Midterm 2
Tuesday, March 1: 10.15-11.45 EST

Instructions

- Allowed materials: Pen and paper.
- Required materials: Penn card/ID.
- Forbidden materials: Anything not listed above.
- Fill in your information below.
- On each piece of paper, state your name and student ID.

Student information

First name \qquad

Last name \qquad

Penn ID

Result

Exercise	1	2	3	4	5	6	Σ
Points							

Problem 1: True or false? No justification required. [10 Points]

1. Consider a map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then $\varphi=\varphi_{A}$ for a suitable $A \in \mathbb{M}(m \times n, \mathbb{R})$. Recall: $\varphi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \vec{x} \mapsto A \vec{x}$.
2. Let \mathcal{A} the standard basis of \mathbb{R}^{n} and $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ another basis of \mathbb{R}^{n}. Then

$$
T_{\mathcal{A B}}=\left[\begin{array}{lll}
\vec{b}_{1} & \ldots & \vec{b}_{n} \tag{1}
\end{array}\right] \in \mathbb{M}(n \times n, \mathbb{R})
$$

3. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a projection onto a 1-dimensional linear subspace of \mathbb{R}^{2}. Then there exists a basis \mathcal{B} of \mathbb{R}^{2} such that the mapping matrix $A_{\mathcal{B B}}$ of φ is

$$
A_{\mathcal{B B}}=\left[\begin{array}{ll}
1 & 0 \tag{2}\\
0 & 0
\end{array}\right] \in \mathbb{M}(2 \times 2, \mathbb{R})
$$

4. Math 513: Let $A \in \mathbb{M}(m \times n, \mathbb{R})$. Then $A^{T} A \in \mathbb{M}(n \times n, \mathbb{R})$ is invertible.

Problem 2: Orthogonal projection [10 Points]

Consider \mathbb{R}^{3} wth the standard inner product and $S=\left\{[x, y, z]^{T} \in \mathbb{R}^{3} \mid 2 x+y+z=0\right\}$.

1. Compute the orthogonal projection $\varphi_{P}: \mathbb{R}^{3} \rightarrow S$.
2. Find a basis of S^{\perp}. Use it to compute the orthogonal projection $\varphi_{Q}: \mathbb{R}^{3} \rightarrow S^{\perp}$.
3. Verify that $P+Q=I$.

Problem 3: Orthogonal vectors [10 Points]

Consider linearly independent $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$. Show that with regard to the standard inner product in \mathbb{R}^{n}, the following $\vec{U}, \vec{V}, \vec{W} \in \mathbb{R}^{n}$ are pairwise orthogonal:

$$
\begin{equation*}
\vec{U}=\vec{a}, \quad \vec{V}=\vec{b}-\frac{\langle\vec{U}, \vec{b}\rangle}{\langle\vec{U}, \vec{U}\rangle} \cdot \vec{U}, \quad \vec{W}=\vec{c}-\frac{\langle\vec{U}, \vec{c}\rangle}{\langle\vec{U}, \vec{U}\rangle} \cdot \vec{U}-\frac{\langle\vec{V}, \vec{c}\rangle}{\langle\vec{V}, \vec{V}\rangle} \cdot \vec{V} . \tag{3}
\end{equation*}
$$

Problem 4: Orthogonal basis [10 Points]

Consider \mathbb{R}^{4} with standard inner product and $S=\operatorname{Span}_{\mathbb{R}}(\vec{a}, \vec{b}, \vec{c})$ with

$$
\begin{equation*}
\vec{a}=2 \vec{e}_{1}+\vec{e}_{3}, \quad \vec{b}=-\vec{e}_{1}, \quad \vec{c}=2 \vec{e}_{1}-\vec{e}_{2}+3 \vec{e}_{3}, \tag{4}
\end{equation*}
$$

where $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}\right)$ is the standard basis of \mathbb{R}^{4}.

1. A basis $\{\vec{U}, \vec{V}, \vec{W}\}$ of S is orthogonal iff $\vec{U}, \vec{V}, \vec{W}$ are pairwise orthogonal. Find an orthogonal basis of S. Hint: Use problem 3 .
2. Find an orthogonal basis of S^{\perp}.
3. Math 513: Use these results to construct an orthogonal basis of \mathbb{R}^{4}.

Problem 5: Least square approximation [10 Points]

Consider the following three points in \mathbb{R}^{2} :

$$
\vec{b}_{1}=\left[\begin{array}{l}
0 \tag{5}\\
2
\end{array}\right], \quad \vec{b}_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \vec{b}_{3}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

We seek $C, D \in \mathbb{R}$ such that the following line approximates these points:

$$
L(C, D)=\left\{\left.\left[\begin{array}{c}
t \tag{6}\\
C+D t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} \subseteq \mathbb{R}^{2} .
$$

1. Find $A \in \mathbb{M}(3 \times 2, \mathbb{R})$ and $\vec{b} \in \mathbb{R}^{3}$ such that

$$
\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\} \subset L(C, D) \Leftrightarrow A \cdot\left[\begin{array}{c}
C \tag{7}\\
D
\end{array}\right]=\vec{b} .
$$

2. Find the best approximation line.

Hint: You may use $\left[\begin{array}{ll}3 & 3 \\ 3 & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}5 / 6 & -1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right]$.
3. Math 513: Quantify how good this line approximates $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$.

Problem 6: Projection vs. least square [10 Points]

Consider $A \in \mathbb{M}(m \times n, \mathbb{R}), \vec{b} \in \mathbb{R}^{m}$ and $\vec{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{T} \in \mathbb{R}^{n}$.

1. Consider $l_{e}(\vec{x})=\langle A \vec{x}-\vec{b}, A \vec{x}-\vec{b}\rangle_{\text {Std }}$. Verify that

$$
\begin{equation*}
l_{e}(\vec{x})=\vec{x}^{T}\left(A^{T} A\right) \vec{x}-2 \vec{x}^{T} A^{T} \vec{b}+\vec{b}^{T} \vec{b} . \tag{8}
\end{equation*}
$$

2. Use this to conclude that

$$
\begin{equation*}
\left(\frac{\partial l_{e}}{\partial x_{k}}\right)(\vec{x})=2 \cdot\left(A^{T} A \vec{x}-A^{T} \vec{b}\right)_{k} . \tag{9}
\end{equation*}
$$

3. Consider the Jacobian matrix

$$
J_{l_{e}}(\vec{x})=\left[\begin{array}{c}
\left(\frac{\partial l_{e}}{\partial x_{1}}\right)(\vec{x}) \tag{10}\\
\left(\frac{\partial l_{e}}{\partial x_{2}}\right)(\vec{x}) \\
\vdots \\
\left(\frac{\partial l_{e}}{\partial x_{n}}\right)(\vec{x})
\end{array}\right] .
$$

Argue that $J_{l_{e}}(\vec{x})=\overrightarrow{0}$ iff $A^{T} A \vec{x}=A^{T} \vec{b}$.

