega} \in \mathbb{C}$. Show $\operatorname{ch}_{A}\left(\lambda_{1}\right)=\operatorname{ch}_{A}\left(\lambda_{2}\right)=0$. Hint: The complex imaginary unit i satisfies $i^{2}=-1$.
3. Verify that

$$
A \cdot\left[\begin{array}{c}
\lambda_{2} \tag{5}\\
\omega^{2}
\end{array}\right]=\lambda_{1} \cdot\left[\begin{array}{l}
\lambda_{2} \\
\omega^{2}
\end{array}\right], \quad A \cdot\left[\begin{array}{c}
\lambda_{1} \\
\omega^{2}
\end{array}\right]=\lambda_{2} \cdot\left[\begin{array}{c}
\lambda_{1} \\
\omega^{2}
\end{array}\right] .
$$

Show also that

$$
A=\left[\begin{array}{cc}
\lambda_{2} & \lambda_{1} \tag{6}\\
\omega^{2} & \omega^{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \cdot \frac{i}{2 \widetilde{\omega}} \cdot\left[\begin{array}{cc}
1 & -\frac{\lambda_{1}}{\omega^{2}} \\
-1 & \frac{\lambda_{2}}{\omega^{2}}
\end{array}\right]
$$

4. For $C, D \in \mathbb{R}$, show that the first component of $e^{A t} \cdot\left[\begin{array}{l}C \\ D\end{array}\right]$ matches eq. (3). Hint: Without proof, you may use that $e^{i a}=\cos (a)+i \sin (a)$ for $a \in \mathbb{R}$.
