Midterm 1

Tuesday, February 8: 10.15-11.45 EST

Instructions

- Allowed materials: Pen and paper.
- Required materials: Penn card/ID.
- Forbidden materials: Anything not listed above.
- Fill in your information below.
- On each piece of paper, state your name and student ID.

Student information

First name \qquad

Last name \qquad

Penn ID

Problem 1: Solutions to linear systems [10 Points]

For the following linear systems, indicate if they can have
(I) no solution,
(II) a unique solution,
(III) infinitely many solutions.

No justification is required.
(a) $A \vec{x}=\overrightarrow{0}$ and $A \in \mathbb{M}(3 \times 6, \mathbb{R})$,
(b) $A \vec{x}=\overrightarrow{0}$ and $A \in \mathbb{M}(4 \times 3, \mathbb{R})$,
(c) $A \vec{x}=\vec{b}$ and $A \in \mathbb{M}(4 \times 4, \mathbb{R})$,
(d) $A \vec{x}=\vec{b}$ and $A \in \mathbb{M}(5 \times 6, \mathbb{R})$,
(e) $A \vec{x}=\vec{b}$ and $A \in \mathbb{M}(3 \times 2, \mathbb{R})$.

Problem 2: A matrix questionary [10 Points]

Consider a matrix $A \in \mathbb{M}(m \times n, \mathbb{R})$ with the following properties:
(a) $\operatorname{rk}(A)=2$,
(b) $N(A)=\operatorname{Span}_{\mathbb{R}}(\vec{v})$ for some $\vec{v} \in \mathbb{R}^{n}$.

Justify if the following are true, false or undecided.

1. $\operatorname{dim}_{\mathbb{R}}(C(A))=2$.
2. $m=3$.
3. For all $\vec{b} \in \mathbb{R}^{m}$ there exists $\vec{x} \in \mathbb{R}^{n}$ with $A \vec{x}=\vec{b}$.
4. For Math 513:

Is $S=\{A \in \mathbb{M}(3 \times 3, \mathbb{R}) \mid A$ satisfies (a) \& (b) $\}$ a linear subspace of $\mathbb{M}(3 \times 3, \mathbb{R})$?

Problem 3: PLU-factorization [10 Points]

Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 8 \\
3 & 5 & 9
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R})
$$

1. Compute a PLU-factorization of A.
2. Determine $\operatorname{rk}(A)$.
3. Verify that $N(A)=\operatorname{Span}_{\mathbb{R}}\left(\vec{v}_{1}\right)$ for suitable $\vec{v}_{1} \in \mathbb{R}^{3}$.
4. Define $R(A):=C\left(A^{T}\right)$. Find $\vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{3}$ with $R(A)=\operatorname{Span}_{\mathbb{R}}\left(\vec{v}_{2}, \vec{v}_{3}\right)$.
5. For Math 513: Is there $\vec{\lambda} \in \mathbb{R}^{3} \backslash \overrightarrow{0}$ such that $\sum_{i=1}^{3} \lambda_{i} \vec{v}_{i}=\overrightarrow{0}$?

Problem 4: Basis [10 Points]

1. Find a basis \mathcal{B} of

$$
S=\operatorname{Span}_{\mathbb{R}}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
0 \\
-3 \\
-1
\end{array}\right]\right) \subseteq \mathbb{R}^{4}
$$

2. What is the dimension of S ?
3. Extend \mathcal{B} to a basis \mathcal{B}^{\prime} of \mathbb{R}^{4}.
4. Does $A \in \mathbb{M}(4 \times 4, \mathbb{R})$ with $C(A)=S$ and $\operatorname{dim}(N(A))=2$ exist?

Problem 5: Parametric null space [10 Points]

For $a_{1}, a_{2} \in \mathbb{R}$ we consider the linear system $A \vec{x}=\vec{b}$ with

$$
A=\left[\begin{array}{ccc}
a_{1} & 0 & 0 \tag{1}\\
0 & 2 & 1 \\
0 & 1 & a_{2}
\end{array}\right] \in \mathbb{M}(3 \times 3, \mathbb{R}), \quad \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \in \mathbb{R}^{3}
$$

Find all solutions to $A \vec{x}=\vec{b}$ as function of $a_{1}, a_{2} \in \mathbb{R}$.

Problem 6: A few proofs [10 Points]

1. Prove that for $A \in \mathbb{M}(m \times n, \mathbb{R})$ it holds $N(A)=\{\overrightarrow{0}\}$ iff $\operatorname{rk}(A)=n$.
2. Consider $A_{1} \in \mathbb{M}(m \times n, \mathbb{R})$ and $A_{2} \in \mathbb{M}(n \times l, \mathbb{R})$. Prove that

$$
\left(A_{1} \cdot A_{2}\right)^{T}=A_{2}^{T} \cdot A_{1}^{T}
$$

3. Let $A \in \mathbb{M}(n \times n, \mathbb{R})$ s.t. $\exists k \in \mathbb{Z}_{>0}$ with $A^{k}=0$. Is $I-A$ invertible?
