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Intersecting D6-Brane Models
The objective of this thesis is to analyize the structure of intersecting D6-brane
models on the orientifolds M/ (σ × Ω) = (T 2 × T 2 × T 2) / (σ × Ω) as well as
O/ (σ × Ω) = (T 2 × T 2 × T 2) / (Z2 × Z2 × σ × Ω).
The first part of this thesis adresses particles in intersecting D6-brane models, toroidal
compactification of such models as well as supersymmetry conditions.
The second part then applies this knowledge to a class of non-supersymmetric models
built onM/ (σ × Ω). It will be shown that the massless fermionic spectrum in one-
to-one correspondance with the Standard Model matter particles. Also it will be
demonstrated that Higgs particles appear and that a massless U (1) gauge boson
gives rise to the Standard Model hypercharge.
In the third part a supersymmetric three family model built on O/ (σ × Ω) is dis-
cussed. It will be shown that its massless fermionic spectrum contains all the matter
particles in the Standard Model but also exotic matter. Subsequently a supersym-
metric GUT model is presented, thereby demonstrating that a massless U (1) gauge
boson remains. So one can hope to obtain the Standard Model hypercharge after
splitting the Georgi-Glashow U (5) gauge group.
The final part then focuses on classifications of D6-branes. In particular bounds on
the wrapping numbers of D6-branes forming supersymmetric models on O/ (Ω× σ)
will be derived.

Intersektionierende D6-Brane Modelle
Das Ziel dieser Arbeit ist die Analyse der Struktur von intersektionierenden D6-Brane
Modellen auf den OrientierungsfaltigkeitenM/ (σ × Ω) = (T 2 × T 2 × T 2) / (σ × Ω)
und O/ (σ × Ω) = (T 2 × T 2 × T 2) / (Z2 × Z2 × Ω× σ).
Der erste Teil dieser Arbeit behandelt die Teilchen in intersektionierenden D6-Brane
Modellen, torische Kompaktifizierung und Supersymmetriebedingungen.
Im zweiten Teil wird eine Familie nicht-supersymmetrischer Modelle auf der Ori-
entierungsfaltigkeit M/ (σ × Ω) behandelt. Es wird gezeigt, dass das masselose
fermionische Spektrum dieser Modellklasse in 1:1-Beziehung zu den Masseteilchen
des Standardmodelles steht. Auch wird demonstriert, dass Higgs-Teilchen in diesen
Modellen auftreten und dass durch ein masseloses U (1) Eichboson die Hyperladung
des Standardmodelles erhalten werden kann.
Im dritten Teil wird ein supersymmetrisches 3-Generationen-Modell auf der Orien-
tierungsfaltigkeit O/ (σ × Ω) diskutiert. Es wird gezeigt, dass alle Masseteilchen des
Standardmodelles im masselosen fermionischen Spektrum dieses Modelles enthalten
sind, dass aber auch weitere exotische Materie auftritt. Nachfolgend wird ein super-
symmetrisches GUT-Modell analysiert, wobei aufzeigt wird, dass in diesem Modell
ein masseloses U (1) Eichboson existiert. Daher kann man hoffen nach Spaltung der
Georgi-Glashow U (5) Eichgruppe die korrekte Hyperladung des Standardmodelles
zu erhalten.
Der abschließende Teil dieser Arbeit beschäftigt sich mit der Klassifizierung ver-
schiedener D6-Branen. Dabei werden Schranken für die Wicklungszahlen von
D6-Branen, welche supersymmetrische Modelle auf der Orientierungsfaltigkeit
O/ (σ × Ω) realisieren, hergeleitet.
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0. Introduction

0.1. Task
The objective of this thesis is to analyize the structure of intersecting D6-brane
models on the following two orientifolds

M/ (σ × Ω) =
(
T 2 × T 2 × T 2

)
/ (σ × Ω)

O/ (σ × Ω) =
(
T 2 × T 2 × T 2

)
/ (Z2 × Z2 × Ω× σ)

(0.1)

In particular we face phenomenological questions whereof the most important are to
realize the Standard Model matter particles and gauge bosons in terms of intersecting
D6-brane models, to obtain the correct Standard Model hypercharge and to integrate
Higgs doublets into such models.

0.2. Basic Concepts
During the first part of this thesis we develop the basic tools to adress this task. We
start off by a brief revision of the Standard Model in chapter 1. After that intersecting
D6-branes on the internal space R2×R2×R2 are considered. In particular we develop
the mass formula for open strings in such models. This is presented in chapter 2. In
order to obtain a four-dimensional theory we need to compactify the ten-dimensional
superstring theory. In this text we focus on toroidal compactifications, in which case
intersecting D6-branes become 3-cycles in the internal space and are described by
homology classes. This description is introduced in chapter 3 where we also briefly
discuss KK-states and winding states. We conclude this part with chapter 4 where
we discuss the supersymmetry conditions that a setup of intersecting D6-branes has
to satisfy in order to preserve at least N = 1 supersymmetry.

0.3. Non-Supersymmetric Models
The second part of this thesis will specialize the concepts introduced in the first part
to the orientifoldM/ (σ × Ω). Therefore we discuss the structure of this orientifold as
well as R-R tadpole and K-theory constraints in chapter 5. Subsequently we present
the anomaly cancelation by means of the generalized Green-Schwarz mechanism in
chapter 6. We conclude this part with chapter 7, where we apply this knowledge to
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CHAPTER 0. INTRODUCTION

a class of non-supersymmetric models that was first published in [21]. We will show
that the massless fermionic spectrum is in one-to-one correspondance to the matter
particles in the Standard Model. Furthermore we point out that there is a massless
U (1) gauge boson which allows to obtain the hypercharge of the Standard Model.
Finally we discuss the multiplicities of Higgs doublets, the masses of the associated
Higgs bosons and then conclude this discussion by presenting an overview over the
Yukawa couplings.

0.4. Supersymmetric Models

Taking the orientifold M/ (σ × Ω) and requiring the massless fermionic spectrum
to be in one-to-one correspondance with the Standard Model matter particles the
authors of [21] derived the class of models that we discussed in the second part. This
class of models is non-supersymmetric. Therefore it will in general suffer from un-
canceled NS-NS tadpoles [7] which rend the model unstable. Therefore it is desirable
to build supersymmetric models. Consequently one is lead to consider different ori-
entifolds to built supersymmetric models on, which give rise to the Standard Model
mattter particles.
In this thesis we choose to consider the orientifold O/ (σ × Ω). The structure of
that orientifold as well as R-R tadpole and K-theory constraints will be discussed in
chapter 8. We then apply this knowledge to a supersymmetric three family model in
chapter 9 that was first published in [13]. Again we discuss the massless fermionic
spectrum to show that it can account for the matter particles in the Standard Model.
In contrast to the class of non-supersymmetric models discussed in chapter 7 we will
also find additional exotic matter. Nevertheless there is again a massless U (1) gauge
boson that allows to obtain the Standard Model hypercharge. Furthermore Higgs
doublets appear in this setup.
We conclude the third part by the discussion of a supersymmetric GUT model. This
discussion is presented in chapter 10 and points out that there exists a massless U (1)
gauge boson. For that reason one can hope to obtain the Standard Model hyper-
charge after splitting the Georgi-Glashow U (5) gauge group in order to obtain the
Standard Model gauge group U (3)× U (2)× U (1).

0.5. Number Of Supersymmetric Models

The final part of this thesis presents a classification of D6-branes in chapter 12. This
classification was first published in [15] and allows to show that for a set of branes on
O/ (σ × Ω), which is supersymmetric and satisfies both R-R tadpole and K-theory
constraints, the wrapping numbers for these branes are bounded. This conclusion is
presented in chapter 13.
In particular we will find that these bounds are independent of the moduli j, k and
l. In order to obtain the supersymmetric model for a given number of brane stacks,
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CHAPTER 0. INTRODUCTION

one can therefore proceed in the following manner. First one counts the number of
intersecting D6-brane models which satisfy R-R tadpole cancelation and K-theory
constraints and whose wrapping numbers in addition satisfy the bounds found in
chapter 13. In the second step one specifies the moduli j, k and l to check the jsut-
found brane configurations for supersymmetry.
To demonstrate this apporach we designed a C++ program which counts the number
of one-brane models which undersaturate the R-R tadpole constraint but satisfy the
K-theory constraints 1. This is discussed in chapter 14. For further reference the
major part of the code as well as the exact number of such brane configurations for
T ≤ 20 is presented in Appendix C.

1As pointed out in [15] such models can be completed to models satisfying R-R tadpole cancelation
by adding C-type branes.
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1. The Standard Model

1.1. Particles In The Standard Model
The Standard Model contains matter particles, gauge bosons and the Higgs par-
ticle. The matter particles are chiral fermions. We list them in Table 1.1 and
introduce group theoretical notations for them in Table 1.2. The latter also con-
tains the Higgs doublets. The gauge bosons mediate the corresponding forces be-
tween matter particles and have their origin in the Standard Model gauge group
SU (3)C × SU (2)W × U (1)Y . For that reason there are

• 8 gauge bosons of the strong force - the gluons.

• 3 gauge bosons of the weak force - the W± and Z gauge bosons.

• 1 gauge boson of the electromagnetic force - the photon.

Generation Charge Feels the force of
1st 2nd 3rd Units of e Strong Weak EM

U-Type Quarks u c t +2
3

X X X
D-Type Quarks d s b −1

3
X X X

Charged Leptons e µ τ −1 X X
Neutral Leptons νe νµ ντ 0 X

Table 1.1.: The matter particles in the Standard Model of particle physics.

1.2. Family Replication In The Standard Model
All matter particles appear in replicas, which carry the same charge under all forces
but differ in mass. Such replicas are termed generations. To date it is not clear why
precisely three generations of matter particles appear. 1 Still this is an important
feature of the Standard Model. Consequently a string theory model should account
for it.

1In order to include a U (3) gauge theory into an intersecting D-brane model one needs a stack of
three coincident D-branes. Oftentimes these branes are refered to as color branes. It has been
pointed out in [21] that there is an attractive relation between the number of color branes and
the number of generations of matter particles.
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CHAPTER 1. THE STANDARD MODEL

Symbol Particle Type Chirality Representation Qem QY

Q quarks fermion L
(
3, 2, 1

)
+2

3
, −1

3
1
6

U up-quarks fermion R
(
3, 1, 1

)
2
3

2
3

D down-quarks fermion R
(
3, 1, 1

)
−1

3
−1

3

L leptons fermion L
(
1, 2, 1

)
−1, 0 −1

2

E charged leptons fermion R
(
1, 1, 1

)
−1 −1

N neutral leptons fermion R
(
1, 1, 1

)
0 0

Qc quarks fermion R
(
3, 2, 1

)
−2

3
, 1

3
−1

6

U c up-quarks fermion L
(
3, 1, 1

)
−2

3
−2

3

Dc down-quarks fermion L
(
3, 1, 1

)
1
3

1
3

Lc leptons fermion R
(
1, 2, 1

)
1, 0 1

2

Ec charged leptons fermion L
(
1, 1, 1

)
1 1

N c neutral leptons fermion L
(
1, 1, 1

)
0 0

HU Higgs doublet boson %
(
1, 2, 1

)
0 1

2

HD Higgs doublet boson %
(
1, 2, 1

)
0 −1

2

Table 1.2.: Group theoretical notation for the matter particles and Higgs doublets in
the Standard Model. The representations are written as SU (3)C×SU (2)W×U (1)Y .
Furthermore c denotes charge conjugation.

1.3. Chirality Of The Matter Particles
If the direction of motion of a particle and its spin are parallel, then that particle is
right-handed. Conversely, if spin direction and direction of motion are antiparallel,
then the particle is left-handed. The properties left- and right-handed are refered to
as helicity or handedness.
For massive particles helicity is not well-defined, because there will always exist a
Lorentz boost that inverts the direction of motion of the particle but does not affect
its spin. Therefore such boosts turn left-handed particles into right-handed particles
and vice versa. However, massless particles move at the speed of light. Therefore
no such Lorentz boost exists and helicty is a well-defined property. It then coincides
with chirality. For that reason we use these two concepts synonymously for massless
particles. In particular this applies to the massless fermionic spectrum.
All matter particles in the Standard Model are massless until the electroweak theory
is broken by the Higgs effect. So in particular the matter particles have well-defined
helicity. The weak force acts chiraly, by which we mean that it only affects left-
handed particles. Consequently chirality is a very important feature of the Standard
Model and a string theory model has to account for it.
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2. Factorizable D6-Brane Setup On
R6 Internal Space

2.1. The Setup

2.1.1. String Theory Background

To describe the structure of the Standard Model a theory with both fermions and
bosons is needed. So a possible candidate theory is superstring theory. In this thesis
we will furthermore restrict attention to type IIA superstring theory, so that D6-
branes are stable as they carry C(7) Ramond charge. It is also widely known that
stacks of coincident Dp-branes carry U (N) gauge groups 1 which makes Dp-branes
natural candidates to embed the Standard Model gauge group into a string theory
model.
In the subsequent sections we will also find that chiral fermions arise at the in-
tersections of Dp-branes. Furthermore we present a natural mechanism for family
replication of these string states in chapter 3. Consequently a setup of Dp-brane
stacks is a very tempting candidate to set up a string theory model of the Standard
Model of particle physics.

2.1.2. Spacetime Background

During this chapter we focus on a flat ten-dimensional Minkowski spacetime back-
ground R1,9 which we decompose into external and internal space as

R1,9 = R1,3 × R6 (2.1)

Furthermore we decompose the internal space R6 as

R6 = R2 × R2 × R2 (2.2)

2.1.3. Factorizable Branes

We will consider Dp-brane setups that are made up of D6-branes only. All D6-branes
are placed in the ten-dimensional spacetime such that they cover the entire external
space R1,3. Therefore these branes are three-dimensional in the internal space. If

1In orientifold theories also USp (2N,C) and SO (N) gauge groups are possible.
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CHAPTER 2. FACTORIZABLE D6-BRANE SETUP ON R6 INTERNAL SPACE

y1

x1

n1
a

m1
a

y2

x2
n2
a

m2
a

y3

x3

n3
a

m3
a

Figure 2.1.: Factorizable D6-brane a in the internal space.

furthermore this three dimensional space separates into three one-dimensional sub-
spaces such that each subspace belongs to a different R2, then the D6-brane is termed
factorizable. Our analysis will focus on factorizable D6-brane stacks only.
A factorizable D6-brane stack a is completely specified by its properties in the in-
ternal space, which in turn are completely specified by the orientation of the brane
stack in each R2 factor. We can describe this orientation in the I-th R2 factor by
two real numbers

(
nIa,m

I
a

)
(I = 1, 2, 3). We term these numbers the real wrapping

numbers 2. The situation is illustrated in Figure 2.1.
By definition open strings start and end on Dp-branes. Therefore we may classify
open strings according to whether they start and end on the same brane stack or
start and end on different brane stacks. We term the open strings that start and end
on the same brane stack the aa-sector, whilst strings stretching between different
brane stacks a and b are referred to as the ab-sector. Finally there is also the closed
string sector which is hardly affected by the D6-brane setup. Consequently we will
focus on a discussion of the aa-sector and the ab-sector.

2.2. The ab-Sector

2.2.1. Intersection Angles

We consider two distinct, factorizable branes a and b that are given by

πa =
(
n1
ax

1 +m1
ay

1
)
×
(
n2
ax

2 +m2
ay

2
)
×
(
n3
ax

3 +m3
ay

3
)

πb =
(
n1
bx

1 +m1
by

1
)
×
(
n2
bx

2 +m2
by

2
)
×
(
n3
bx

3 +m3
by

3
) (2.3)

2Later on we will perform toroidal compcatification on a T 2×T 2×T 2 internal space, which implies
that factorizable D6-branes become 3-cycles in H3

(
T 2 × T 2 × T 2,Z

)
. The latter implies that

factorizable D6-branes are then described in terms of three pairs of coprime integers, which
we will term the wrapping numbers. To differ these integers from the real numbers considered
during this chapter, we term the latter real wrapping numbers.
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CHAPTER 2. FACTORIZABLE D6-BRANE SETUP ON R6 INTERNAL SPACE

y1

x1
θ1
ab

y2

x2

θ2
ab

y3

x3
θ3
ab

Figure 2.2.: String stretching between brane a (red) and brane b (green). For the
pictured situation the intersection angles in the first and third R2 are positive, whilst
the intersection angle in the second R2 is negative.

The ab-sector is then made of strings starting on brane a and ending on brane b.
Without loss of generality we may align brane a with the xI axis. This situation is
pictured in Figure 2.2. We define the intersection angle between brane a and brane
b in the I-th two-torus in the following way: 3

• If brane a can be rotated into brane b by a counter-clockwise rotation about
an angle αI of or less than π

2
, then the intersection angle is the absolute value

of that angle αI . In particular it is positive.

• If this is not possible, then brane a can be rotated into brane b by a clockwise
rotation about an angle αI of less than π

2
. Then the intersection angle is given

by the negative of the absolute value of αI , so it is negative.

This convention implies
− π

2
< ΘI

ab ≤
π

2
(2.4)

We will first restrict our attention to intersection angles 0 < ΘI
ab <

π
2
, but will find

generalizsations momentarily. Finally let us define for later convenience

ϑIab =
ΘI
ab

π
(2.5)

2.2.2. Boundary Conditions

For simplicity we consider the boundary conditions for the bosonic string field only,
but generalizations to the fermionic string fields are straight forward. We introduce
the following notation for the bosonic string field.

3Note that for this definition branes are considered the same if they cover the same subspace of
the spacetime. In particular parallel and anti-parallel branes are then considered the same.
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CHAPTER 2. FACTORIZABLE D6-BRANE SETUP ON R6 INTERNAL SPACE

• The bosonic string field in the external space is denote by Xµ.

• In the internal space we use XI (I = 1, 2, 3) for the components of the bosonic
string field along the xI directions and Y I for the fields along the yI directions.

In the external space the bosonic open string fields are subject to (NN) boundary
conditions at both ends. In the internal space the situation is slightly more compli-
cated because the string starts on brane a and ends on brane b. The entire situation
translates into the following boundary conditions 4 [7]

• External space: ∂σXµ|σ=0,π = 0

• Internal space:

σ = 0: 0 = ∂τY
I = ∂σX

I

σ = π : 0 = ∂τ
[
Y I − tan

(
θIab
)
·XI

]
= ∂σ

[
XI + tan

(
θIab
)
Y I
]

(2.6)

2.2.3. Mode Expansions

Solving the equation of motion

∂+∂−X
µ = ∂+∂−X

I = ∂+∂−Y
I = 0 (2.7)

subject to the boundary conditions in Equation 2.6 one finds the mode expansion for
the bosonic string fields. In [3] the mode expnansions for both fermionic an bosonic
string fields in the internal space were derived. The mode expansions in the external
space can be found in [4]. To match conventions a further dressing by

√
α′ was added

to the bosonic string fields in the internal space.

Bosonic Part

We define n± := n± ϑIab. Then it holds 5

Xµ = xµ + 2α′pµτ + i
√

2α′
∑

n∈Z,n6=0

αµn
n
e−inτ cos (nσ)

XI = i
√
α′
∑
n∈Z

[
αIn+

n+

e−in+τ cos (n+σ) +
αIn−
n−

e−in−τ cos (n−σ)

]

Y I = i
√
α′
∑
n∈Z

[
αIn+

n+

e−in+τ sin (n+σ)−
αIn−
n−

e−in−τ sin (n−σ)

] (2.8)

The non-vanishing Poisson-brackets are{
αIn± , α

J
n′∓

}
P.B.

= −in±δn+n′,0δ
IJ , {αµn, ανn′}P.B. = −inδn+n′,0η

µν (2.9)

4The string length has been set to π.
5Note that the boundary conditions force center of mass position and total momentum of the string
fields in the internal space to vanish. For that reason the position of these strings is fixed in
the internal space to the intersection point of the branes a and b. Thus neither KK nor winding
states can appear in the ab-sector after toroidal compactification, as noted in [2].
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CHAPTER 2. FACTORIZABLE D6-BRANE SETUP ON R6 INTERNAL SPACE

Fermionic Part In The Ramond Sector

Here we have 6 [3]

ψµ =
∑
n∈Z

[
dµne

−in(τ+σ) + dµne
−in(τ−σ)

]
ψI+,x =

1√
2

∑
n∈Z

[
dIn+

e−in+(τ+σ) + dIn−e
−in−(τ+σ)

]
ψI−,x =

1√
2

∑
n∈Z

[
dIn+

e−in+(τ−σ) + dIn−e
−in−(τ−σ)

]
ψI+,y =

1√
2
· i
∑
n∈Z

[
dIn+

e−in+(τ+σ) − dIn−e
−in−(τ+σ)

]
ψI−,y =

1√
2
· (−i)

∑
n∈Z

[
dIn+

e−in+(τ−σ) − dIn−e
−in−(τ−σ)

]

(2.10)

The non-vanishing Poisson bracket relations are
{
dIn± , d

J
n′∓

}
P.B.

= −iδn+n′,0δ
IJ , {dµn, dνn′}P.B. = −iδn+n′,0η

µν (2.11)

Fermionic Part In The Neveu-Schwarz Sector

Here we first define r := n+ 1
2
, r± := r± ϑIab. Then the mode expansions are [3]

ψµ =
∑

n∈Z+ 1
2

[
bµr e
−ir(τ+σ) + bµr e

−ir(τ−σ)
]

ψI+,x =
1√
2

∑
n∈Z

[
bIr+e

−ir+(τ+σ) + bIr−e
−ir−(τ+σ)

]
ψI−,x =

1√
2

∑
n∈Z

[
bIr+e

−ir+(τ−σ) + bIr−e
−ir−(τ−σ)

]
ψI+,y =

1√
2
· i
∑
n∈Z

[
bIr+e

−ir+(τ+σ) − bIr−e
−ir−(τ+σ)

]
ψI−,y =

1√
2
· (−i)

∑
n∈Z

[
bIr+e

−ir+(τ−σ) − bIr−e
−ir−(τ−σ)

]

(2.12)

with non-vanishing Poisson brackets given by
{
bIr± , b

J
r′∓

}
P.B.

= −iδr+r′,0δIJ , {bµr , bνr′}P.B. = −iδr+r′,0ηµν (2.13)

6The prefactor 1√
2
is included for normalization purposes. The indices + and - refer to light-cone

coordinates. So ψI+,x is the fermionic string field along the xI direction which depends on ξ+

only.
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2.2.4. Masses For The Strings

We perform light-cone quantization. Then the masses of the strings in the ab-sector
are given by [3]

α′M2 = N⊥,ν +
Y 2

4π2α′
+ ν ·

3∑
I=1

ϑIab − ν (2.14)

where

• Y 2 measures the length of the string.
For intersection angles 0 < ΘI

a < π
2
the branes must intersect (as opposed

to vanishing intersection angles, which would allow the branes to be parallel).
Then the tension of a string forces it to be located at the intersection point.
This can be seen on the mode expansion in Equation 2.8. Consequently Y 2

vanishes for such strings and we could drop the associated term here.
However this term will be present for strings stretching between parallel branes.
So we find it more natural to keep things general at this stage and to include
Y 2 in the mass formula presented in Equation 2.14.

• ν =

0 Ramond sector
1
2

Neveu-Schwarz sector

• N⊥,ν is the number operator. In the Ramond sector it is given by

N⊥,0 =
∑
n>0

(
αi−nα

i
n + ndi−nd

i
n

)
+
∑
n>0

(
αI−n+

αIn+
+ αI−n−α

I
n−

)
+ αI−ϑI

ab
αIϑI

ab

+
∑
n>0

(
n+d

I
−n+

dIn+
+ n−d

I
−n−d

I
n−

)
+ ϑIabd

I
−ϑI

ab
dIϑI

ab

(2.15)

whilst in the Neveu-Schwarz sector one has

N⊥, 1
2

=
∑
n>0

(
αi−nα

i
n + rbi−rb

i
r

)
+

1

2
bi− 1

2
bi1

2

+
∑
n>0

(
αI−n+

αIn+
+ αI−n−α

I
n−

)
+ αI−ϑI

ab
αIϑI

ab

+
∑
n≥0

(
r+b

I
−r+b

I
r+

+ r−b
I
−r−b

I
r−

) (2.16)

Note that the summation over I is implicit and that i = 1, 2 in the external
space, due to our choice of light-cone quantization.
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2.2.5. Ground States

Ramond Sector Ground State

We define the Ramond sector ground state via 7

αi−n |0〉R = αI−n± |0〉R = di−n |0〉R = dI−n± = 0 ∀n ∈ N (2.17)

So far we focused on intersection angles with 0 < θIab <
π
2
. Therefore the degeneracy

of the Ramond sector ground states has its origin in the zero modes di0 that appear
in the external space.
Before light-cone quantization there are four such zero modes dµ0 in the external
space. Their anticommutation relations match (up to a prefactor of 2) with the
Clifford algebra. For that reason we conclude that the Ramond sector ground state
is a Dirac spinor in the four-dimensional external space. Light-cone quantization as
well as the supercurrent zero-mode constraint then imply 8

|0〉R =
(

1

2
,1
)
⊕
(

1

2
,1′
)

(2.18)

So the Ramond sector ground state is a priori a sum of positive and negative chirality
spinors. However, by definition the GSO projection will keep only one chirality.

Neveu-Schwarz Sector Ground State

We define the Neveu-Schwarz sector ground state by

αi−r |0〉NS = αI−r± |0〉NS = bi−r |0〉NS = bI−r± |0〉NS = 0 ∀r, r± > 0 (2.19)

It is not degenerate. Therefore all excitations in the NS sector are bosons.

2.2.6. GSO Projection

Ramond Sector

In the Ramond sector we define the G-parity by

GR = Γ (−1)FR (2.20)

where
FR =

∞∑
n=1

di−nd
i
n +

∞∑
n>0

dI−n−d
I
n− +

∞∑
n=0

dI−n+
dIn+

(2.21)

In this sector we keep states that have an even fermion number. As pointed out
in [4] we can either project to states with positive or negative chirality. Our choice
is here to keep states with negative chirality, i.e. the ground state in the Ramond
sector obeys

Γ |0〉R = − |0〉R (2.22)
7Our convention is that N does not include 0.
8
(
1
2 , 1
)
is a one-dimensional spinor with s0 = 1

2 and positive chirality. Correspondingly
(
1
2 , 1

′)
describes a one-dimensional spinor with s0 = 1

2 but negative chirality. More details on spinors
can be found in [25].
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Excitation α′Mass2 Bosonic Notation
b1
−t1 |0〉NS

1
2

(−ϑ1
ab + ϑ2

ab + ϑ3
ab) (−1 + ϑ1

ab, ϑ
2
ab, ϑ

3
ab, 0)

b2
−t2 |0〉NS

1
2

(ϑ1
ab − ϑ2

ab + ϑ3
ab) (ϑ1

ab,−1 + ϑ2
ab, ϑ

3
ab, 0)

b3
−t3 |0〉NS

1
2

(ϑ1
ab + ϑ2

ab − ϑ3
ab) (ϑ1

ab, ϑ
2
ab,−1 + ϑ3

ab, 0)
b1
−t1b

2
−t2b

3
−t3 |0〉NS 1− 1

2
(ϑ1

ab + ϑ2
ab + ϑ3

ab) (−1 + ϑ1
ab,−1 + ϑ2

ab,−1 + ϑ3
ab, 0)

Table 2.1.: The lightest NS states in the ab-sector. The bosonic notation is introduced
in subsection 2.2.9. Furthermore we set tI = 1

2
− ϑIab.

Neveu-Schwarz Sector

In the Neveu-Schwarz sector we define the G-parity by

GNS = (−1)FNS+1 (2.23)

where
FNS =

∞∑
n=0

bi−rb
i
r +

∞∑
n=0

bI−r−b
I
r− +

∞∑
n=0

bI−r+b
I
r+

(2.24)

The GSO-projection dictates to only keep those states in the NS sector which have
positive GNS-parity [4]. Those are the states with odd fermion number FNS.

2.2.7. Lightest States In The Spectrum

Ramond Sector

The GSO projection keeps the Ramond sector ground state which has negative chiral-
ity. From Equation 2.14 it follows that the Ramond sector ground state is massless.
So it is a left-handed, massless fermion.

Neveu-Schwarz Sector

The NS ground state is projected out by the GSO projection. The lightest states
kept by the GSO projection are displayed in Table 2.1.

2.2.8. Comment On Angles

Negative Intersection Angles

Let us now relax our restrictions on the intersection angles and let us consider the
situation of negative intersection angles. Following the path outlined above it turns
out that the situation remains unchanged, except from the fact that the labels of the
oscillator modes are shifted by a negative angle. The bosonic oscillator modes are
therefore given by

αIn+ϑI
ab

= αI
n−|ϑIab|, αIn−ϑI

ab
= αI

n+|ϑIab| (2.25)
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y1

x1

a1

0

y2

x2

a2

0

y3

x3

a3

0

Figure 2.3.: String stretching between parallel branes a (red) and b (green). For
simplicity we have placed brane a (red) on top of the xI axis.

Obviously those modes are the same as the ones that were obtained for positive
intersection angles. For fermionic modes the same logic applies.

The intersection angles
∣∣∣ϑIab∣∣∣ and − ∣∣∣ϑIab∣∣∣ give rise to the same oscillator

modes.

So in particular the masses of the strings should depend on
∣∣∣ϑIab∣∣∣ only. Hence the

mass formula generalizes to

α′M2 = N⊥,ν +
Y 2

4π2α′
+ ν ·

3∑
I=1

∣∣∣ϑIab∣∣∣− ν (2.26)

Parallel And Orthogonal Branes

Finally we are left to discuss parallel and orthogonal branes. For simplicity we focus
on bosonic strings and start off by considering parallel branes. This situation is pic-
tured in Figure 2.3.
In the external space the situation remains unchanged. However the boundary con-
ditions in the internal space change. Fields along the XI directions are now subject
to (NN) boundary conditions and the Y I fields have to satisfy (DD) boundary con-
ditions. The corresponding mode expansions for the bosonic string fields are [4]

Xµ (τ, σ) = xµ + 2α′pµτ + i
√

2α′
∑

n∈Z,n 6=0

αµn
n
e−inτ cos (nσ)

XI (τ, σ) = xI + 2α′pIτ + i
√

2α′
∑

n∈Z,n6=0

αIn,x
n
e−inτ cos (nσ)

Y I (τ, σ) =
aI

π
· σ +

√
2α′

∑
n∈Z,n 6=0

αIn,y
n
e−inτ sin (nσ)

(2.27)

The mode expansions for the fermionic string fields as well as the mass of the cor-
responding strings in light-cone quantization are easily obtained. It turns out that
Equation 2.26 describes their mass, if the intersection angles ϑIab varnish and one sets
Y 2 = aIaI .
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Orthogonal Branes

For orthogonal branes the strings fields in the external space again have to satisfy
(NN) boundary conditions. In the internal space (DN) and (ND) boundary conditions
need to be satisfied. The corresponding mode expansion can be found in [4]. For this
situation the oscillator modes in the internal space are shifted by 1

2
. Again it turns

out that Equation 2.26 describes this situation for
∣∣∣ϑIab∣∣∣ = 1

2
.

Summary

The result of the above analysis on the intersection angles is that for two branes
intersecting at generic intersection angles −1

2
< ϑIab ≤ 1

2
, the mass of the strings in

the ab-sector are described by

α′M2 = N⊥,ν +
Y 2

4π2α′
+ ν ·

∑
I

∣∣∣ϑIab∣∣∣− ν (2.28)

2.2.9. Bosonic Language

In [1] it was pointed out that it is possible to describe the spectrum in the ab-sector
(and the aa-sector also) in a bosonic language. To this end one introduces

vϑab =
(
ϑ1
ab, ϑ

2
ab, ϑ

3
ab, 0

)t
, r =

(
r1, r2, r3, r4

)t
(2.29)

Then the states kept by the GSO projection are labeled by vϑab + r where

ri ∈

Z in the NS-sector
Z + 1

2
in the R-sector

,
4∑
i=1

ri =

odd in the NS-sector
even in the R-sector

(2.30)

With this notation the mass formula for the states in the ab-sector becomes

α′M2
ab =

Y 2

4π2α′
+N⊥,bos +

(r + v)2

2
− 1

2
+ Eab (2.31)

where

Eab =
1

2
·

3∑
I=1

∣∣∣ϑIab∣∣∣ · (1− ∣∣∣ϑIab∣∣∣) (2.32)

2.3. The aa-Sector

2.3.1. Initial Consideration

We now consider strings that start and end on the same brane. Instead of writing
down the boundary conditions and solving them in order to obtain the mode expan-
sions for the strings it is much easier to reapply the knowledge from the ab-sector.
The key insight is that a string starting and ending on the same brane is equivalent
to a string stretching between parallel branes with vanishing separation aI . This is
evident from Figure 2.3.
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Excitation α′Mass2 Bosonic Notation
b1
− 1

2

|0〉NS 0 (−1, 0, 0, 0)

b2
− 1

2

|0〉NS 0 (0,−1, 0, 0)

b3
− 1

2

|0〉NS 0 (0, 0,−1, 0)

b1
− 1

2

b2
− 1

2

b3
− 1

2

|0〉NS 1 (−1,−1,−1, 0)

Table 2.2.: Lightest NS states in the aa-sector.

2.3.2. Masses For The Strings

This immediately yields

α′M2 =
Y 2

4π2α′
+N⊥,ν − ν (2.33)

where the number operator N⊥,ν in the Ramond and Neveu-Schwarz sector, respec-
tively, is given by 9

N0 =
∑
n>0

(αµ−nαn,µ + ndµ−ndn,µ)

N 1
2

=
∑
n>0

(αµ−nαn,µ + rdµ−rdr,µ), r = n+
1

2

(2.34)

2.3.3. Lightest States In The Spectrum

Ramond Sector

The GSO projection keeps the Ramond sector ground state, which is massless and
has negative chirality. So the lightest state in the Ramond sector is a left-handed,
massless fermion.

Neveu-Schwarz Sector

The NS ground state is projected out by the GSO projection. The lightest states kept
by the GSO projection are displayed in Table 2.2. The three massless excitations
will later become the massless gauge bosons in the Standard Model. In this context
the massless fermionic groundstate in the Ramond sector, has an interpretation as
supersymmetry partner of the gauge bosons.

9Note that here µ = 0, 1, 2, . . . , 9.
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3. Toroidal Compactification

3.1. Introduction

3.1.1. The Need For Compactification

So far we have considered a ten-dimensional spacetime, where all ten dimensions are
not compact. However, our aim is to built a string theory model that can give a
description of the Standard Model of particle physics. The latter is formulated as
four-dimensional quantum field theory. For that reason we need to compactify the
six dimensions that form the internal space.

3.1.2. Ansatz

For the ten-dimensional spacetime S we make the ansatz S = N ×M such that

• the four-dimensional external space N is maximally symmetric. 1

• the internal spaceM is six-dimensional.

To obtain stable D-brane models one should ensure the cancelation of R-R and NS-
NS tadpoles. The cancelation of the former will be discussed during the next part.
Moreover it was checked in [10] and [6] that in overall supersymmetric D-brane models
the NS-NS tadpoles cancel precisely if the R-R tadpoles do. As we are interested in
stable models we thus have to ensure the cancelation of R-R tadpoles and wish to
preserve at least N = 1 supersymmetry. It was shown in [4], that the latter leads to

• N = R1,3, i.e. the external space is flat, four-dimensional Minkowski spacetime.

• M is a Calabi-Yau three-fold.

Compactifying finally requires to restrict attention to compact internal spaces, i.e.
compact three-dimensional Calabi-Yau manifolds M. To date it is not decided
whether their number is finite [4]. Therefore such compactifications are by no means
unique. However there is a particularly simple choice for such a compact Calabi-Yau
three-fold, namely

M = T 6 (3.1)

Since we are interested in factorizable branes we decompose T 6 as

M = T 2 × T 2 × T 2 (3.2)
1By this we mean a space that is both homogeneous and isotropic.
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Let us finally note that not every factorizable D6-brane on this internal space is
supersymmetric. Rather there are additional constraints to be discussed in chapter 4.

3.1.3. From R2 × R2 × R2 to T2 ×T2 ×T2

Taking the internal space R2×R2×R2, that we discussed in chapter 2, as our starting
point we can easily obtain a T 2 × T 2 × T 2 internal manifold by rolling up the six
internal dimensions on cycles. Thus we make the identifications

xI ∼ xI + 2πRI
x, yI ∼ yI + 2πRI

y (3.3)

Note that the radii are not necessarily the same.

3.2. Description Of Branes By Homology
On T 2 × T 2 × T 2 factorizable D6-brane stacks wrap 3-cycles - a 1-cycle on each
two-torus. The latter are classified by the homology group H1 (T 2,Z) with [23]

H1

(
T 2,Z

)
= Z⊕ Z, b1 = 2 (3.4)

Therefore there are precisely two fundamental 1-cycles on each T 2. Let us denote
the homology classes of these cycles by

[
aI
]
and

[
bI
]
(where I = 1, 2, 3). This allows

to describe a 1-cycle on the I-th two-torus by

π(1)
a = nIa

[
aI
]

+mI
a

[
bI
]

(3.5)

Consequently 3-cycles wrapped by factorizable branes are classified by

H1

(
T 2,Z

)
×H1

(
T 2,Z

)
×H1

(
T 2,Z

)
⊂ H3

(
T 6,Z

)
(3.6)

Hence 3-cycles wrapped by factorizable branes can be described by

πa =
3∏
I=1

(
nIa
[
aI
]

+mI
a

[
bI
])

(3.7)

The integers nIa,mI
a are called the wrapping numbers 2. To obtain a one-to-one

mapping between this description and the homology group these integers have to
be coprime [27] 3. Hence a brane with wrapping numbers (1, 1) × (2, 1) × (1, 1) is
in agreement with this convention and can be investigated in Figure 3.1. Note in
particular that topologically

T 2 ∼= S1 × S1 (3.8)

This was used in Figure 3.1 to display the two-tori as squares.
2They can be seen as the analogue of the real numbers that were used in chapter 2 to describe a
brane in the internal space R2 × R2 × R2.

3Two integers a, b are coprime precisely if the only positive integer that evenly divides both is 1.
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y1

x1

y2

x2

y3

x3

Figure 3.1.: Brane with wrapping numbers (1, 1)×(2, 1)×(1, 1) inM = T 2×T 2×T 2

background.

3.3. Intersection Number

As we have learned in the previous chapter, chiral fermions appear in the ab-sector
and are therefore located at the intersections of the factorizable D6-branes. Ac-
cordingly multiple intersections of two D6-brane stacks are a natural mechanism to
integrate family replication into intersecting D-brane models. For that reason the
topological intersection number between two 3-cycles is of primary interest.
We define the topological intersection numbers between fundamental 1-cycles as[

aI
]
◦
[
bJ
]

= −
[
bJ
]
◦
[
aI
]

= δIJ ,
[
aI
]
◦
[
aJ
]

=
[
bI
]
◦
[
bJ
]

= 0 (3.9)

Then one readily checks that for two 3-cycles πa and πb one has 4

Iab := πa ◦ πb =
3∏
I=1

(
nIam

I
b − nIbmI

a

)
(3.10)

3.4. Tilted Tori

3.4.1. The Involution

On each T 2 we can define a complex coordinate zI := xI + i · yI . By using these
complex coordinates we can then define

σ : T 2 × T 2 × T 2 → T 2 × T 2 × T 2 ,
(
z1, z2, z3

)
7→
(
z1, z2, z3

)
(3.11)

This mapping σ is an anti-holomorphic, isometric involution. Throughout this thesis
we will always use this very involution σ. In particular we will discuss in the next
chapter the need for an orientifold theory. Its construction will include (among oth-
ers) dividing out by σ.

4A more bottom-up derivation of this formula can be found in [27].
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yI

xI

1

1
(a) Rectangular torus.

yI

xI

0.5

1

1
(b) Tilted torus.

Figure 3.2.: The rectangular and tilted torus are invariant under the involution σ.

3.4.2. Invariant Two-Tori

In Equation 3.11 we have assumed that σ maps the original two-tori to themselves.
For a rectangular two-torus, as displayed in Figure 3.1, this is in fact the case.
However rectangular tori are not the only two-tori that are invariant under σ. To see
this consider a two-torus spanned by

lI1 =
[
bI
]
, lI2 =

[
aI
]

+ ε
[
bI
]

(3.12)

where we can focus on ε ∈ [0, 1) owing to T 2 ∼= S1 × S1. Then σ maps these vectors
to

σ
(
lI1
)

= −
[
bI
]
∼
[
bI
]
, σ

(
lI2
)

=
[
aI
]
− ε

[
bI
]
∼
[
aI
]

+ (1− ε)
[
bI
]

(3.13)

where again T 2 ∼= S1 × S1 was used - this time to make the above identifications.
Enforcing invariance finally dictates

ε = 0 ∨ ε = 1− ε (3.14)

The case ε = 0 yields the rectangular torus whilst ε = 1
2
gives a tilted torus. 5 Both

are pictured in Figure 3.2.

3.4.3. Conversion Between Rectangular And Tilted Tori

It is possible to describe 3-cycles in the fundamental bases of both tilted and rect-
angular tori. For reasons of consistency and simplicity however, we decide to use
the fundamental cycles on the rectangular tori only. Consequently we must find the

5This is in agreement with [7], where it has been pointed out that there exist precisely two choices
for the complex structure on a two-torus, which are compatible with the involution σ.
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conversion between 1-cycles on a tilted torus and such on a rectangular torus. From
Figure 3.2 one immediately reads of

πa = nIa,tilted
[
aItilted

]
+mI

a,tilted

[
bItilted

]
= nIa,tilted

[
aI
]

+

(
mI
a,tilted +

nIa,tilted
2

) [
bI
] (3.15)

Therefore let us define the NS background field as

bI :=

0 rectangular tori
1
2

tilted tori
(3.16)

which allows to define 6

m̃I
a := mI

a + bInIa (3.17)

Then we can describe a cycle on both rectangular and tilted tori in terms of the
fundamental cycles on a rectangular torus as

πa =
3∏
I=1

(
nIa
[
aI
]

+ m̃I
a

[
bI
])

(3.18)

The topological intersection number generalizes to

Iab = πa ◦ πb =
3∏
I=1

(
nIam̃

I
b − nIbm̃I

a

)
(3.19)

3.5. Summary On States

Even in toroidal compactification the analysis from chapter 2 remains valid. Nonethe-
less there appear further states - the KK tower and winding states. As our primary
interest in this thesis lies in the open string sector we follow [2], where more details
can also be found.

3.5.1. The aa-Sector

KK States

The KK-tower of massive states appears in the aa-sector. For a 3-cycle πa let us
denote by πIa the corresponding 1-cycle on the I-th two-torus. Then the mass of
these KK states is given by

MKK =
K1

|π1
a|

+
K2

|π2
a|

+
K3

|π3
a|

(3.20)

6Note that for tilted tori m̃I
a is half-integer multiple.
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where K1, K2 and K3 are non-negative integers and the length of the 1-cycle πIa is
given by 7 ∣∣∣πIa∣∣∣ =

√
(nIaR

I
x)

2 +
(
m̃I
aR

I
y

)2
(3.21)

Winding States

Also winding states appear in the aa-sector. Their mass is given by

Mwinding =
1

α′
·
(
A1

|π1
a|
· p1 +

A2

|π2
a|
· p2 +

A3

|π3
a|
· p3

)
(3.22)

where AI = (2π)2RI
xR

I
y is the area of the I-th two-torus 8 and p1, p2, p3 are non-

negative integers.

3.5.2. The ab-Sector

The strings in the ab-sector are located at the intersection of two D6-branes. Conse-
quently they propagate in the external space R1,3 only. This prevents both winding
states and KK states to appear in the ab-sector. Hence this sector remains unchanged
with respect to chapter 2.
As we will discuss in the subsequent chapter, supersymmetry of a 3-cycle will im-
pose a condition on the intersection angles ΘI

a. Given enough supersymmetry the
lightest bosonic excitations in the ab-sector can become massless. In that case they
are supersymmetry partners of the chiral fermionic groundstate in the Ramond sec-
tor. Consequently the (would-be) supersymmetry partners of leptons and quarks are
termed sleptons and squarks.
Let us note that in addition to these strings states, further excitations can appear in
the ab-sector which are not located at the intersection point of the branes a and b.
Such states are refered to as gonions.

3.5.3. The ba-Sector

The ba-sector is related to the ab-sector by parity transformation. After toroidal
compactification T-duality arises, which implies that a parity transformation re-
verses chirality [4]. Therefore strings in the ab-sector and those in the ba-sector
have opposite chirality, relating the two sectors by a particle-antiparticle mapping.

7Not only do we describe cycles exclusively in terms of the fundamental cycles of rectangular tori,
but also do we use the metric on rectangular tori only. The latter is diagonal and therefore
allows for a neat expression for the length of a 1-cycle. The reader may wish to compare [2],
where a description in terms of the metric on tilted tori is presented.

8Note that this applies to both rectangular and tilted tori since we agreed to use the metric on the
rectangular torus. Thus Cavalieri’s principle implies equal areas for tilted and rectangular tori.
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3.5.4. Massless States

From the above considerations we conclude that there are three sets of massless
states in intersecting D6-brane models, namely chiral fermions in the ab-sector, gauge
bosons as well as massless fermionic excitations in the aa-sector. In [21] it has been
noted that the latter acquire masses due to quantum corrections. For that reason
the massless spectrum will be made of the chiral fermions in the ab-sector and the
gauge bosons in the aa-sector only. 9

9For a more detailed discussion of massive states beyond the Standard Model particles we refer
the reader to [2] and [21].
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4. Supersymmetry Conditions

4.1. Introduction
As we pointed out in chapter 3 we will eventually focus on building supersymmetric
models, since in such models we can ensure the cancelation of both NS-NS and R-R
tadpoles. This then guaranties stability of the model. Accordingly our goal is now to
discuss constraints on intersecting D6-brane models such that they preserve at least
N = 1 supersymmetry.
Let us therefore consider the general situation of an internal space given by a Calabi-
Yau three-fold. As pointed out in [7] there exists a covariantly constant holomorphic
3-form Ω3 and a Kähler 2-form J , which in local coordinates z1, z2 and z3 can be
expressed as

Ω3 = dz1 ∧ dz2 ∧ dz3, J = i
3∑
I=1

(
dzI ∧ dzI

)
(4.1)

The supersymmetry condition will be a constraint on the restriction of these forms
to the 3-cycles wrapped by the D6-branes forming the model under consideration.

4.2. Genernal Supersymmetry Constraints
As pointed out in [7] a setup of D6-branes preserves at least one unbroken supersym-
metry if every brane in the setup satisfies the following constraints.

• Constraint I: J |πa = 0

• Constraint II: = (Ω3)|πa = 0

• Constraint III: < (Ω3)|πa > 0

4.3. Analysis Of The Constraints

4.3.1. Constraint I

On a 3-cycle πa we have

dyI
∣∣∣
πa

=
m̃I
a

nIa
· uI dxI

∣∣∣
πa

(4.2)

where uI :=
RI

y

RI
x
. So we find dxI

∣∣∣
πa
∧ dyI

∣∣∣
πa

= 0. But since dzI ∧ dzI = 2idy ∧ dx this
implies that J |πa = 0 is trivially satisfied for each 3-cycles πa.
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4.3.2. Constraint II

By use of dzI = dxI + idyI one can write

= (Ω3) = dx1 ∧ dx2 ∧ dy3 + dx1 ∧ dy2 ∧ dx3 + dy1 ∧ dx2 ∧ dx3− dy1 ∧ dy2 ∧ dy3 (4.3)

Now we use Equation 4.2 to rewrite this expression as

= (Ω3) = dx1 ∧ dx2 ∧ dx3 ·

− 3∏
I=1

m̃I
a +

∑
I 6=J 6=K 6=I

m̃I
a ·
nJan

K
a

uJuK

 (4.4)

The supersymmetry constraint II requires that this expression vanishes. So we must
have

0 =
3∏
I=1

m̃I
a −

∑
I 6=J 6=K 6=I

m̃I
a ·
nJan

K
a

uJuK
(4.5)

4.3.3. Constraint III

Equation 4.2 also allows to rewrite the third supersymmetry consraint. Thereby one
obtains

3∏
I=1

nIa −
∑

I 6=J 6=K 6=I
nIam̃

J
am̃

K
a u

JuK > 0 (4.6)

4.4. Constraint On Angles

The angles that a 3-cycle πa includes with the xI axis are ΘI
a

1. We first restrict our
attention to branes with −π

2
< ΘI

a <
π
2
. Then nIa 6= 0 and we can write

tan
(
θIa
)

=
m̃I
a ·RI

y

nIa ·RI
x

· uI (4.7)

By using this relation we rewrite the two non-trivial supersymmetry constraints in
terms of the angles ΘI

a. This yields

0 =
3∑
I=1

tan
(
ΘI
a

)
−

3∏
I=1

tan
(
ΘI
a

)
:= ξ1

0 < 1− tan
(
Θ1
a

)
tan

(
Θ2
a

)
− tan

(
Θ1
a

)
tan

(
Θ3
a

)
− tan

(
Θ2
a

)
tan

(
Θ3
a

)
:= ξ2

(4.8)

Let us now define

Γ :=
3∑
I=1

ΘI
a (4.9)

1Put differently, consider the brane π =
[
a1
] [
a2
] [
a3
]
. Then we consider the intersection angles

between this brane π and πa as introduced in chapter 2.
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Then it holds

exp (iΓ) =
3∏
I=1

exp
(
iΘI

a

)
(4.10)

Let us now make use of the identity exp
(
iΘI

a

)
= cos

(
ΘI
a

)
+ i sin

(
ΘI
a

)
to expand the

right-hand side of Equation 4.10. This yields 2

exp (iΓ)∏3
I=1 cos (ΘI

a)
= ξ2 + iξ1 (4.11)

But we know from Equation 4.8 ξ1 = 0 and ξ2 > 0. Consequently we must have

Γ =
3∑
I=1

ΘI
a = n · 2π, n ∈ Z (4.12)

The above analysis can also be applied to the remaining cases in which at least one
angle ΘI

a equals π
2
. 3 This analysis is not difficult but lengthy. For that reason

we skip it here, but encourage the interested reader to check that the above result
applies in those situations.

4.5. Summary
Given a setup of factorizable D6-branes each brane has to satisfy

Θ1
a + Θ2

a + Θ3
a = 0 mod 2π (4.13)

to ensure that the complete brane setup preserves at least one unbroken supersym-
metry. In addition to this constraint it should be noted [7] that the brane setup
preserves N = 1 supersymmetry if for all branes Θ1

a,Θ
2
a,Θ

3
a 6= 0. If some angles

vanish the setup either preserves N = 2 supersymmetry or the maximal N = 4
supersymmetry.

2The restriction −π2 < ΘI
a <

π
2 implies cos

(
ΘI
a

)
6= 0.

3Recall that by our convention on intersection angles we have −π2 < ΘI
a ≤ π

2 - for more details see
chapter 2.
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5. Orientifold And Constraints

5.1. The Need For Orientifolding

Our goal will be to built a string theory model of the Standard Model. In particular
we want to obtain a massless fermionic spectrum as close as possible to the one of the
Standard Model. Also the model should be stable. The latter needs cancelation of
R-R and NS-NS tadpoles. Cancelation of R-R tadpoles is equivalent to consistency
of the field equation of G(8), the field strength of the Ramond C(7) charge. From
this consistency condition one obtains a condition on the homoloy class of the overall
3-cycle wrapped by all branes in the intersecting D6-brane setup. 1 This condition
allows for non-trivial setups only in the presence of branes, whose Ramond C(7)

charge is opposite to the one of the ordinary D6-branes.
As pointed out in [7] this in fact applies to an orientifold plane, e.g. an O6-plane has
Ramond C(7) charge −4µ if µ denotes the C(7) charge of the D6-branes. Consequently
we will consider models built on orientifolds which ensures the presence of one O6-
plane.

5.2. Orientifold

5.2.1. Definition

Alltogether we decide to built a non-supersymmetric model on the orientifold

O =M/ (σ × Ω) (5.1)

where

• σ is our isometric, anti-holomorphic involution which in local patches takes the
form of complex conjugation.

• Ω is the parity operator.

In order to derive the gauge groups on the D6-branes one has to implement the action
of σ × Ω into the Chan-Paton factors. We will not discuss this in detail but cite the
corresponding results. For a detailed analysis on this implementation we refer the
interested reader to [5].

1We present more details on this in section 5.4.
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5.2.2. An Intuitive Picture For The Orientifold

After dividing out by σ × Ω we have to consider a quotient space, i.e. a set of
equivalence classes. However, this is not very intuitive and we therefore prefer to
consider the situation in the intuitive picture of T 2×T 2×T 2. Then we must consider
brane configurations such that, when considered as a whole, they are invariant under
the action of σ. Consequently for each D6-brane πa we have to include its image
brane

π′a := σ (πa) (5.2)

Moreover there are points in the internal space that are invariant under the involution
σ. The set of all these points forms the orientifold plane which we denote by πO6.

5.2.3. Orientifold Plane

To derive the orientifold plane inM/ (σ × Ω) we consider a general cycle πa with

πa =
3∏
i=I

(
nIa
[
aI
]

+ m̃I
a

[
bI
])

(5.3)

The involution acts on the tori as reflection about the xI axis. Therefore we obtain

σ (πa) =
3∏
I=1

(
nIa
[
aI
]
− m̃I

a

[
bI
])

(5.4)

We require that the 1-cycles on each T 2 are invariant under the involution. This
implies

m̃I
a = mI

a + bInIa = 0, I = 1, 2, 3 (5.5)

For rectangular tori this requires mI
a = 0. In particular there are two distinct in-

variant 1-cycles on a rectangular torus. For a tilted torus however, we have bI = 1
2

and invariance of πa implies nIa = −2 ·mI
a. So in particular nIa is even 2 and there

exists only a single brane that is invariant under σ, namely 2
[
aI
]
. We illustrate the

σ invariant 1-cycles on rectangular and tilted tori in Figure 5.1.
Independent of whether or not certain tori are tilted we consequently obtain

πO6 = 8
3∏
I=1

[
aI
]

(5.6)

2A different way to find this requirement is to realized that
[
aI
]
is not closed on a tilted torus,

rather one has to consider 2
[
aI
]
.
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yI

xI

(a) Rectangular torus.

yI

xI

(b) Tilted torus.

Figure 5.1.: The σ-invariant 1-cycles on rectangular tori and tilted tori. Note that on
tilted tori the points connected by the dashed line are identified, so that there exists
only a single σ invariant 1-cycle on tilted tori.

5.3. Massless Fermionic Spectrum

After toroidal compactification, there are chiral fermions in the ab-sector (c.f. sub-
section 3.5.4). Orbifolding by σ × Ω introduces chiral fermions in the aa′-sector and
ab′-sector as well. So these sectors give rise to massless fermionic states, which we
will now discuss in further detail.
A D6-brane that is not invariant under σ will always carry a U (N) gauge group.
Therefore chiral fermions appearing at the intersection of such branes will transform
in bifundamental, symmetric or antisymmetric representations of U (N) [7].
Moreover a D6-brane setup may include brane stacks that are invariant under the in-
volution σ. Such a brane stack of Na coincident branes may either carry USp (2Na,C)
or SO (Na) gauge group. We specify the orientifold projection such that any invari-
ant brane stack carries USp (2N,C) gauge group. 3 In particular this implies that
chiral fermions transforming under U (N) − USp (2N,C) bifundamental representa-
tions appear in a general intersecting D6-brane setup onM/ (σ × Ω).
For later convenience we agree on denoting a brane πa with U (Na) gauge group by
πUa . Similarly πUSp

a is a brane with USp (2Na,C) gauge group. The original notation
πa then refers to brane stacks with either U (N) or USp (2N,C) gauge group.
Note that chiral fermions transforming under symmetric and antisymmetric repre-
sentations of USp (2N,C) can never appear onM/ (σ × Ω). Such strings would have
to be located at aa′ intersections for a brane πUSp

a . But πUSp
a = σ

(
πUSp
a

)
, so the

topological intersection number πUSp
a ◦ πUSp′

a vanishes. Hence no matching intersec-
tion exist. We summarize our findings in Table 5.1.
Let us finally note that [22] and [13] use USp (2N,C) gauge groups, whilst [7] [12]
[11] revisited the result of [13] but used Sp (2N,C) gauge group. Therefore we want

3It is a priori not clear that we can do this. However in [7] four K-theory constraints are stated,
which implicitely justifies our choice.
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Non-Abelian Representation U (1) Charges Multiplicity
U
a (2a)

1
2

(
πU ′a ◦ πUa − πO6 ◦ πUa

)
U

a
(2a)

1
2

(
πU ′a ◦ πUa + πO6 ◦ πUa

)
(

U
a ,

U
b

)
(−1a, 1b) πUa ◦ πUb(

U
a ,

U
b

)
(1a, 1b) πU ′a ◦ πUb(

U
a ,

USp
a

) (
−1a,%

)
πUa ◦ π

USp
b(

U
a ,

USp
a

) (
1a,%

)
πU ′a ◦ π

USp
b

Table 5.1.: Massless fermionic spectrum for intersecting D6-brane setups on
M/ (σ × Ω). Note in particular that there is no U (1) generator on the πUSpa branes.
More details on Sp (2N,C) and USp (2N,C) are presented in Appendix A.

to point out that our choice of USp (2N,C) gauge groups is based on the fact that
USp (2N,C) has Hermitian generators. In contrast the generators of Sp (2N,C) are
Hamiltonian matrices. More information on both groups is presented in Appendix A.

5.4. R-R Tadpole Cancelation

The C(7) Ramond charge couples naturally to a setup of intersecting D6-branes via
the Chern-Simons action.

SCS = − 1

4k2

∫
R3,1×M

dC(7) ∧ ?dC(7)

︸ ︷︷ ︸
=Skin

+µ6

∑
a

Na

∫
R3,1×πa

C(7) + µ6

∑
a

Na

∫
R3,1×π′a

C(7) − 4µ6

∫
R3,1×πO6

C(7)

︸ ︷︷ ︸
Scoup

(5.7)

Note that the kinetic term is integrated over the entire ten-dimensional spacetime,
whilst the remaining brane-coupling terms are integrated over the seven-dimensional
branes only. To ensure that the action is composed of integrals over the entire ten-
dimensional spacetime only, we use the Poincaré duals of πa, π′a and πO6. Then we
can rewrite the action as

SCS = − 1

4k2

∫
R3,1×M

dC(7) ∧ ?dC(7) + µ6

∑
a

Na

∫
R3,1×M

C(7) ∧ p (πa)

+ µ6

∑
a

Na

∫
R3,1×M

C(7) ∧ p (π′a)− 4µ6

∫
R3,1×M

C(7) ∧ p (πO6)
(5.8)
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where p indicates the mapping that assigns to a 3-cycle the corresponding Poincaré
dual 3-form. 4 We require the variation of the action SCS with respect to C(7) to
vanish. This implies

1

4k2

δ
(
dC(7) ∧ ?dC(7)

)
δC(7)

= µ6

∑
a

Na (p (πa) + p (π′a))− 4µ6p (πO6) (5.9)

The left-hand-side is proportional to d
(
?dC(7)

)
= d

(
?G(8)

)
and is therefore exact.

By using linearity and injectivity of p one then arrives at

[0] =
∑
a

Na (πa + π′a)− 4πO6 (5.10)

This constraint is easily expressed in terms of the wrapping numbers of the D6-branes
in our setup, namely one obtains 5

∑
a

Na

3∏
I=1

nIa = 16∑
a

Nan
I
am̃

J
am̃

K
a = 0, I 6= J 6= K 6= I

(5.11)

5.5. K-Theory Constraints
It has been pointed out in [7] and [26] that the Ramond charges of D-branes are
classified by K-theory groups rather than homology classes. Therefore there may
exist uncanceled K-theory charges even if Equation 5.10 is imposed.
Heuristically one can ensure cancelation of such charges by introducing probe D6-
branes that carry USp (2,C) gauge group and then requiring that the total number of
fundamental representations of USp (2,C) in the world volume of these probe branes
is even [22]. By our choice of the orientifold projection every brane invariant under
σ carries USp (2,C) gauge group. The wrapping numbers of these probe D6-branes
are 6

πUSp
1 = 22b122b222b3 · (1, 0)× (1, 0)× (1, 0)

πUSp
2 = 22b1 · (1, 0)× (0, 1)× (0, 1)

πUSp
3 = 22b2 · (0, 1)× (1, 0)× (0, 1)

πUSp
4 = 22b3 · (0, 1)× (0, 1)× (1, 0)

(5.12)

These probe branes then give rise to the following K-theory constraints 7

22b122b222b3 ·
∑
a

Nam̃
1
am̃

2
am̃

3
a ∈ 2Z

22bI ·
∑
a

Nam̃
I
an

J
an

K
a ∈ 2Z, I 6= J 6= K 6= I

(5.13)

4Note that this mapping is linear and injective.
5No summation over image branes.
6For tilted tori the 1-cycle (1, 0) is not closed (c.f. Figure 5.1). This makes it necessary to consider
the 1-cycle (2, 0) for tilted tori, which is done by including the prefactor 22b

I

.
7No summation over image branes.
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6. Anomalies And Anomaly
Cancelation

6.1. Anomalies

6.1.1. Introduction

A gauge symmetry with associated Noether current that is not conserved is by defini-
tion anomalous. The gauge theories that we encounter in the context of intersecting
D6-brane models onM/ (σ × Ω) are U (N) = SU (N)×U (1) and USp (2N,C). For
that reason we will have to discuss the associated anomalies and their cancelation by
means of the generalized Green-Schwarz mechanism. For a detailed analysis on these
two topics in terms of Lagrangian field theory we point the reader to [9], whilst here
we focus on its application to intersecting D6-brane models.

6.1.2. Notation

Throughout this text we use the following notation for the Lie groups U (1), SU (N)
and USp (2N,C).

Abelian Gauge Field

• The Abelian U (1)a gauge field on the brane stack a is denoted by Ca
µ.

• Qa is the charge operator of the U (1)a symmetry on brane stack a. It is pro-
portional to the identity matrix 1d×d with d the dimension of the corresponding
representation of SU (Na). The proportionality constant is the U (1) charge of
the representation under consideration.

• The U (1) field strength is given by

Ca
µν = ∂µC

a
ν − ∂νCa

µ (6.1)

Non-Abelian Gauge Field

• On the brane stack a there is a non-Abelian gauge group G - either we have
G = SU (Na) or G = USp (2Na,C). The generators of these groups are denoted
by (T a)A where A = 1, . . . , dim (G). Note that by our choice of USp (2N,C)
gauge groups, every generator is Hermitian. Moreover the generators of SU (N)
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are tracelsss [24]. This is also true for USp (2N,C) (c.f. Appendix A). As
SU (N) and USp (2N,C) are the only non-Abelian gauge groups that we will
face throughout this text, for our purposes generators (T a)A are always trace-
less.

• There will be dim (G) non-Abelian gauge fields on the brane stack a. We denote
them by

(
Aaµ
)A

.

• The non-Abelian field strength is given by

F a
µν =

(
∂µ (Aaν)

A
)
TA −

(
∂ν
(
Aaµ
)A)

TA +
(
Aaµ
)A

(Aaν)
B
[
TA, TB

]
(6.2)

Note that the summation over repeated capitalised indicies is implicit.

6.1.3. Anomalies

It has been pointed out in [9], that there are the following U (1) anomalies in inter-
secting D6-brane models onM/ (σ × Ω). 1

• U (1)a − SU (Nb)
2 anomalies are proportional to Aabb = tr

(
Qa

(
T b
)A (

T b
)B)

.

• U (1)a−USp (2Nb)
2 anomalies are proportional toAabb = tr

(
Qa

(
T b
)A (

T b
)B)

.

• U (1)a − U (1)b − U (1)c anomalies are proportional to Aabc = tr
(
QaQbQc

)
.

• U (1)a − gravitation anomalies are proportional to Aagg = tr (Qa).

The Feynman diagram for the U (1)a−U (1)b−U (1)c anomaly is given in figure 6.1a.

6.1.4. Meaning Of The Trace

Let us now specify the meaning of the trace in more detail. First note that in general
Qa and

(
T b
)A

are matrices of different dimension, so that Qa
(
T b
)A (

T b
)B

is in
general not defined. Also QaQbQc suffers from this lack of matching dimensionalities.
Therefore we agree on splitting the argument of the trace into pieces of matching
dimensionality and then to perform the trace over these pieces individually.
Furthermore the trace is meant to be a sum over all massless fermionic states given
in Table 5.1 that are charged under the participating fields.

1The U (1)a−USp (2Nb,C)
2 anomalies were not given in [9] because the authors focused on U (N)

gauge groups in the corresponding section.
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U (1)a

U (1)b

U (1)c

(a) Origin of the Ãabc anomaly.

U (1)a
B2,i φi

U (1)b

U (1)c

(b) The counterterm of the Ãabc anomaly

Figure 6.1.: Feynman diagrams for the Ãabc anomaly. For the U (1)a−U (1)2
b anomaly

it holds S = 2! = 2, whilst for U (1)3
a one has S = 3! = 6.

6.1.5. Further Anomalies

In addition to the U (1) anomalies given in subsection 6.1.3 one could a priori have
anomalies of the following types

• U (1)2
a − SU (Na)

• U (1)2
a − USp (2Nb,C)

• SU (Na)− USp (2Nb,C)2

• SU (Na)
2 − USp (2Nb,C).

But note that these anomalies all vanish after splitting the trace, since the generators
of SU (Na) and USp (2Nb,C) are traceless. Nevertheless cubic anomalies of the type
SU (Na)

3 or USp (2Nb,C)3 can appear and do not vanish a priori. Therefore we will
calculate these anomalies now.

6.2. Calculation Of Cubic Anomalies

6.2.1. SU(N)-SU(N)-SU(N) Anomaly

Let us compute the SU (Na)
3 anomaly for the fermionic spectrum given in Table 5.1.

One has
Aaaa = tr

(
(T a)A

{
(T a)B , (T a)C

})
(6.3)
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Representation r D (r) Q (r) C (r) A (r)

F N 1 1
2

1
F N −1 1

2
−1

S N(N+1)
2

2 N+2
2

N + 4

S N(N+1)
2

−2 N+2
2

−N − 4

A N(N−1)
2

2 N+2
2

N − 4

A N(N−1)
2

−2 N+2
2

−N + 4

Table 6.1.: Properties of fundamental F , symmetric S and antisymmetric A repre-
sentations of SU (N) [22]. The dimension of the representations is denoted by D (r).
Q (r) is the U (1) charge under the decomposition U (N) = SU (N) × U (1). The
quadratic and cubic Casimir coefficients are denoted by C (r) and A (r), respectively.

As noted above the trace is meant to be a sum over the traces of the various fermionic
representations that are charged under SU (Na). Therefore we find

Aaaa =
1

2

(
πU ′a ◦ πUa − πO6 ◦ πUa

)
trS

(
(T a)A

{
(T a)B , (T a)C

})
+

1

2

(
πU ′a ◦ πUa + πO6 ◦ πUa

)
trA

(
(T a)A

{
(T a)B , (T a)C

})
+
∑
b6=a

Nb ·
(
πUa ◦ πb

)
trF

(
(T a)A

{
(T a)B , (T a)C

})
+
∑
b6=a

Nb ·
(
πU ′a ◦ πb

)
trF

(
(T a)A

{
(T a)B , (T a)C

})
(6.4)

We now need to evaluate the traces. We do so by using the information provided in
Table 6.1. Then we find

Aaaa =
Na + 4

2

(
πU ′a ◦ πUa − πO6 ◦ πUa

)
ξABC

+
Na − 4

2

(
πU ′a ◦ πUa + πO6 ◦ πUa

)
ξABC

−
∑
b 6=a

Nb ·
(
πUa ◦ πb

)
ξABC

+
∑
b 6=a

Nb ·
(
πU ′a ◦ πb

)
ξABC

= −πUa ◦
(∑

b

Nb (πb + π′b)− 4πO6

)
ξABC

(6.5)

But recall that R-R tadpole cancelation gave us the constraint∑
b

Nb (πb + π′b) = 4πO6 (6.6)

So the SU (Na)
3 anomaly vanishes if we impose R-R tadpole cancelation.
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Anomaly Label Formula
U (1)a − SU (Nb)

2 Aabb Na

2

(
−πUa + πU ′a

)
◦ πUb

U (1)a − USp (2Nb,C)2 AaUSpUSp Na

2

(
−πUa + πU ′a

)
◦ πUSp

b

U (1)a − U (1)2
b Ãabb NaNb

(
πUa + πU ′a

)
◦ πUb

U (1)a −RR Aagg 3NaπO6 ◦ πUa

Table 6.2.: The U (1) anomalies for the massless fermionic spectrum given in Ta-
ble 5.1, which do neither vanish trivially nor upon imposing R-R tadpole cancelation.
Note that the above results are valid for a = b and a 6= b.

6.2.2. USp (2N,C)−USp (2N,C)−USp (2N,C) Anomaly

Given a brane πUSp
a one similarly computes the USp (2Na,C)3 anomaly. It is given

by 2

AUSpUSpUSp =
∑
b6=a

πUb ◦ πUSp
a · trF

(
(T a)A

{
(T a)B (T a)C

})
+
∑
b6=a

πU ′b ◦ πUSp
a · trF

(
(T a)A

{
(T a)B (T a)C

})
=
∑
b6=a

(
πUb + πU ′b

)
◦ πUSp

a · trF
(
(T a)A

{
(T a)B (T a)C

}) (6.7)

But for any 3-cycle πUb onM/ (σ × Ω), the sum πUb +πU ′b is parallel to the orientifold
plane. As πUSp

b carries USp (2Nb,C) gauge group also πUSp
b is parallel to πO6. As a

consequence we have (
πUb + πU ′b

)
◦ πUSp

a = 0 (6.8)

So we finally conclude that AUSpUSpUSp vanishes.

6.2.3. Summary On Anomalies

By similar arguments all U (1) anomalies can be calculated. We give the details of
these derivations in Appendix B, to which we refer the interested reader. Here it
suffices it to state the results, which we list in Table 6.2.

6.3. Anomaly Cancelation

For a detailed discussion of anomaly cancelation by means of the generalized Green-
Schwarz mechanism in terms of Lagrangian field theory we point the reader to [9].
Here we are more interested in its application to intersecting D6-brane models. There-
fore we basically follow [1] in this section.

2Note that (T a)
A now denotes the USp (2Na) generators.
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6.3.1. Definition Of Axion φi And 2-Form Field B2,i

So far we described 3-cycles as

πa =
3∏
I=1

(
nIa
[
aI
]

+ m̃I
a

[
bI
])

(6.9)

If we expand this product we obtain a sum of 3-cycles dressed by integer prefactors.
For that reason we can switch to a different notation for a 3-cycle by using a 3-cycle
basis of H1 (T 2,Z)×H1 (T 2,Z)×H1 (T 2,Z). For the remaining part of this section
we will consider two such bases [Σi] and [Λi] (i = 1, 2, . . . , 8) that are dual. By the
latter we mean [

Σi
]
◦
[
Λj
]

= δij (6.10)

Now recall that the democratic formulation of type IIA superstring theory not only
includes the C(7) Ramond field, but also C(3) and C(5). We use these two to define

• the axion φi by φi :=
∫
Λi

C(3).

• the 2-form field B2,i by B2,i :=
∫
Σi

C(5).

6.3.2. Couplings And 4-Dimensional Reduction

Consider a three cycles πa and let F̃a denote a field strength on πa
3. Then there

exist the following couplings between C(3), C(5) and F̃a.

Scoup 1 =
∫

R1,3×πa

C(3) ∧ tr
(
F̃a ∧ F̃a

)
=
∑
i

pai

∫
R1,3

φi ∧ tr
(
F̃a ∧ F̃a

)

Scoup 2 =
∫

R1,3×πa

C(5) ∧ tr
(
F̃a
)

=
∑
i

rai

∫
R1,3

B2,i ∧ tr
(
F̃a
) (6.11)

In the second step we assumed that the field strength F̃a does only depend on the
external space, which is a sensible choice for compactifications. Thereby we reduced
ten-dimensional couplings to four-dimensional couplings and made our way to the
arena of four dimensional quantum field theory.

3It may either refer to the Abelian or non-Abelian field strength on πa. For now we like to keep
things general, and therefore introduce this notion.
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6.3.3. Cancelation Of U(1) - SU(N) - SU(N) Anomalies

We will now demonstrate how to cancel the U (1)a - SU (Nb)
2 anomalies. The corre-

sponding couplings are 4

SSU(Nb) =
∑
i

pbi

∫
R1,3

φi ∧ tr
(
F b ∧ F b

)
, SSU(Nb)′ =

∑
i

p′bi

∫
R1,3

φi ∧ tr
(
F b ∧ F b

)
SU(1)a

= Na

∑
i

rai

∫
R1,3

B2,i ∧ Ca, SU(1)′a
= −Na

∑
i

r′ai

∫
R1,3

B2,i ∧ Ca

(6.12)
Taking all these couplings into account we find

SU(1)a−SU(Nb)2 = Na

∑
i

(
raipbj + raip

′
bj − r′aipbj − r′aip′bj

)
×
∫

R3,1

B2,i ∧ Ca ·
∫

R3,1

φi ∧ tr
(
F b ∧ F b

) (6.13)

But note that due to our choice of dual bases [Λi] and [Σi] we have

8∑
i=1

raipbi =
8∑

i,j=1

raipbjδ
ij =

8∑
i,j=1

raipbj
[
Σi
]
◦
[
Λj
]

= πa ◦ πb (6.14)

Thus we find 5

SU(1)a−SU(Nb)2 ∼ Na

(
πUa ◦ πUb + πUa ◦ πU ′b − πU ′a ◦ πUb − πU ′a ◦ πU ′b

)
(6.15)

It is easy to verify πa ◦π′b = −π′a ◦πb and π′a ◦π′b = −πa ◦πb. Taking this into account
one can rewrite the coupling as

SU(1)a−SU(Nb)2 ∼ 2Na

(
πUa − πU ′a

)
◦ πUb (6.16)

Therefore this counterterm is of the form needed to cancel the U (1)a - SU (Nb)
2

anomaly given in Table 6.2. For a = b it also reduces to the correct form to cancel
the U (1)a − SU (Na)

2 anomaly.

6.3.4. Cancelation Of The Remaining Anomalies

All other anoamlies can be canceled in precisely the same way. We abondon an in-
detail analysis here, but encourage the interested reader to verify this result. Note
also that Feynman diagram giving rise to the counterterm for the Ãabc anomalies is
given in figure 6.1b.

4Recall the notation introduced in subsection 6.1.2. The prefactor Na appears due to appropriate
normalization of the U (1)a generator. Note also that on the image brane one has Ca′ = −Ca.

5Note that the integrals in Equation 6.13 carry an i index and are therefore summed over. Nev-
ertheless we drop these terms for demonstrational purposes.
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6.4. Mass Generation

6.4.1. General Feature

As we have already seen there are couplings between the U (1)a field strength Ca and
the two-form field B2,i of the form

S = Na ·
∑
i

(rai − r′ai) ·
∫

R3,1

B2,i ∧ Ca (6.17)

These coupling allows for an interpretation in terms of a mass2 matrix M2. For k
factorizable D-brane stacks this matrix M2 is given by

M2 :=


N1 (r11 − r′11) N2 (r21 − r′21) . . . Nk (rk1 − r′k1)
N1 (r12 − r′12) N2 (r22 − r′22) . . . Nk (rk2 − r′k2)

...
... . . . ...

N1 (r18 − r′18) N2 (r28 − r′28) . . . Nk (rk8 − r′k8)

 (6.18)

The kernel of this matrix will determine the U (1) combinations that remain massless.

6.4.2. Explicit Form

For later convenience we choose a basis ofH1 (T 2,Z)×H1 (T 2,Z)×H1 (T 2,Z), namely

Σ1 =
[
b1
] [
b2
] [
b3
]
, Σ2 =

[
b1
] [
a2
] [
a3
]

Σ3 =
[
a1
] [
b2
] [
a3
]
, Σ4 =

[
a1
] [
a2
] [
b3
]

Σ5 =
[
a1
] [
a2
] [
a3
]
, Σ6 =

[
a1
] [
b2
] [
b3
]

Σ7 =
[
b1
] [
a2
] [
b3
]
, Σ8 =

[
b1
] [
b2
] [
a3
]

(6.19)

Then the matrix M2 is given by

M2 :=



2N1m
1
1m

2
1m

3
1 2N2m

1
2m

2
2m

3
2 . . . 2NKm

1
Km

2
Km

3
K

2N1m
1
1n

2
1n

3
1 2N2m

1
2n

2
2n

3
2 . . . 2NKm

1
Kn

2
Kn

3
K

2N1m
2
1n

1
1n

3
1 2N2m

2
2n

1
2n

3
2 . . . 2NKm

2
Kn

1
Kn

3
K

2N1nm
3
1n

1
1n

2
1 2N2n

3
2n

1
2n

2
2 . . . 2NKn

3
Kn

1
Kn

2
K

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0


(6.20)

In writing out this explicit form we have used that the image branes are obtained by
changing the sign of the [bi] cycles. This implies that rai = r′ai for i = 5, 6, 7, 8 and
so the last four lines of M2 become trivial.
It is crucial to note that not only anomalous, but also anomaly-free U (1) gauge
bosons can aquire mass due to the B2,i ∧ Ca couplings [7]. Yet the hypercharge
should remain massless. Thus we should expect further constraints arising from this
requirement.
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7. Class Of Non-Supersymmetric
Models

By now we have gathered all the knowledge needed to discuss non-supersymmetric
models. Under general assumptions an entire class of such models was derived and
first published in [21]. We will now discuss this class of non-supersymmetric models,
thereby following closely to the original literature.

7.1. General Features Of The Setup

7.1.1. The Branes

We consider the orientifoldM/ (σ × Ω) with the third torus tilted. Therefore there
is an NS background b3 = 1

2
on the third torus. In this background we consider the

class of intersecting D6-brane models listed in Table 7.1. Among others they depend
on

βi = 1− bi ∈
{

1

2
, 1
}
, i = 1, 2 (7.1)

This tells us that in some of these models further tori are tilted. Hence it would be
counter-intuitive to apply the m̃ notation, which is why we do not apply it during
the discussion of this class of models.
As discussed in subsection 5.2.3 the orientifold plane is given by

πO6 = 8
[
a1
] [
a2
] [
a3
]

(7.2)

7.1.2. Intersection Numbers And Brane Picture

With the wrapping numbers as specified in Table 7.1 it is possible to compute the
topological intersection numbers between the various 3-cycles in the setup via

Iab = πa ◦ πb =
3∏
I=1

(
nIam̃

I
b − nIbm̃I

a

)
(7.3)

We display their absolute value in the brane picture given in Figure 7.1. Their sign
is incoded in the displayed strings via the following convention.

• Iab > 0, then left-handed, massless fermions stretch from b to a.

• Iab < 0, then left-handed, massless fermions stretch from a to b.
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Brane Wrapping Numbers Gauge Group U (1) gauge boson
Na = 3

(
1
β1 , 0

)
× (n2

a, εβ
2)×

(
1
ρ
, 1

2

)
U (3) Qa

N ′a = 3
(

1
β1 , 0

)
× (n2

a,−εβ2)×
(

1
ρ
,−1

2

)
Nb = 2 (n1

b ,−εβ1)×
(

1
β2 , 0

)
×
(
1, 3ρ

2

)
U (2) Qb

N ′b = 2 (n1
b , εβ

1)×
(

1
β2 , 0

)
×
(
1,−3ρ

2

)
Nc = 1 (n1

c , 3ρεβ
1)×

(
1
β2 , 0

)
× (0, 1)

U (1) Qc
N ′c = 1 (n1

c ,−3ρεβ1)×
(

1
β2 , 0

)
× (0,−1)

Nd = 1
(

1
β1 , 0

)
×
(
n2
d,−β2ε

ρ

)
×
(
1, 3ρ

2

)
U (1) Qd

N ′d = 1
(

1
β1 , 0

)
×
(
n2
d,

β2ε
ρ

)
×
(
1,−3ρ

2

)

Table 7.1.: Branes, image branes and gauge groups in the non-supersymmetric three
family model first published in [21]. Note that the parameters that specifiy the
wrapping numbers obey the relations ε = ±1, ρ = 1

3
, 1, β1, β2 = 1

2
, 1. The remaining

n2
a, n1

b , n1
c and n2

d are integers.

7.1.3. Proof Of Non-Supersymmetry

Let us now proof that this class of models is not supersymmetric.

Brane Stack a

If the brane stack a was supersymmetric, it would satisfy Equation 4.5 and Equa-
tion 4.6. Applied to brane stack a these conditions become

n2
a = −2u2εβ2

ρu3
, 0 <

n2
a

ρ
− εβ2u2u3

2
(7.4)

Using the equation for n2
a we obtain

0 <

(
2u2

ρ2u3
+
u2u3

2

)
· β2

︸ ︷︷ ︸
>0

· (−ε) (7.5)

Therefore we must have ε = −1.

Brane Stack c

Similarly we can apply Equation 4.5 and Equation 4.6 to brane stack c. From Equa-
tion 4.5 we obtain 0 = n1

c

β2u1u2
, which implies n1

c = 0. Then Equation 4.6 gives the
condition

0 <
β1u1u3

β2︸ ︷︷ ︸
>0

·ε (7.6)
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Na

Nd

N ′a

Nb Nc N ′c N ′b

N ′d

1 3 3 2

3 3 3

3 3 3

2 3 3 1

Q U c Dc qi

Ec

L N c

H

H ′

h h′

Figure 7.1.: Brane picture for the class of non-supersymmetric models first published
in [21]. The branes of these models are specified in Table 7.1. The oriented arcs indi-
cate the strings that give rise to massless, left-handed fermions. The corresponding
matter particles in the Standard Model are also indicated. In addition the strings
that allow for an interpretation in terms of the Higgs doublets are drawn.

But supersymmetry of brane stack a requires ε = −1, as outlined above. Therefore
we find a contradition from which we conclude that this class of intersecting D6-brane
models is never supersymmetric.

7.1.4. Check Of The Various Constraints

The Constraints

This class of non-supersymmetric models has to satisfy two sets of constraints, namely

• R-R tadpole constraints.

• K-theory constraint.

It is readily checked that the model satisfies the K-theory constraints given in Equa-
tion 5.13, which leaves the R-R tadpole constraints to be checked. Recall that these
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constraints are ∑
a

Na

3∏
I=1

nIa = 16∑
a

Nan
I
am̃

J
am̃

K
a = 0, I 6= J 6= K 6= I

(7.7)

It is not difficult to check that
∑
aNan

I
am̃

J
am̃

K
a = 0 holds trivially for this model. The

remaining constraint however is not trivially satisfied, but leads to the requirement

3n2
a

β1ρ
+

2n1
b

β2
+
n2
d

β1
= 16 (7.8)

This is a constraint on the so-far unconstraint integers n2
a, n

1
b , n

2
d.

‘Hidden’ Branes

It is possible to weaken the R-R tadpole constraints by adding further Nh D6-branes
with m̃I

h = 0. These branes are parallel to the orientifold plane. An explicit cal-
culation reveals that these branes have vanishing intersection number with all the
other branes in Table 7.1. For that reason these branes do not change the massless
fermionic bifundamentals and are hidden in this sense. 1

In the presence of such hidden branes the R-R tadpole constraints are weakend, as
they change to ∑

a

Na

3∏
i=I

nIa +Nhn
1
hn

2
hn

3
h = 16∑

a

Nan
I
am̃

J
am̃

K
a = 0, I 6= J 6= K 6= I

(7.9)

7.2. Massless Spectrum And U(1) Gauge Bosons

7.2.1. Gauge Groups

All branes given in Table 7.1 are not invariant under the involution σ. Therefore
they all carry U (N) gauge groups, which are listed in Table 7.1.

7.2.2. Massless Fermionic Spectrum

We discussed the massless fermionic spectrum in a general context in section 5.3 and
summarized our findings in Table 5.1. Naturally this result can be applied to the
current class of models. The so-obtained massless fermionic spectrum is given in
Table 7.2. Note that we list the U (1) charge

Qx :=
1

6
Qa −

1

2
Qc +

1

2
Qd (7.10)
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Sector Chirality Representation Qa Qb Qc Qd Qx Field
(ab) L

(
3, 2, 1, 1

)
1 -1 0 0 1

6
Q

R
(
3, 2, 1, 1

)
-1 1 0 0 −1

6
Qc

(ab′) L 2× (3, 2, 1, 1, ) 1 1 0 0 1
6

Q

R 2×
(
3, 2, 1, 1,

)
-1 -1 0 0 −1

6
Qc

(ac) L 3×
(
3, 1, 1, 1

)
-1 0 1 0 −2

3
U c

R 3×
(
3, 1, 1, 1

)
1 0 -1 0 2

3
U

(ac′) L 3×
(
3, 1, 1, 1

)
-1 0 -1 0 1

3
Dc

R 3× (3, 1, 1, 1) 1 0 1 0 −1
3

D

(bd′) L 3×
(
1, 2, 1, 1

)
0 -1 0 -1 −1

2
L

R 3× (1, 2, 1, 1) 0 1 0 1 1
2

Lc

(cd) L 3×
(
1, 1, 1, 1

)
0 0 -1 1 1 Ec

R 3×
(
1, 1, 1, 1

)
0 0 1 -1 −1 E

(cd′) L 3× (1, 1, 1, 1) 0 0 1 1 0 N c

R 3×
(
1, 1, 1, 1

)
0 0 -1 -1 0 N

Table 7.2.: Massless fermionic spectrum of the class of non-supersymmetric models
first published in [21]. The brane picture for these models is depictured in Figure 7.1.
Note that the representations are written as SU (3)× SU (2)× U (1)c × U (1)d.

From the results in Table 7.2 one is tempted to identify Qx with the hypercharge in
the Standard Model. We will prove momentarily that this U (1) combination in fact
remains massless, which then justifies this identification.

7.2.3. Massless Bosonic Spectrum

Massless bosons arise as excitations of strings in the aa-sector, i.e. strings that start
and end on the same brane stack. The corresponding string states will transform
in the adjoint representation. Therefore they allow for an interpretation in terms of
gauge bosons. We list these excitations in Table 7.3.

7.2.4. U(1) Gauge Bosons

Anomlous U(1) Gauge Bosons

The various U (1) anomalies are listed in Table 6.2. They were calculated and the
results are displayed in Table 7.4. From this table we deduce that Qa + 3Qd and
Qc are anomaly free. Qa − 3Qd and Qb are anomalous. So we expect the latter

1Note however, that such branes lead to an extended gauge group. As a consequence additional
gauge bosons will appear.
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Sector U (3)× U (2)× U (1)c × U (1)d Field
(aa) 3× (8 + 1, 1, 1, 1) Gluons , Qa

(bb) 3× (1, 3 + 1, 1, 1) W±, Z , Qb

(cc) 3× (1, 1, 1, 1) Qc

(dd) 3× (1, 1, 1, 1) Qd

Table 7.3.: Massless bosons in the class of non-supersymmetric models first published
in [21] and illustrated in Figure 7.1. The wrapping numbers are given in Table 7.1.

Qa Qb Qc Qd

Aabb a 0 -1 0 0
b −9

2
0 0 3

2

c 9 0 0 -3
d 0 3 0 0

Ãabb a 0 -6 0 0
b -18 0 0 6
c 18 0 0 -6
d 0 6 0 0

Aagg 0 0 0 0

Table 7.4.: U(1) anomalies in the class of non-supersymmetric models first published
in [21]. The anomalies were calculated by using Table 6.2 and the wrapping numbers
for the branes specified in Table 7.1.

two to acquire mass upon anomaly cancelation by the generalized Green-Schwarz
mechanism.

Masses For Anomalous U(1) Gauge Bosons

Therefore we compute the mass2 matrix and obtain 2

Qa Qb Qc Qd

M2 =


0
0

3εβ2

ρβ1

3n2
a

2β1

0

−2εβ1

β2

0
6ρn1

b

2β2

0
0
0

2n1
c

2β2

0
0

− εβ2

ρβ1

3ρn2
d

2β1


(7.11)

2Equation 6.20 was used. We dropped the last four rows, as they are always trivial.
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It is easy to see that

ker (M) = span




n1
c

0

−3β2

2β1 (n2
a + 3ρn2

d)

3n1
c


 (7.12)

Thus we find that the following combination of U (1) gauge fields remains massless

Q = n1
c (Qa + 3Qd)−

3β2

2β1

(
n2
a + 3ρn2

d

)
Qc (7.13)

Thus we obtain the correct hypercharge (up to rescaling) if we require

n1
c =

β2

2β1

(
n2
a + 3ρn2

d

)
(7.14)

Consequently we can now justify to identify Qx with the Standard Model hyper-
charge.
The three remaining, linearly independent U (1) combinations obtain masses of the
string-scale. Therefore they correspond to perturbative global symmetries in the
four-dimensional low energy effective theory [7].
Note that the massive U (1) gauge bosons Qa, Qb and Qd have the following inter-
pretations (c.f. Table 7.2).

• Qa corresponds to the baryon number.

• Qd corresponds to the lepton number.

• Qb is a Peccei-Quinn type U (1) symmetry.

So the proton is stable in this class of models.

7.3. Massive States

7.3.1. Tachyons

In the ab-sector as well as the a′b-sector massive bosonic and fermionic excitations
exist. The lightest bosonic excitations in the ab-sector are listed in Table 2.1.
As their mass depends on the intersection angles, it is possible that tachyons appear
in the NS-sector. This would render the model unstable. However it has been pointed
out in [21] that this class of non-supersymmetric models contains models, in which
the intersection angles are such that no tachyons appear and the model is stabilized at
this stage. For further details we refer the interested reader to the original literature
[21].
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Higgs Doublets Representation Qb Qc QY

hU (1, 2, 1) 1 -1 1
2

hD
(
1, 2, 1

)
-1 1 −1

2

HU

(
1, 2, 1

)
-1 -1 1

2

HD (1, 2, 1) 1 1 −1
2

Table 7.5.: Higgs doublets in the class of non-supersymmetric models first published
in [21].

7.3.2. Massive Particles Beyond the Standard Model

In the ab-sector, the ab′-sector and the aa-sector further massive states appear as
higher excitations. We discussed these excitations and their masses in chapter 2.
In addition to these massive excitations one also obtains winding states and KK-
states in the aa-sector, owing their existence to toroidal compactification. This was
discussed in section 3.5.
For certain models the winding states and/or the KK-states can be lighter than
the lightest massive excitations in the aa-sector, ab-sector and ab′-sector. In that
case these winding states and/or KK-states would be the first particles beyond the
Standard model to be observed at accelerators. More details on the appearance of
these particles in the current class of non-supersymmetric models can be found in
the original literature [21].

7.4. Higgs Doublets

7.4.1. Location And Quantum Numbers

The properties of the Higgs doublets are listed in Table 1.2. It is possible to realize
such states in this class of non-supersymmetric model, as strings in the bc-sector and
bc′-sector. These states are listed in Table 7.5 and are also indicated in Figure 7.1.

7.4.2. Mass For Higgs Particles

We give a schematic picture for the hU and hD strings in Figure 7.2 - they stretch
between the branes b and c that are parallel in the second torus. With Equation 2.26
it is easy to write down the mass for the lightest bosonic excitations in the bc-sector,
kept by the GSO projection. We list these states in Table 7.6. The masses for the
other Higgs fields are obtained similarly. For further convenience we define

m2
H± =

Z2
bc′

4π2α′
± 1

2α′

(∣∣∣ϑ1
bc′

∣∣∣− ∣∣∣ϑ3
bc′

∣∣∣) := m2
H ±m2

B

m2
h± =

Z2
bc

4π2α′
± 1

2α′

(∣∣∣ϑ1
bc

∣∣∣− ∣∣∣ϑ3
bc

∣∣∣) := m2
h ±m2

b

(7.15)
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y1

x1

θ1
bc

y2

x2

Zbc
2

y3

x3

θ3
bc

Figure 7.2.: Schematic picture for strings stretching between the branes b (red) and
c (green) in the class of non-supersymmetric models first published in [21]. For
simplicity we have chosen the first two tori to be rectangular. For the same reason
we have aligned brane b (red) with the xI axis.

Excitation α′Mass2 Bosonic Notation

b1
−( 1

2
−ϑ1

cb)
|0〉NS

Zcb
2

4π2 + 1
2

(|ϑ3
cb| − |ϑ1

cb|) (−1 + ϑ1
bc, 0, ϑ

3
bc)

b6,7

− 1
2

|0〉NS
Zcb
2

4π2 + 1
2

(|ϑ1
cb|+ |ϑ3

cb)| (ϑ1
bc,−1, ϑ3

bc)

b3
−( 1

2
−ϑ3

cb)
|0〉NS

Zcb
2

4π2 + 1
2

(|ϑ1
cb| − |ϑ3

cb|) (ϑ1
bc, 0,−1 + ϑ3

bc)

Table 7.6.: Lightest bosonic excitations in the bc-sector of the non-supersymmetric
models first published in [21]. Note that this sector contains the hU field.

7.4.3. Higgs Potential And Electroweak Symmetry Breaking

As was pointed out in [22], the scalar spectrum outlined in the previous subsection
can be understood as arising from a mass term in the effective potential of the form

V = m2
H+

(
H+

)?
H+ +m2

H−

(
H−

)?
H− +m2

h+

(
h+
)?
h+ +m2

h−

(
h−
)?
h−

= (H?
U , HD)M2

(
HU

H?
D

)
+ (h?U , hD)m2 ·

(
hU
h?D

)
+ h.c.

(7.16)

where the mass2 matrices M2 and m2 are given by

M2 =

(
m2
H m2

B

m2
B m2

H

)
, m2 =

(
m2
h m2

b

m2
b m2

h

)
(7.17)

and we defined
H± =

1

2
(H?

U ±HD) , h± =
1

2
(h?U ± hD) (7.18)
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The mass terms mH and mh depend von Zbc
2 and Zbc′

2 . For that reason these terms
can be made arbitarily small in comparision with the string scale Ms. This however
is not true for m2

B and m2
b . The reason for this is that the masses of all sleptons and

squarks in this class of models depend on six intersection angles only [22] [21]. For
that reason lowering m2

B or m2
b implies lowering the mass of at least one slepton or

squark. But for the latter two, there are experimental bounds. So it is not possible
to lower m2

B and m2
b to arbitrarly small values compared to the strings scale Ms.

Finally let us highlight that for m2
H ' m2

B (or m2
h ' m2

b), scalar flat directions
along the vacuum expectation values 〈HU〉 = 〈HD〉 (or 〈hU〉 = 〈hD〉) arise [22]. In
particular this may tripper electroweak symmetry breaking at scales well below the
string scale. The latter requires Ms = 1− fewTeV [21].

7.4.4. Multiplicity Of Higgs Doublets

HU and HD are given by strings stretching between brane b and brane c (see Fig-
ure 7.2). Therefore their multiplicity is given by the topological intersection number
of the branes b and c in the first and third torus. Similarly the multiplicities for the
hU and hD fields are obtained and one readily verifies

nh = β1 ·
∣∣∣3ρn1

b + n1
c

∣∣∣ , nH = β1 ·
∣∣∣3ρn1

b − n1
c

∣∣∣ (7.19)

Minimal Higgs System

From the previous subsection we learn that the minimal number of Higgs doublets
is obtained if

(nh = 0, nH = 1) ∨ (nh = 1, nH = 0) (7.20)

Let us discuss the first case in detail, i.e. we must satisfy

β1 ·
∣∣∣3ρn1

b + n1
c

∣∣∣ = 0, β1 ·
∣∣∣3ρn1

b − n1
c

∣∣∣ = 1 (7.21)

From the first condition we conclude 3ρn1
b = −n1

c . This allows to rewrite the second
condition as 2β1 |n1

c | = 1. But note that n1
c ∈ Z. Consequently this equation can

only be satisfied for β1 = 1
2
and nc = ±1.

These deducations allow to rewrite nh = 0 as 3ρn1
b = ∓1. Since n1

b ∈ Z this implies
ρ = 1

3
and n1

b = ∓1. Finally recall that we need

n1
c =

β2

2β1

(
n2
a + 3ρn2

d

)
(7.22)

to obtain the correct hypercharge in this class of models. By using the above results
this condition gives

n2
d = ± 1

β2
− n2

a (7.23)

The consideration nh = 1 and nH = 0 gives similar results. We summarize all these
results in the upper half of Table 7.7.
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Multiplicites ρ β1 β2 n2
a n1

b n1
c n2

d Nh

nH nh

1 0 1
3

1
2

β2 n2
a ±1 ∓1 ± 1

β2 − n2
a 4β2 (1− n2

a)

0 1 1
3

1
2

β2 n2
a ±1 ±1 ± 1

β2 − n2
a 4β2 (1− n2

a)− 1

1 1 1 1 β2 n2
a 0 ±1 1

3

(
± 2
β2 − n2

a

)
β2
(
8− 4n2

a

3

)
∓ 1

3

1 1 1
3

1
2

β2 n2
a 0 ±1 ± 2

β2 − n2
a β2 (8− 4n2

a)∓ 1

Table 7.7.: The class of non-supersymmetric models first published in [21] contains
models with one or two Higgs doublets. The models with minimal Higgs system are
displayed in the upper half of this table, the ones with double Higgs system are listed
in the lower half. The last column states the number of hidden branes that is needed
to satisfy the R-R tadpole constraints in Equation 7.9 [21].

Double Higgs System

Similarly one can have n1
H = n2

H = 1. Then one finds four models which allow for
this double Higgs system. We list the details of these models in the lower half of
Table 7.7.

7.5. Yukawa Couplings

We list the possible Yukawa couplings among the Standard Model matter particles
and the different Higgs doublets in Table 7.8.
Note that there are couplings with Qb = 0 and such with Qb 6= 0. Recall that Qb

became massive and therefore corresponds to a perturbative symmetry (of Peccei-
Quinn type) in the low-energy effective theory. So only couplings with Qb = 0 are
possible. 3

Note that in general the three interacting particles are located at different intersecting
points. Therefore their interaction will be governed by a worldsheets, which has the
form of a triangle in each of the three two-tori. Let AI denote the area of this
worldsheet in the I-th two-torus, then it holds [21] [7]

Y ∼ exp
(
−A1

)
· exp

(
−A2

)
· exp

(
−A3

)
(7.24)

This exponential behaviour can then account for the Hierarchy problem related to
the masses of the Standard Model matter particles.

3However it has been pointed out in [21] that the strong force will break the U (1)b symmetry.
After that also the couplings in the lower half of Table 7.8 are possible.
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Fermion 1 Fermion 2 Higgs Doublet Yukawa Coupling
∑
QY

∑
Qb

Q 1
6

U c,j −2
3

hU
1
2

yUj 0 0
Q 1

6
Dc,j 1

3
HD −1

2
yDj 0 0

qi 1
6

U c,j −2
3

HU
1
2

yUij 0 0
qi 1

6
Dc,j 1

3
hD −1

2
yDij 0 0

Lj −1
2

Ec,k 1 HD −1
2

yLjk 0 0
Lj −1

2
N c,k 0 hU

1
2

yNjk 0 0
Q 1

6
U c,j −2

3
HU

1
2

yUj 0 -2
Q 1

6
Dc,j 1

3
hD −1

2
yDj 0 -2

qi 1
6

U c,j −2
3

hU
1
2

yUij 0 2
qi 1

6
Dc,j 1

3
HD −1

2
yDij 0 2

Lj −1
2

Ec,k 1 hD −1
2

yLjk 0 -2
Lj −1

2
N c,k 0 HU

1
2

yNjk 0 -2

Table 7.8.: Possible Yukawa couplings in the class of non-supersymmetric models first
published in [21]. Note that i = 1, 2 whilst j, k = 1, 2, 3.

7.6. Summary

In section 7.1 we discussed general properties of this model. The most important
conclusion from ths section is the brane picture given in Figure 7.1, which gives an
intuitive picture of the situation.
We then moved on to discuss the massless spectrum and the U (1) gauge bosons in
section 7.2. In particular we discussed the massless fermionic spectrum, which is
given in Table 7.2 and pointed out that it is in one-to-one correspondance with the
matter particles of the Standard Model. The discussion of U (1) gauge bosons finally
showed that for

n1
c =

β2

2β1

(
n2
a + 3ρn2

d

)
(7.25)

one obtains the Standard Model hypercharge and three massive U (1) gauge bosons.
The latter three then give rise to perturbative symmetries in the low-energy effec-
tive theory, corresponding to conservation of lepton and baryon number and also a
Peccei-Quinn type symmetry. In particular note that therefore the proton is stable
in this class of models.
Subsequently we considered light massive excitations in section 7.3. In particular we
considered the appearance of tachyons. The corresponding discussion in [21] showed
that one can choose the intersection angles in this class of models such, that no
tachyons appear, and the corresponding models are stabilized at this stage. Note
however that non-supersymmetric models in general suffer from uncanceled NS-NS
tadpoles. This lack will be overcome when building supersymmetric models and im-
posing cancelation of R-R tadpoles [7]. Therefore we will discuss supersymmetric
models during the next part.
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Of high phenomenological interest is the possibility to embed Higgs doublets in this
class of models. The appearance, mass and multiplicity of these particles were dis-
cussed in section 7.4. Thereby we found that models with minimal or double Higgs
system can be obtained. We list the details of these models in Table 7.7 4. In partic-
ular note that for models with 〈HU〉 = 〈HD〉 (or 〈hD〉 = 〈hU〉), scalar flat direction
appear in the Higgs potential and may then trigger electroweak symmetry breaking
at scales well below the string scale. [22]
Finally we briefly discussed the Yukawa couplings in section 7.5. As long as the
Peccei-Quinn like U (1)b symmetry remains unbroken only the couplings in the up-
per half of Table 7.8 are possible. This has phenomenological impact when discussing
mass generation for the Standard Model matter particles. Note in particular that

Y ∼ exp
(
A1
)
· exp

(
A2
)
· exp

(
A3
)

(7.26)

This exponential dependence can then be used to solve the Hirarchy problem for
the masses of the Standard Model matter particles. For a detailed discussion on the
masses of the matter particles in the context of minimal and double Higgs systems,
we refer the interested reader to the original literature [21] and also [22]. In these two
references also a discussion of the gauge couplings can be found. For completeless let
us therefore only state that the gauge couplings are given by

α−1
QCD :=

4π

g2
a

=
Ms

πλII
· |πa|

α−1
W :=

4π

gba
=

Ms

πλII
· |πb|

α−1
Y =

Ms

πλII
·
(
|πa|
6

+
|πc|
2

+
|πd|
2

) (7.27)

where for the brane πa its length is given by

|πa|2 =
3∏
I=1

((
nIaR

I
x

)2
+
(
m̃I
aR

I
y

)2
)

(7.28)

So not only the Yukawa couplings and the masses for the Higgs particles, but also
the gauge couplings have an interpretation in geometric terms of the intersecting
D6-brane model.

4Note in particular that the condition to obtain the correct Standard Model hypercharge was
implemented in the derivation of these models.
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8. Orientifold And Constraints

8.1. The Need For A New Background

In the previous part we discussed a class of non-supersymmetric models. Built on

M = T 2 × T 2 × T 2 (8.1)

this class of models was derived in [21] under the constraint to obtain a massless
fermionic spectrum in one-to-one correspondance to the Standard Model matter par-
ticles. We pointed out in subsection 7.1.3, that this class of models is never super-
symmetric. So its stability will in general suffer from uncanceled NS-NS tadpoles.
Stable models, in which both R-R and NS-NS tadpoles are canceled, can be achieved
by building supersymmetric models and imposing R-R tadpole cancelation [7]. There-
fore we want to focus on supersymmetric models, in which the massless fermionic
spectrum is as close as possible to the Standard Model matter particles. As just
noted, on the M orbifold models with massless fermionic spectrum in one-to-one
correspondance with the Standard Model matter particles will in general not be
supersymmetric. Therefore it is natural to consider a different orbifold to built su-
persymmetric models on. In the following we will therefore consider the orbifold

O =
(
T 2 × T 2 × T 2

)
/ (Z2 × Z2) (8.2)

8.2. Structure OfM
The structure ofM was already discussed in chapter 3. Let us therefore only briefly
revisit this topic.

• On each T 2 we use coordinates xI and yI , which we use to define a complex
coordinate zI = xI + iyI . The involution σ is then chosen such that (in local
patches)

σ
(
zI
)

= zI (8.3)

• 3-cycles onM are described by

πa =
3∏
I=1

(
nIa
[
aI
]

+ m̃I
a

[
bI
])

(8.4)
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where nIa, mI
a are integers, m̃I

a = mI
a + bInIa and bI is the NS background field

given by

bI =

0 rectangular torus
1
2

tilted torus
(8.5)

A brane with wrapping numbers (1, 1)× (2, 1)× (1, 1) on three rectangular tori
is displayed in Figure 3.1.

• The topological intersection numbers between the fundamental 1-cycles on rect-
angular tori are defined as[

aI
]
◦
[
bJ
]

= −
[
bI
]
◦
[
aJ
]

= δIJ ,
[
aI
]
◦
[
aJ
]

=
[
bI
]
◦
[
bJ
]

= 0 (8.6)

This implies that for two 3-cycles πa and πb one has

πa ◦ πb =
3∏
I=1

(
nIam̃

I
b − nIbm̃I

a

)
(8.7)

8.3. Structure Of O
Let us now divideM = T 2 × T 2 × T 2 by Z2 × Z2 to obtain the orbifold

O =M/ (Z2 × Z2) (8.8)

To this end we implement the group Z2 × Z2 = {id,Θ,Θ′,ΘΘ′} onM by [7]

Θ

 z1

z2

z3

 =

 −z1

−z2

z3

 , Θ′

 z1

z2

z3

 =

 z1

−z2

−z3

 (8.9)

8.3.1. Bulk Cycles On O
Given a cycle πa onM, we make the following identifications in O

πa ∼ Θ (πa) ∼ Θ′ (πa) ∼ ΘΘ′ (πa) (8.10)

Consequently the associated bulk state in the orbifold O is given by

πBa = πa + Θ (πa) + Θ′ (πa) + ΘΘ′ (πa) (8.11)

But note that

Θ (πa) = Θ

(
3∏
I=1

(
nIa
[
aI
]

+ m̃I
a

[
bI
]))

=
2∏
I=1

(
−nIa

[
aI
]
− m̃I

a

[
bI
])
×
(
n3
a

[
a3
]

+m3
a

[
b3
])

=
3∏
I=1

(
nIa
[
aI
]

+ m̃I
a

[
bI
])

= πa

(8.12)
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By similar arguments one can show that 3-cycles πa onM are also invariant under
Θ′ as well as ΘΘ′. Consequently we find πBa = 4 · πa.

8.3.2. Fundamental Cycles On O
We will have to carefully distinguish cycles on M and cycles on O. Therefore we
agree on the following notation.

• πta is a 3-cycle onM = T 2 × T 2 × T 2.

• πoa is a 3-cycle on O =M/ (Z2 × Z2).

The topological intersection number of cycles πoa in O is given by 1

πoa ◦o πob =
1

4

(
4πta ◦t 4πtb

)
= 4πta ◦t πtb (8.14)

On a rectangular torus the 1-cycles
[
aI,t

]
and

[
bI,t
]
are fundamental cycles in the

sense that they intersect at most once and span the homology group. However the
associated bulk cycles 4

[
aI,t

]
and 4

[
bI,t
]
do intersect up to 4 times. Consequently

they are not fundamental cycles. Instead let us consider the following 1-cycles[
aI,o

]
:= 2

[
aI,t

]
,

[
bI,o

]
:= 2

[
bI,t
]

(8.15)

Their intersection numbers are[
aI,o

]
◦o
[
bI,o

]
=

1

4

(
2
[
aI,t

]
◦t 2

[
bI,t
])

=
[
aI,t

]
◦t
[
bI,t
]

(8.16)

Therefore we use
[
aI,o

]
and

[
bI,o

]
as fundamental 1-cycles on O.

8.4. The Orientifold Plane
The final theory will be built on the orientifold

O = O/ (σ × Ω) (8.17)

Mathematically O is made of equivalence classes. Considering these equivalence
classes does not allow for an intuitive picture of the situation. Therefore we pre-
fer to work with the picture of O that we obtained in the previous section. Then,
however, we have to consider intersecting D6-brane setups that are invariant under

1The group Z2 × Z2 identifies points inM as

(z1, z2, z3) ∼ Θ (z1, z2, z3) ∼ Θ′ (z1, z2, z3) ∼ ΘΘ′ (z1, z2, z3) (8.13)

to form O. So four distinct points inM become a single point in O. Therefore we have to divide
the topological intersection number inM by 4 to obtain the one in O [7].
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σ. This is easily arranged by including the image brane π′a = σ (πa) for each brane πa
in the setup. Furthermore we have to consider the orientifold plane, which is given
by the fixpoint locus under σ.
To obtain this fixpoint locus we go back toM and calculate the fixpoint locus under
σ × Z2 × Z2 in terms of 3-cycles on M. Subsequently we convert these 3-cycles on
M into a 3-cycles on O, by the conversions outlined in the previous subsection.

8.4.1. Fixpoints Under σ

As discussed in the context of the non-supersymmetric models, the fixpoint locus
under this operation is given by 2

πta,σ = 8
[
a1,t

] [
a2,t

] [
a3,t

]
(8.18)

8.4.2. Fixpoints Under σ ×Θ

It holds

(σ ×Θ)

 z1

z2

z3

 = σ

 −z1

−z2

z3

 =

 −z1

−z2

z3

 =

 −< (z1) + i= (z1)
−< (z2) + i= (z2)
< (z3)− i= (z3)

 (8.19)

Thus if applied to a general 3-cycle πta with

πta =
3∏
I=1

(
nIa
[
aI
]

+ m̃I
a

[
bI
])

(8.20)

we obtain

(σ ×Θ)
(
πta
)

=
(
−n1,t

a

[
a1,t

]
+ m̃1,t

a

[
b1,t
])
·
(
−n2,t

a

[
a2,t

]
+ m̃2,t

a

[
b2,t
])

×
(
n3,t
a

[
a3,t

]
− m̃3,t

a

[
b3,t
]) (8.21)

So if we enforce invariance of the three 1-cycles, we find that πta has to satisfy 3

πta =
(
m1,t
a

[
b1,t
])
·
(
m2,t
a

[
b2,t
])
·
(
n3,t
a

[
a3,t

])
(8.22)

At this point it becomes important to differ rectangular and tilted tori.

• On a rectangular torus there are two 1-cycles that are both parallel to
[
bI
]
and

invariant under σ ×Θ.

• On a tilted torus there exists only a single such 1-cycle.

This is outlined in Figure 8.1. Consequently we find

πta,σ×Θ =
8

22b1 · 22b2
·
[
b1,t
] [
b2,t
] [
a3,t

]
(8.23)

2For more details see subsection 5.2.3.
3Vanishing nIa implies m̃I

a = mI
a + bInIa = mI

a.
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yI

xI

(a) Rectangular torus.

yI

xI

(b) Tilted torus.

Figure 8.1.: On both rectangular and tilted tori there is a 1-cycle which is placed on
top of the yI axis. This 1-cycle is both invariant under σ × Ω and parallel to

[
bI
]
.

In addition to this 1-cycle there exists a second 1-cycle on rectangular tori, which
satisfies these criteria. This 1-cycle is displayed in red in figure 8.1a. The anaologue
of this red 1-cycle on a tilted torus is displayed in figure 8.1b. It is not invariant,
because the image cycle (dashed in red) must be identified along the dotted lines
in a tilted torus. From this identification it becomes evident that image cycle and
original cycle differ.

8.4.3. Fixpoints Under σ ×Θ′ And σ ×ΘΘ′

By similar arguments one finds

πta,σ×Θ′ =
8

22b2 · 22b3

[
a1,t

] [
b2,t
] [
b3,t
]

πta,σ×Θ×Θ′ =
8

22b1 · 22b3

[
b1,t
] [
a2,t

] [
b3,t
] (8.24)

8.4.4. The Complete Orientifold Plane

An explicit calculation shows that πta,σ, πta,σ×Θ, πta,σ×Θ′ and πta,σ×Θ×Θ′ are invariant
under all operations in σ×Z2×Z2. Therefore their sum forms the orientifold plane.
Recall however that we wish to built a supersymmetric model. For that reason we
choose the orientifold plane such that

3∑
I=1

ΘI
a = 0 mod 2π (8.25)

Baring this in mind and converting the above 3-cycles onM into 3-cycles on O one
finds

πoO6 = 4
[
a1,o

] [
a2,o

] [
a3,o

]
− 4

22b1 · 22b2

[
b1,o

] [
b2,o

] [
a3,o

]
− 4

22b1 · 22b3

[
b1,o

] [
a2,o

] [
b3,o

]
− 4

22b2 · 22b3

[
a1,o

] [
b2,o

] [
b3,o

] (8.26)
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8.5. Massless Fermionic Spectrum

The massless fermionic spectrum is important to us, as this is where the matter
particles of the Standard Model can appear. This spectrum was derived in [13]
and organizes in the same way, as the spectrum for the models on the M/ (σ × Ω)
orientifold does. The latter is listed in Table 5.1 and is easily converted into the
spectrum of models on the O/ (σ × Ω) orientifold by the minor adjustment πa → πoa
4.
Let us emphasize that in contrast to [13] we use the convention of [7]. This means
that N coincident branes which are not invariant under σ carry U (N) gauge group.
Invariant brane stacks of N coincident branes carry USp (2N,C) gauge group. Note
in particular that the latter is a specification on our orientifold projection. It goes
back to the original literature [13], where it was pointed out that such a projection
is possible.

8.6. R-R Tadpole Cancelation

To obtain the R-R tadpole constraints one starts off by considering the Chern-Simon
action. This analysis works on O in precisely the same way as it does on M. The
analysis on the latter was already discussed in section 5.4 and yields

0 =
∑
a

Na (πoa + πo′a )− 4πoO6 (8.27)

By using Equation 8.26 one can rewrite this constraint in terms of the wrapping
numbers of an intersecting D6-brane model. One obtains

8 =
∑
a

Na

3∏
I=1

nI,oa

8 = −22bJ 22bK
∑
a

(
Nan

I,o
a m̃J,o

a m̃K,o
a

)
, I 6= J 6= K 6= I

(8.28)

8.7. K-Theory Constraints

Recall that the Ramond C(7) charges are actually classified by K-theory groups rather
than homology groups. Therefore there exist torsion K-theory charges that are in-
visible to homology but still need cancelation.
As discussed in section 5.5, heuristically we can ensure this cancelation by enforc-
ing an even number of fundamental representations of USp (2,C). By our choice of

4It should be highlighted that the authors of [13] conventionally use an orientifold plane that is
normalized differently than ours, given in Equation 8.26. Therefore in [13] a factor 4

2k
appears

in the multiplicity of the symmetric and antisymmetric representations, where k is the number
of tilted tori. Let us also highlight that our choice for the orientifold plane is in agreement with
[7].
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orientifolding, every brane stack that is invariant under σ carries USp (2N,C) gauge
group. So the probe branes with USp (2,C) gauge group are 5

πUSp
1 := 22b122b222b3 · (1, 0)× (1, 0)× (1, 0)

πUSp
2 := 22b1 · (1, 0)× (0, 1)× (0, 1)

πUSp
3 := 22b2 · (0, 1)× (1, 0)× (0, 1)

πUSp
4 := 22b3 · (0, 1)× (0, 1)× (1, 0)

(8.29)

They give rise to the following K-theory constraints.

22b122b222b3
∑
a

(
Nam̃

1,o
a m̃2,o

a m̃3,o
a

)
∈ 2Z

22bI
∑
a

(
Nam̃

I,o
a nJ,oa nK,oa

)
∈ 2Z, I 6= J 6= K 6= I

(8.30)

5Recall again that the number of invariant 1-cycles may differ on tilted and rectangular tori. This
is outlined in Figure 8.1 and is accounted for by including the prefactors 22b

I

.
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9. Supersymmetric Three Family
Model

We will now discuss a three family supersymmetric model. This model is build on
the orientifold

O = O/ (σ × Ω) , O =M/ (Z2 × Z2) (9.1)

with the third torus tilted. It was first published in [13]. 1

9.1. General Features Of The Setup

9.1.1. The Branes

The branes that form this particular intersecting D6-brane model are listed in Ta-
ble 9.1. Also the image branes are listed in this table. The orientifold plane is easily
obtained from Equation 8.26. For b1 = b2 = 0 and b3 = 1

2
one finds

πoO6 = 4
3∏
i=1

[
ai,o

]
− 2

[
a1,o

] [
b2,o

] [
b3,o

]
− 2

[
a2,o

] [
b1,o

] [
b3,o

]
− 4

[
a3,o

] [
b1,o

] [
b2,o

]
(9.2)

9.1.2. Intersection Numbers And Brane Picture

From the wrapping numbers given in Table 9.1 one can work out the intersection
numbers. Their absolute value is given in the brane picture displayed in Figure 9.1.
Note especially that the following convention is in use.

• Iab < 0, then left-handed, massless fermions stretch from b to a.

• Iab > 0, then left-handed, massless fermions stretch from a to b.

Finally let us point out that the brane stack A2 is a ’hidden’ brane stack. 2

1Even though the authors of [13] term this particular model a three family model (and we therefore
adopt this terminology), it will turn out that there are only two generations of right-handed
matter particles.

2More information can be found in section 7.1.4.
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Brane Na (n1
a,m

1
a)× (n2

a,m
2
a)× (n3

a, m̃
3
a) Gauge group U (1)

A1 4 (0, 1)× (0,−1)×
(
2, 0̃

)
U (1)× U (1) Q8, Q′8

A′1 4 (0,−1)× (0, 1)×
(
2, 0̃

)
A2 1 (1, 0)× (1, 0)×

(
2, 0̃

)
USp (2,C)A

A′2 1 (1, 0)× (1, 0)×
(
2, 0̃

)
B1 2 (1, 0)× (1,−1)×

(
1, 3̃

2

)
SU (2)× U (1) Q2

B′1 2 (1, 0)× (1, 1)×
(

1, −̃3
2

)
B2 1 (1, 0)× (0, 1)×

(
0, −̃1

)
USp (2,C)B

B′2 1 (1, 0)× (0,−1)×
(
0, 1̃

)
C1 3+1 (1, 1)× (1, 0)×

(
1, 1̃

2

)
SU (3)× U (1)× U (1) Q3, Q1

C ′1 3+1 (1, 1)× (1, 0)×
(

1, −̃1
2

)
C2 2 (0, 1)× (1, 0)×

(
0, −̃1

)
USp (4,C)

C ′2 2 (0,−1)× (1, 0)×
(
0, 1̃

)

Table 9.1.: The branes, their image branes and the associated gauge groups in the
three family supersymmetric setup first published in [13]. In the third column we
introduce the notion for the U (1) gauge bosons.

9.1.3. Check Of The Various Constraints

As this is a supersymmetric model, it has to satisfy three sets of constraints.

• The supersymmetry constraint.

• The R-R tadpole constraints.

• The K-theory constraints.

It is not difficult to verify that all these constraints are satisfied by this model.
Therefore we skip an in-detail analysis, but encourage the interested reader to perform
these checks explicitely.

9.2. Massless Spectrum And U(1) Gauge Bosons

9.2.1. Gauge Groups

The gauge groups on the various branes in this setup are listed in Table 9.1. Note
that a priori the brane stack A1 is invariant under σ and would therefore carry a
USp (8) gauge group. However it is neater to split A1 into four individual branes and
to move two of them away from the orientifold plane. The position of the remaining
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C2

C ′2

B1 B′1

A1

A′1

C ′1

C1

B2

B′2

A2 A′2

1

3

3

1

1

3

3

1

1

1

1

1

1

2

2

1

1

1

1

1

Figure 9.1.: Brane setup of the supersymmetric three family model first published
in [13]. Arrows along arcs indicate the orientation of the open strings stretching
between the corresponding branes and giving rise to left-handed fermions. Shadows
indicate image particles.

two branes is then fixed by the requirement that the overall situation is invariant
under σ. In particular the gauge group along A1 is reduced to U (1)×U (1). Thereby
we obtain additional U (1) gauge bosons that will be used to built the Standard
Model hypercharge.
In principle this technique could also be applied to C2, but the authors of [13] prefered
not to do this. Note also that it is not possible to do this with B2 or A2, as the latter
two are fractional branes.

9.2.2. Massless Fermionic Spectrum

We define 3

Qx :=
1

6
Q3 −

1

2
Q1 +

1

2
(Q8 +Q′8) (9.3)

3This combination of U (1) gauge fields will turn out to be the hypercharge in this intersecting
D6-brane model. However it is too early to claim this as we need to analyse the masses and
anomalies of the various U (1) gauge bosons in the model. Therefore we use the index x until
we performed this analysis.
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Sector Chirality Representation (Q3, Q1, Q2, Q8, Q
′
8) Qx Q8 −Q′8 Field

A1B1 L 3×
(
1, 2, 1, 1, 1

)
(0, 0,−1, 1, 0) 1

2
1

R 3× (1, 2, 1, 1, 1) (0, 0, 1,−1, 0) −1
2

−1

L 3×
(
1, 2, 1, 1, 1

)
(0, 0,−1, 0, 1) 1

2
−1

R 3× (1, 2, 1, 1, 1) (0, 0, 1, 0,−1) −1
2

1

A1B
′
1 L 3×

(
1, 2, 1, 1, 1

)
(0, 0,−1,−1, 0) −1

2
−1

R 3× (1, 2, 1, 1, 1) (0, 0, 1, 1, 0) 1
2

1

L 3×
(
1, 2, 1, 1, 1

)
(0, 0,−1, 0,−1) −1

2
1

R 3× (1, 2, 1, 1, 1) (0, 0, 1, 0, 1) 1
2

−1

A1C1 L 1×
(
3, 1, 1, 1, 1

)
(−1, 0, 0, 1, 0) 1

3
1 Dc

R 1× (3, 1, 1, 1, 1) (1, 0, 0,−1, 0) −1
3

-1 D

L 1×
(
3, 1, 1, 1, 1

)
(−1, 0, 0, 0, 1) 1

3
-1 Dc

R 1× (3, 1, 1, 1, 1) (1, 0, 0, 0,−1) −1
3

1 D

L 1×
(
1, 1, 1, 1, 1

)
(0,−1, 0, 1, 0) 1 1 Ec

R 1× (1, 1, 1, 1, 1) (0, 1, 0,−1, 0) -1 -1 E

L 1×
(
1, 1, 1, 1, 1

)
(0,−1, 0, 0, 1) 1 -1 Ec

R 1× (1, 1, 1, 1, 1) (0, 1, 0, 0,−1) -1 1 E

A1C
′
1 L 1×

(
3, 1, 1, 1, 1

)
(−1, 0, 0,−1, 0) −2

3
−1 U c

R 1× (3, 1, 1, 1, 1) (1, 0, 0, 1, 0) 2
3

1 U

L 1×
(
3, 1, 1, 1, 1

)
(−1, 0, 0, 0,−1) −2

3
1 U c

R 1× (3, 1, 1, 1, 1) (1, 0, 0, 0, 1) 2
3

−1 U

L 1×
(
1, 1, 1, 1, 1

)
(0,−1, 0,−1, 0) 0 −1 N c

R 1× (1, 1, 1, 1, 1) (0, 1, 0, 1, 0) 0 1 N

L 1×
(
1, 1, 1, 1, 1

)
(0,−1, 0, 0,−1) 0 1 N c

R 1× (1, 1, 1, 1, 1) (0, 1, 0, 0, 1) 0 −1 N

B1C1 L 1×
(
3, 2, 1, 1, 1

)
(1, 0,−1, 0, 0) 1

6
0 Q

R 1×
(
3, 2, 1, 1, 1

)
(−1, 0, 1, 0, 0) −1

6
0 Qc

L 1×
(
1, 2, 1, 1, 1

)
(0, 1,−1, 0, 0) −1

2
0 L

R 1×
(
1, 2, 1, 1, 1

)
(0,−1, 1, 0, 0) 1

2
0 Lc

B1C
′
1 L 2× (3, 2, 1, 1, 1) (1, 0, 1, 0, 0) 1

6
0 Q

R 2×
(
3, 2, 1, 1, 1

)
(−1, 0,−1, 0, 0) −1

6
0 Qc

L 2× (1, 2, 1, 1, 1) (0, 1, 1, 0, 0) −1
2

0 L

R 2×
(
1, 2, 1, 1, 1

)
(0,−1,−1, 0, 0) 1

2
0 Lc

B1C2 L 1×
(
1, 2, 1, 1, 4

)
(0, 0, 1, 0, 0) 0 0

R 1×
(
1, 2, 1, 1, 4

)
(0, 0,−1, 0, 0) 0 0

B1C
′
2 L 1× (1, 2, 1, 1, 4) (0, 0, 1, 0, 0) 0 0

R 1×
(
1, 2, 1, 1, 4

)
(0, 0,−1, 0, 0) 0 0
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Sector Chirality Representation (Q3, Q1, Q2, Q8, Q
′
8) Qx Q8 −Q′8 Field

B2C1 L 1×
(
3, 1, 1, 2, 1

)
(−1, 0, 0, 0, 0) −1

6
0

R 1×
(
3, 1, 1, 2, 1

)
(1, 0, 0, 0, 0) 1

6
0

L 1× (1, 1, 1, 2, 1) (0,−1, 0, 0, 0) 1
2

0
R 1×

(
1, 1, 1, 2, 1

)
(0, 1, 0, 0, 0) −1

2
0

B2C
′
1 L 1× (3, 1, 1, 2, 1) (1, 0, 0, 0, 0) 1

6
0

R 1×
(
3, 1, 1, 2, 1

)
(−1, 0, 0, 0, 0) −1

6
0

L 1× (1, 1, 1, 2, 1) (0, 1, 0, 0, 0) −1
2

0
R 1×

(
1, 1, 1, 2, 1

)
(0,−1, 0, 0, 0) 1

2
0

Table 9.2.: The massless fermionic spectrum in the three family supersymmetric
model first published in [13]. The representations are written as SU (3)C×SU (2)W×
USp (2,C)A × USp (2,C)B × USp (4,C).

This U (1) charge together with the massless fermionic spectrum are displayed in
Table 9.2.
Note that one obtains three families of left-handed quarks and leptons in the B1C1

and B1C
′
1 sector. But there are only two generations of right-handed matter particles.

These can be found in the A1C1 and A1C
′
1 sector.

The fermions that appear in the A1B1 and A1B
′
1 sector transform in the same way

as Higgs doublets do. They also have the appropriate Qx charge. Therefore we will
eventually identify the lightest bosonic excitations in these two sectors with Higgs
doublets.

9.2.3. Massless Bosonic Spectrum

The massless bosonic excitations arise in the aa-sector. We list those excitations in
Table 9.3. They transform in the adjoint representation of the corresponding gauge
group and therefore correspond to the associated gauge bosons. Consequently the
gluons arise as bosonic excitations in the C1C1 sector, whilstW± and Z gauge bosons
appear in the B1B1 sector.

9.2.4. U(1) Gauge Bosons

Anomalous U(1) Gauge Bosons

The U (1) anomalies are listed in Table 6.2. Baring this in mind one calculates the
U (1) anomalies given in Table 9.4. Thereby we find that Q8, Q′8 and Q3 − 3Q1 are
anomaly free. In particular this implies that Qx is anomaly free.
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Sector U (3)C × U (2)W × USp (2,C)A × USp (2,C)B × USp (4,C) Field
A1A1 3× (1, 1, 1, 1, 1) Q8

3× (1, 1, 1, 1, 1) Q′8
A2A2 3× (1, 1, 3, 1, 1)
B1B1 3× (1, 4, 1, 1, 1) W±, Z, Q2

B2B2 3× (1, 1, 1, 3, 1)
C1C1 3× (9, 1, 1, 1, 1) Gluons, Q3

3× (1, 1, 1, 1, 1) Q1

C2C2 3× (1, 1, 1, 1, 10)

Table 9.3.: Massless bosonic spectrum in the supersymmetric three family model first
published in [13]. Note that these bosons transform in the adjoint representation. In
particular note that we used dimR (USp (2N,C)) = N · (2N + 1) (see Appendix A
for more details on USp (2N,C)).

Masses For Anomalous U(1) Gauge Bosons

Q2 and Q3 + 3Q1 are anomalous U (1) gauge bosons. Therefore we expect them
to aquire masses in the course of anomaly cancelation by means of the generalized
Green-Schwarz mechanism. To check this we calculate M2 by using Equation 6.20.
Thereby one obtains

Q8 Q′8 Q2 Q3 Q1

M2 =


0
0
0
0

0
0
0
0

0
0
−4
6

0
−6
0
3

0
−2
0
1

 (9.4)

This matrix has

ker (M) = span




1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
0
1
−3



 =̂span (Q8, Q
′
8, Q3 − 3Q1) (9.5)

Therefore Q8, Q′8 and Q3−3Q1 remain massless. Note that in particular Qx remains
massless, and we can finally conclude that Qx = QY . But also note that Q2 and
Q3 + 3Q1 obtain masses, as expected.

Physical Significance Of Massive U(1) Gauge Bosons

Massive U (1) gauge bosons serve as perturbative symmetries in the effective four-
dimensional theory [7]. From Table 9.2 one easily concludes
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Q8 Q′8 Q2 Q3 Q1

Aabb A1 0 0 0 0 0
B1 0 0 0 9

2
3
2

C1 0 0 3
2

0 0
Ãabb A1 0 0 -12 -6 -2

B1 0 0 0 18 6
C1 0 0 6 0 0

AaSpSp A2 0 0 0 0 0
B2 0 0 0 3 1
C2 0 0 0 0 0

Aagg 0 0 0 0 0

Table 9.4.: U(1) anomalies of the supersymmetric three family model published in
[13].

• Q3

3
corresponds to the Baryon number.

• Q1 corresponds to the Lepton number.

Since Q3 + 3Q1, or equivalently Q3

3
+ Q1, become massive we have a pertubartive

symmetry corresponding to the conversation of the sum of Baryon and Lepton num-
ber.

9.3. Higgs Sector

9.3.1. Location And Quantum Numbers

Recall the properties of the Higgs doublets as listed in Table 1.2. Such particles
appear in the A1B1 and A1B

′
1 sector. We list the corresponding string states in

Table 9.5.

9.3.2. Mass For Higgs Particles

Let us first consider the Higgs particles arising in the A1B1-sector. To this end we
display the branes A1 and B1 in Figure 9.2. Note that these branes are not parallel
in one of the tori. So in comparision to the non-supersymmetric model discussed
in chapter 7, one does not obtain mass terms that depend on a separation ZA1B1

I .
Rather the lightest bosonic excitations in this sector have masses 4

α′M2
A1B1

=
1

2
·
[
1

2
±
(∣∣∣ϑ3

A1B1

∣∣∣− ∣∣∣ϑ2
A1B1

∣∣∣)] (9.6)

4We used ϑ1A1B1
= 1

2 .
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Sector Higgs Doublet Representation Q8 Q′8 Q2 QY

A1B1 HU 3×
(
1, 2, 1, 1, 1

)
1 0 -1 1

2

HD 3× (1, 2, 1, 1, 1) -1 0 1 −1
2

H ′U 3×
(
1, 2, 1, 1, 1

)
0 1 -1 1

2

H ′D 3× (1, 2, 1, 1, 1) 0 -1 1 −1
2

A1B
′
1 H̃D 3×

(
1, 2, 1, 1, 1

)
-1 0 -1 −1

2

H̃U 3× (1, 2, 1, 1, 1) 1 0 1 1
2

H̃ ′D 3×
(
1, 2, 1, 1, 1

)
0 -1 -1 −1

2

H̃ ′U 3× (1, 2, 1, 1, 1) 0 1 1 1
2

Table 9.5.: Higgs doublets in the supersymmetric three family model first published
in [13]. The representations are written as SU (3)C × SU (2)W × USp (2,C)A ×
USp (2,C)B × USp (4,C).

y1

x1

y2

x2

y3

x3

Figure 9.2.: The A1 (red) and B1 (green) branes in the three family supersymmetric
model first published in [13]. For illustrational reasons we have separated the A1

brane from the yI axis in the first two tori.

Similarly one finds for the lightest bosonic excitations in the A1B
′
1 sector

α′M2
A1B′1

=
1

2
·
[
1

2
±
(∣∣∣ϑ3

A1B′1

∣∣∣− ∣∣∣ϑ2
A1B′1

∣∣∣)] (9.7)

9.3.3. Multiplicity Of Higgs Doublets

In the A1B1 sector we find three Higgs doublets HU and three Higgs doublets H ′U .
They only differ in the sense that the former are charged under Q8 and the latter
under Q′8, whilst the associated Higgs particles have the same masses. In this sense
there are six Higgs doublets in the A1B1 sector. The same is true for the A1B′1
sector, where we find another six Higgs doublets. Therefore the total number of
Higgs doublets in this three family supersymmetric model is twelve.
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9.4. Summary
Our discussion of this supersymmetric model proceeded in the same way as the dis-
cussion of the non-supersymmetric model in chapter 7. Again we considered basic
properties of the model in section 9.1 which includes the construction of the brane
picture displayed in Figure 9.1. It allows for an intuitive picture of the entire situa-
tion.
Subsequently we discussed the massless spectrum and the U (1) gauge bosons in sec-
tion 9.2. The massless fermionic spectrum is given in Table 9.2. From it we deduced,
that there are three generations of left-handed quarks and leptons in this model.
However there are only two generations of right-handed up- and down-quarks as well
as right-handed charged and neutral leptons. In this sense one right-handed gener-
ation is missing. Nevertheless we found that there is a massless U (1) gauge boson
that gives the correct Standard Model hypercharge. Also we found that two U (1)
combinations become massive, namely Q2 and Q3

3
+ Q1. The latter has an interpre-

tation as conservation of the sum of lepton and baryon number. This statement is
weaker than individual baryon and lepton number conservation, which we obtained
for the non-supersymmetric model in chapter 7. However conservation of B+L rules
out a number of possible decays for the proton.
We concluded the discussion of this supersymmetric model in section 9.3 where we
pointed out that twelve Higgs doublets appear in this model. We also worked out
their masses. In comparison to the non-supersymmetric model in which only one
or two Higgs doublets appear, the appearance of twelve such doublets makes the
discussion of the possible Yukawa couplings more challenging and lengthy. For this
reason we do not present this analysis here.
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10. Supersymmetric GUT Model
We will now discuss the basic properties of a GUT model that was first published in
[13]. It is built on

O = O/ (σ × Ω) , O =M/ (Z2 × Z2) (10.1)

where the third torus is tilted. So put shortly this model is built on precisely the
same background as the three family supersymmetric model that we discussed back
in chapter 9.

10.1. General Features Of The Setup

10.1.1. The Branes

Table 10.1 lists the branes that form this intersecting D6-brane model, as well as
their images under σ. This brane setup is supersymmetric if we choose 1

arctan
(
u1
)
− arctan

(
u2
)

+ arctan

(
u3

2

)
= 0 mod 2π (10.2)

The orientifold plane for the current model is given by 2

πoO6 = 4
3∏
i=1

[
ai,o

]
−2

[
a1,o

] [
b2,o

] [
b3,o

]
−2

[
a2,o

] [
b1,o

] [
b3,o

]
−4

[
a3,o

] [
b1,o

] [
b2,o

]
(10.3)

10.1.2. Intersection Numbers And Brane Picture

The topological intersection number of two 3-cycles is given by

πa ◦ πb =
∏
I

(
nIam̃

I
b − nIbm̃I

a

)
(10.4)

The brane picture of this situation is given in Figure 10.1, which includes the absolute
value of the intersection numbers. Moreover we use the following convention.

• Iab < 0, then left-handed, massless fermions stretch from a to b.

• Iab > 0, then left-handed, massless fermions stretch from b to a.

1Recall our definition ui =
Ri

y

Ri
x
.

2Use Equation 8.26 and note that in the current setup only the third torus is tilted. Therefore it
holds b1 = b2 = 0 and b3 = 1

2 .
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Label Na Wrapping numbers Gauge group U (1) Gauge boson

A5 5 (1, 1)× (1,−1)×
(
1, 1̃

2

)
SU (5)× U (1) Q5

A′5 5 (1,−1)× (1, 1)×
(
1,− 1̃

2

)
A3 3 (1, 1)× (1,−1)×

(
1, 1̃

2

)
SU (3)× U (1) Q3

A′3 3 (1,−1)× (1, 1)×
(
1,− 1̃

2

)
B 8 (0, 1)× (1, 0)×

(
0,−1̃

)
USp (16,C) %

B′ 8 (0,−1)× (1, 0)×
(
0, 1̃

)

Table 10.1.: Branes, image branes as well as their gauge groups in the supersymmetric
GUT model first published in [13].

10.1.3. Check Of The Various Constraints

This is a supersymmetric model and therefore has to satisfy three sets of constraints,
namely

• the Supersymmetry constraints.

• the R-R tadpole constraints.

• the K-theory constraints.

One readily verifies that all these constraints are satisfied by this GUT model. In
particular note that Equation 10.2 ensures that the model is supersymmetric.

10.2. Massless Spectrum And U(1) Gauge Bosons

10.2.1. Gauge Groups

The brane stacks A5 and A3 are not invariant under σ. Therefore they carry a U (N)
gauge group. The brane stack B carries the gauge group USp (2Nb,C) since it is
invariant under σ. These findings are summarized in Table 10.1.

10.2.2. Massless Fermionic Spectrum

The massless fermionic spectrum for intersecting D6-brane models is given in Ta-
ble 5.1. Note in particular that in this GUT model massless fermionic excitations
in U (N)− USp (2N,C) bifundamental representations arise at the insections of the
brane stack B with A3 and A5, respectively.
Moreover we obtain massless fermions from strings in the A5A′5-sector as well as the
A3A′3-sector. The bifundamental representations in which these strings transform
can be decomposed into symmetric and antisymmetric representations of U (5) and
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B B′

A5

A3

A′3

A′5

1

1

1

1

1

4

4

1

1

4

4

1

Figure 10.1.: Brane setup of the supersymmetric GUT model first published in [13].
Arrows along arcs describe the orientation of the open strings stretching between the
corresponding branes and giving rise to left-handed chiral fermions. Shadows mark
image particles.

U (3), respectively. The multiplicites of the so-obtained symmetric and antisymmet-
ric representations are given in Table 5.1. In this GUT model we have

• πoO6 ◦ A5 = πoO6 ◦ A3 = −4

• A′5 ◦ A5 = A′3 ◦ A3 = −4

So Table 5.1 tells us that the multiplicity for the symmetric representations vanishes.
So we are left with antisymmetric representations only. Their dimensionalities are

• of U (5) has
(

5
2

)
= 10 degrees of freedom.

• of U (3) has
(

3
2

)
= 3 degrees of freedom.

We summarize these results in Table 10.2.

10.2.3. Massless Bosonic Spectrum

We list the massless bosonic spectrum of this GUT model in Table 10.3. As in
the models discussed previously, the massless bosons arise in the aa-sector and can
therefore be identified with the gauge bosons of the corresponding gauge groups.
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Sector Chirality U (5)× U (3)× USp (16,C) Q5 Q3

A3B L 1×
(
1, 3, 16

)
0 1

R 1×
(
1, 3, 16

)
0 −1

A′3B L 1× (1, 3, 16) 0 1

R 1×
(
1, 3, 16

)
0 −1

A5B L 1×
(
5, 1, 16

)
1 0

R 1×
(
5, 1, 16

)
−1 0

A′5B L 1× (5, 1, 16) 0 1

R 1×
(
5, 1, 16

)
0 −1

A5A
′
3 L 4×

(
5, 3, 1

)
−1 −1

R 4× (5, 3, 1) 1 1

A5A
′
5 L 4×

(
10, 1, 1

)
2 0

R 4× (10, 1, 1) 2 0

A3A
′
3 L 4×

(
1, 3, 1

)
0 −2

R 4× (1, 3, 1) 0 2

Table 10.2.: Massless fermionic spectrum in the supersymmetric GUT model first
published in [13]. The branes forming this model are specified in Table 10.1.

10.2.4. U(1) Gauge Bosons

Anomalous U(1) Gauge Bosons

The U (1) anomalies are summarized in Table 6.2. By using these results one derives
the U (1) anomalies, that we list in Table 10.4. From this table we deduce that
3Q5 − 5Q3 remains anomaly free, whilst 3Q5 + 5Q3 is anomalous.

Masses For Anomalous U(1) Gauge Bosons

To see whether 3Q5−5Q3 remains massless we calculate M2 by using Equation 6.20.
Thereby we obtain

Q3 Q5

M2 =


−3
6
−6
3

−5
10
−10

5

 (10.5)

This matrix has

ker (M) = span
[(

5
−3

)]
(10.6)

which tells us that indeed 3Q5 − 5Q3 remains massless, whilst the anomalous com-
bination 3Q5 + 5Q3 aquires mass. As already anticipated one can therefore hope to
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Sector U (5)× U (3)× USp (16,C)

A1A1 3× (25, 1, 1)
A2A2 3× (1, 9, 1)
BB 3× (1, 1, 136)

Table 10.3.: Massless bosonic spectrum of the GUT model first published in [13].
Note that the bosons transform in the adjoint representations and that we used
dimR (USp (2N,C)) = N · (2N + 1) (for more details on USp (2N,C) see Ap-
pendix A).

Q3 Q5

Aabb A3 -6 -10
A5 -6 -10

Ãabb Q3 -36 -60
Q5 -60 -100

AaSpSp B 3 5
Aagg −36 −60

Table 10.4.: U(1) anomalies in the supersymmetric GUT model first published in
[13].

obtain a massless U (1) combination after splitting U (5), which gives the Standard
Model hypercharge.
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11. Introduction

In Part II we have discussed a class of models on the M/ (σ × Ω) orientifold, that
was first published in [21]. This class of models was derived under very general
assumptions, among which the most important is to obtain the massless fermionic
spectrum of the Standard Model. As was noted in our discussion of these models,
they are not supersymmetric. Therefore one is lead to consider different orientifolds
to built supersymmetric models on, whose massless fermionic spectrum is as close as
possible to the matter particles in the Standard Model.
A possible orientifold with structure similar toM/ (σ × Ω) is O/ (σ × Ω). In [13] su-
persymmetric models on this orientifold were constructed. The corresponding three
family and GUT model were discussed in chapter 9 and chapter 10, respectively.
To arrive at these models, certain assumptions have been made in [13]. In particular
it was pointed out that these assumptions proved very restricting, giving rise to a
unique three family supersymmetric model - namely the one that we discussed in
detail in chapter 9. This restrictive character arises because the combination of R-R
tadpole cancelation conditions (including K-theory constraints) and supersymmetry
conditions form a strong constraint. In particular this observation raises the question
whether the number of supersymmetric intersecting D-brane models on O/ (σ × Ω)
is finite for a given number of brane stacks.
This question has been adressed in [15]. Here we will take up this analysis. In chap-
ter 12 we will discuss symmetries of the wrapping numbers and a classification of the
D6-branes. Subsequently we will consider a supersymmetric model made of N brane
stacks 1. By applying the knowledge from chapter 12 we will then find bounds for
the wrapping numbers of branes forming a supersymmetric model that also satisfies
R-R tadpole cancelation. This is presented in chapter 13.
In particular we will show that these bounds are independent on the moduli j, k and
l. Given a number of brane stacks it is therefore possible to count the number of
wrapping number combinations that give a brane setup which satisfies R-R tadpole
cancelation and K-theory constraints. To obtain the supersymmetric configurations
for given moduli j, k and l only those configurations need to be checked for super-
symmetry.
To demonstrate this task we designed a C++ program which counts the number of
one-stack models that undersaturate the R-R tadpole but satisfy the K-theory con-
straints. We will discuss this topic in chapter 14. For further reference the major
part of the code of the program as well as the numerical results for T ≤ 20 are given
in Appendix C.

1N is arbitary but fixed.
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12.1. Restriction To Simple Models

Given a fixed number of brane stacks, our aim is to show that the wrapping numbers
of the branes forming a setup which satisfies R-R tadpole cancelation, K-theory
constraints and supersymmetry, are bounded. 1

Both R-R tadpole and K-theory constraints include the number of coincident branes
Na that form the brane stack a, as well as prefactors of the form 22bI resulting from
tilted tori. So the more coincident branes and the more tori are tilted, the more the
wrapping numbers are restricted by these constraints. Conversely, models with single
branes (i.e. Na = 1) on three rectangular tori give the least restrictive conditions for
the wrapping numbers. For that reason it is sufficient to find bounds on the wrapping
numbers for models with the following properties.

• All three tori are rectangular, i.e. bI = 0 for I = 1, 2, 3.

• Na = 1 for all brane stacks.

We term such models simple models.

12.2. Summary On Constraints

We now give a summary on the constraints, that supersymmetric simple models have
to satisfy.

12.2.1. R-R Tadpole Cancelation

The R-R Tadpole constraints on O/ (σ × Ω) are 2

8 =
∑
a

n1,o
a n2,o

a n3,o
a

8 = −
∑
a

(
nI,oa mJ,o

a mK,o
a

)
, I 6= J 6= K 6= I

(12.1)

1Recall that R-R tadpole constraints together with the K-theory constraints ensure cancelation
of R-R tadpoles. Then NS-NS tadpoles cancel precisely if the brane setup is supersymmetric
[7]. Therefore models that satisfy R-R tadpole, K-theory and supersymmetry conditions have
no uncanceled tadpoles and are therefore stable.

2For more details see section 8.6.
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12.2.2. K-Theory Constraints

The K-Theory constraints on O/ (σ × Ω) are 3

∑
a

(
m1,o
a m2,o

a m3,o
a

)
∈ 2Z∑

a

(
mI,o
a nJ,oa nK,oa

)
∈ 2Z, I 6= J 6= K 6= I

(12.2)

12.2.3. Supersymmetry Constraints

As discussed in chapter 4, there are two non-trivial supersymmetry conditions -
namely

0 < n1,o
a n2,o

a n3,o
a − n1,o

a m2,o
a u2m3,o

a u3 − n2,o
a m1,o

a u1m3,o
a u3 − n3,o

a m1,o
a u1m2,o

a u2

0 = m1,o
a m2,o

a m3,o
a −m1

a ·
n2
an

3
a

u2u3
−m2

a ·
n1
an

3
a

u1u3
−m3

a ·
n1
an

2
a

u1u2

(12.3)

12.3. New Notation

12.3.1. Definition

We define
Pa := n1,o

a n2,o
a n3,o

a Qa := −n1,o
a m2,o

a m3,o
a

Ra := −m1,o
a n2,o

a m3,o
a Sa := −m1,o

a m2,o
a n3,o

a

(12.4)

From now on we will refer to these four terms as tadpoles. Moreover we define 4

j :=
1

u2u3
, k :=

1

u1u3
, l :=

1

u1u2
(12.5)

Also we define
Ξa := Pa +

Qa

j
+
Ra

k
+
Sa
l

(12.6)

12.3.2. Revision Of The Constraints

With the above definitions at hand, we can always rewrite the R-R tadpole constraints
as well as the supersymmetry positivity constraint as

T := 8 =
∑
a

Pa =
∑
a

Qa =
∑
a

Ra =
∑
a

Sa

0 < Ξa = Pa +
Qa

j
+
Ra

k
+
Sa
l

(12.7)

3More details to be found in section 8.7.
4Recall that uI :=

RI
y

RI
x
6= 0.
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Given that all tadpoles 5 are non-zero, we can also rewrite the supersymmetry reality
constraint as

0 =
1

P
+
j

Q
+
k

R
+
l

S
(12.8)

12.4. Classification Of Branes

12.4.1. Symmetries

Symmetry I

A 3-cycle on O is given by

πoa =
3∏
I=1

(
nI,oa

[
aI,o

]
+ m̃I,o

a

[
bI,o

])
(12.9)

If we change the signs of the n’s and m’s in two of the two-tori, the 3-cycle remains
unchanged. This symmetry allows for any 3-cycle to choose two of the n’s to be
non-negative. Our choice is therefore to always arrange non-negative n1,o

a , n2,o
a .

Symmetry II

The involution σ acts by changing the signs of all m̃I,o
a . The so-obtained image branes

are not summed over in R-R tadpole and K-theory constraints. Given a brane and
its image brane we may therefore interchange the role of brane and image brane, such
as to sum over the original image brane in R-R tadpole and K-theory constraints. In
particular this enables us to always choose two m’s non-negative.
Note however that we have already fixed the sign of n1,o

a and n2,o
a . Therefore we can

not pick two arbitary m’s and render them non-negative, rather it depends on the
given wrapping numbers which particular m’s can be chosen non-negative.

Symmetry III

Given a brane πa with tadpoles (Pa, Qa, Ra, Sa) one can think of mapping this brane
to another brane πb with tadpoles (Pb, Qb, Rb, Sb), such that

(Pa, Qa, Ra, Sa)
τ∈S4→ (Pb, Qb, Rb, Sb) (12.10)

In particular one can extend this S4 symmetry to act on the moduli j, k, l also [15].
To this end one first replaces the moduli via

(j, k, l)→
(
j

h
,
k

h
,
l

h

)
(12.11)

where h ∈ R\ {0}. Then one can extend the above S4 symmetry to act on the
numbers j, k, l, h. In particular one may therefore assume without loss of generality
1 ≤ j ≤ k ≤ l, which we will use later.

5By which we mean P ,Q,R and S, as defined in subsection 12.3.1.
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12.4.2. Brane Types

Classification

We classify branes by the number of non-vanishing tadpoles. In particular we define

• A-Type branes - 4 non-vanishing tadpoles.

• B-Type branes - precisely 2 non-vanishing tadpoles.

• C-Type branes - precisely 1 non-vanishing tadpole.

Completeness

For a brane with three non-vanishing tadpoles, all wrapping numbers must be non-
zero. Consequently the fourth tadpole is non-zero and the brane under consideration
is an A-type brane. A brane with four vanishing tadpoles violates the supersymmetry
condition 0 < P + Q

j
+ R

k
+ S

l
and can consequently not exist in a supersymmetric

model. For these reasons every brane in a supersymmetric model is either an A-, a
B- or a C-type brane. So the above classification is complete.

Summary On Brane Types

By applying the symmetries I and II presented in subsection 12.4.1 and analyzing
the supersymmetry conditions, one can decide on the signs of the wrapping numbers
and tadpoles of the various brane types. The results of these deductions are given
in Table 12.1 6 Note in particular that the C-type branes are the probe branes, that
were used to derive the K-theory constraints in section 8.7.

Canonical Form

The branes in Table 12.1 were obtained without using symmetry III - the extended
S4 symmetry. The latter allows to order the tadpoles and thereby to obtain the
canonical form for the various branes. Let us demonstrate in detail how to obtain
this canonical form by considering A-type branes.
First we agree on the convention for the canonical forms.

• A1: Q ≤ R ≤ S

• A2: P ≤ R ≤ S

• A3: P ≤ Q ≤ S

• A4: P ≤ Q ≤ R

6For further detais we refer the reader to the original literature [15].
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Brane Type Label (P,Q,R, S) (n1,o
a , n2,o

a , n3,o
a ) (m1,o

a ,m2,o
a ,m3,o

a )

A

A1 (−,+,+,+) (+,+,−) (+,+,−)
A2 (+,−,+,+) (+,+,+) (+,−,−)
A3 (+,+,−,+) (+,+,+) (−,+,−)
A4 (+,+,+,−) (+,+,+) (−,−,+)

B

B1 (+,+, 0, 0) (1,+,+) (0,+,−)
B2 (+, 0,+, 0) (+, 1,+) (+, 0,−)
B3 (+, 0, 0,+) (+,+, 1) (+,−, 0)
B4 (0,+,+, 0) (+,+, 0) (−,−, 1)
B5 (0,+, 0,+) (+, 0,+) (−, 1,−)
B6 (0, 0,+,+) (0,+,+) (1,−,−)

C

C1 (1, 0, 0, 0) (1, 1, 1) (0, 0, 0)
C2 (0, 1, 0, 0) (1, 0, 0) (0, 1,−1)
C3 (0, 0, 1, 0) (0, 1, 0) (1, 0,−1)
C4 (0, 0, 0, 1) (0, 0, 1) (1,−1, 0)

Table 12.1.: Classification of D6-branes on O internal space.

So an A1-type brane is canonically ordered if Q ≤ R ≤ S. Note however that in the
case of equal tadpoles, the extended S4 symmetry allows to order the associated n’s.
For example Q = R implies

n1,o
a m2,o

a m3,o
a = n2,o

a m1,o
a m3,o

a (12.12)

and we can order n1,o
a and n2,o

a such as to obtain

n1,o
a ≤ n2,o

a (12.13)

Note in particular that neither P nor Q is changed by this ordering.
For the B-type branes the two non-vanishing tadpoles can be ordered in the same
manner. But note that for B-type branes two tadpoles vanish. The symmetry trans-
formations that interchange these tadpoles then also need to be taken into account,
in order to obtain the canonical form for B-type branes. Finally note that up to S4

symmetry there is only a single C-type brane.
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13. Bounds For The Wrapping
Numbers

13.1. A-Type Branes In Further Detail

Let us consider an A1-type brane. It has negative Sa tadpole. From the supersym-
metry condition in Equation 12.8 we learn

Sa = − l
1
Pa

+ j
Qa

+ k
Ra

(13.1)

By applying the elementary inequality 1
x

+ 1
y

+ 1
z
> 3

x+y+z
1 we find

Sa > −
l

3

(
Pa +

Qa

j
+
Ra

k

)
(13.2)

By using this equation to replace Sa in Ξa we find

Ξa >
2

3

(
Pa +

Qa

j
+
Ra

k

)
(13.3)

But we can also use Equation 13.2 to replace Pa + Qa

j
+ Ra

k
. In this case we first

obtain −3
l
Sa < Pa + Qa

j
+ Ra

k
which then yields

Ξa > −
2

l
Sa > 0 (13.4)

So we found bounds for Ξa that can either be expressed entirely in terms of positive
tadpoles or with negative tadpoles only.
The above strategy can be applied to the remaining A-type branes A2, A3 and A4
in precisely the same manner.

1For x, y, z > 0 it holds (x+ y)xy + (x+ z)xz + (y + z) yz > 0. This implies

(x+ y + z)xy + (x+ y + z)xz + (x+ y + z) yz > 3xyz

This implies the above inequality.
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13.2. Bounds For Tadpoles And Wrapping Numbers
Let us now consider a setup of N brane stacks, which is supersymmetric and satisfies
the R-R tadpole constraints. In particular each brane satisfies the supersymmetry
positivity constraint. For each brane we have

0 < Pa +
Qa

j
+
Ra

k
+
Sa
l

= Ξa (13.5)

Consequently we must also have

0 <
∑
a

Ξa = T ·
(

1 +
1

j
+

1

k
+

1

l

)
(13.6)

where we used the R-R tadpole constraint to obtain the equality.

13.2.1. Upper Bound

For each A-type brane we now use the inequalities (similar to) 13.3. This yields

0 <
2

3
·
∑
A+

Ξa +
2

3
·
∑
B

Ξa +
2

3
·
∑
C

Ξa <
∑
a

Ξa = T ·
(

1 +
1

j
+

1

k
+

1

l

)
(13.7)

where
∑
A+ corresponds to summing the positive tadpoles of all A-type branes. But

recall that for B-type and C-type branes, all tadpoles are non-negative. For that
reason we can write

0 <
2

3
·
∑
a+

Ξa < T ·
(

1 +
1

j
+

1

k
+

1

l

)
(13.8)

where
∑
a+ corresponds to summing the positive tadpoles of all branes in the setup.

13.2.2. Lower Bound

Instead of Equation 13.3 we can also use the inequalities (similar to) 13.4 for A-type
branes. Similar arguments then yield

0 >
∑
A−

Ξa ≥
1

2

∑
B

Ξa +
1

2

∑
C

Ξa −
T

2
·
(

1 +
1

j
+

1

k
+

1

l

)
≥ −T

2
·
(

1 +
1

j
+

1

k
+

1

l

)
(13.9)

13.2.3. Final Bounds

As pointed out in subsection 12.4.1, without loss of generality we can restrict to
1 ≤ j ≤ k ≤ l. This allows to reformulate the bounds on the tadpoles as

0 <
∑
a+

Ξa < 6T, −2T ≤
∑
a−

Ξa < 0 (13.10)

Note that the tadpoles are obtained by multiplying three wrapping numbers, which
themselves are integer valued. So these wrapping numbers must be bounded (and
the bounds are independ of j, k and l). This is what we wanted to proof.
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14. Computation Of One-Stack
Models

As our final task we want to consider one stack models. Such models are made of
single A-type, B-type or C-type branes. In particular the S4 symmetry allows to
restrict attention to A1-, B1- and C1-type branes.
C-type branes are special, because they do not give contributions to the K-theory
constraints, are supersymmetric for any set of modules (j, k, l) but add 1 to one of
the four tadapoles. Therefore any brane model that undersaturates the R-R tad-
pole condition and satisfies the K-theory constraints can be completed uniquely by
C-type branes, so that the final setup satisfies the R-R tadpole condition as well as
the K-theory constraints [15].
For that reason we restrict our attention to A1- and B1-type branes which undersatu-
rate the R-R tadpole but satisfy the K-theory constraints. To compute their number
we designed a C++ program. For further reference we outline the major part of the
code in Appendix C. For T ≤ 20 we display the numbers calculated by the program
in Table C.1, but plot these numbers for greater ranges of T in Figure 14.1.
In [15] bounds for the number of A1- and B1-type branes were derived, namely

Na (T )
<∼ 1

6

(
π2

6

)3

T 3, Nb (T )
<∼ 1

4
T 2 (ln (T ))2

Ña (T ) ∼ 1

6

(
π2

6ζ (3)

)3

T 3, Ñb (T ) ∼ 1

4

(
6

π2

)2

T 2 (ln (T ))2

(14.1)

These bounds are also displayed in Figure 14.1.
In [15] the exact number of A1-type and B1-type branes is given for T = 8. These
results match with our calculations. Also our plots match phenomenologically with
the one given in [15]. Unfortunately the numberical values that lead to the plots in
[15] were not given, so that the results can not be compared further. To allow for
such comparisons we present the numerical results for T ≤ 20 in Table C.1.
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Figure 14.1.: Exact number of A1-type and B1-type branes plotted against the num-
ber of tadpoles T . Also the coresponding estimates are displayed.
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15. Conclusion And Outlook
In this thesis we have presented an analysis of intersecting D6-brane models on the
orientifoldsM/ (σ × Ω) as well as O/ (σ × Ω). In particular we have discussed three
different models built on these internal spaces.
In chapter 7 a class of non-supersymmetric models on the orientifoldM/ (σ × Ω) was
discussed. It turned out that the massless fermionic spectrum is in one-to-one cor-
respondance with the Standard Model matter particles, that a massless U (1) gauge
boson can be achieved such that it gives the Standard Model hypercharge and that
Higgs doublets can appear in this model. Also the Yukawa couplings were briefly
discussed. From a phenomenological point of view, this class of models is therefore a
very tempting setup. Unfortunately these models are not supersymmetric. For that
reason they will in general suffer from uncanceled NS-NS tadpoles which may trigger
instabilities [7].
To stay on firm ground we therefore abandoned this class of models and instead con-
sidered supersymmetric models built on the orientifold O/ (σ × Ω). In chapter 9 we
discussed such a supersymmetric three family model. Note however that only two
right-handed familes appeared in the massless fermionic spectrum. Also additional
exotic matter appeared in the massless fermionic spectrum. Even though Higgs dou-
blets can be incorporated into this model, the appearance of exotic matter as well
as the lack of one generation of right-handed particles is not completely satisfactory
from a phenomenological point of view. This raises the need to extend the search for
supersymmetric models with massless fermionic spectrum as close as possible to the
Standard Model matter particles.
We therefore followed the approach of [15] and first classified the various D6-branes
on the orientifold O/ (σ × Ω). Based on this classification we found bounds on the
wrapping numbers of D6-branes that form supersymmetric models on O/ (σ × Ω).
For given moduli j, k and l this allows to find a bound on the number of supersym-
metric models by counting the number of intersecting D6-brane models that satisfy
R-R tadpole cancelation and the K-theory constraints. This analysis will need com-
putational methods. Therefore we designed a C++ program to determine the number
of one-stack simple models.
The implementation of R-R tadpole cancelation and K-theory constraints in a C++
program is relatively easy. Difficulties arise when two or more brane stacks are con-
sidered. In this case permutations of brane configuations have to be compared to
avoid overcounting. Also brane configurations exchanged by the extended S4 sym-
metry must be figured out to avoid overcounting.
Still the major difficulty arrises when one tries to obtain all supersymmetric models.
Then the above analysis must be performed for any set of moduli j, k and l. By using
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the extended S4 symmetry one can restrict attention to mouli with 1 ≤ j ≤ k ≤ l.
Nevertheless these moduli need neither be integers nor rational numbers. So a scan
over all possible moduli is a very challenging task in computational physics.
A detailed analysis of intersecting D6-brane models on O/ (σ × Ω) by computational
methods was presented in [15]. The authors found agreement with many former pub-
lications. Unfortunately a completely satisfactory model is so far missing [7]. For
that reason it is natural to extend the search of realistic intersecting D6-brane models
to interal spaces, different fromM/ (σ × Ω) and O/ (σ × Ω).
A possible generalisation is to consider orientifolds such asM/ (G× σ × Ω) with G
some finite group. This has been studied for G = Z4 [8], G = Z4 × Z2 [19] [17] [18]
and G = Z6 [20].
An unattractive phenomenological feature of toroidal models is that they give rise
to too many scalars in the adjoint representation [7]. This appearance is related to
too many deformations of 3-cycles πa. Thus it is desirable to consider more general
internal spaces.
As we noted in chapter 3 general assumptions on both internal and external space
together with the requirement of at least N = 1 supersymmetry restrict the internal
spaces to Calabi-Yau three-folds [4]. General features of Calabi-Yau compactifica-
tions can be found in [16].
For general algebraic Calabi-Yau manifolds, knowledge about special Lagrangian 3-
cycles, which branes must wrap to allow for at least N = 1 supersymmetry, is very
restricted [7]. One possible approach is therefore to consider Gepner models. Such
models were studied in [14] and lead to a large class of three-family Standard-like
Models without exotic chirals.

Acknowledgements
The author thanks Timo Weigand for the many encouragements and enlightening
discussions.
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A. Symplectic Group

A.1. General Features
Be F a field 1 with char (F) 6= 2 and N ∈ N 2. Then we define

USp (2N,F) :=
{
T ∈ GL (2N,F) ; T tI2NT = I2N

}
, I2N =

(
0 EN
−EN 0

)
(A.1)

A.2. Generators
Be A ∈ USp (2N,F) an element, situated close to the identity 12N . Then there exists
T ∈M (2N × 2N,F) and α ∈ F close to 1F such that

A = exp (iαT ) = 1 + iαT +O
(
α2
)

At =
(
exp (1 + iαT )t

)
= 1 + iαT t +O

(
α2
) (A.2)

But since A ∈ USp (2N,F) we have AtINA = IN . Using the above equalities we find

12N = I2N + iα
(
T tI2N + I2NT

)
+O

(
α2
)

(A.3)

Consequently it holds
I2NT + T tI2N = 0 (A.4)

So the generators T ∈M (2N × 2N,F) are Hamiltonian matrices. Note in particular
that 12N is not a generator of Sp (2N,C). Therefore there exists no U (1) subgroup
of Sp (2N,C).
Let us now examine the generators T a bit further. To this end we write them out
explicitely as

T =

(
A B
C D

)
(A.5)

Then one readily confirmes that Equation A.4 requires

T =

(
A B
C −At

)
B,C symmetric (A.6)

1Here we talk about the algebraic structure called field, not scalar fields, spinor fields or similar
constructions.

2Our convention is that N does not include 0. So the symplectic groups are USp (2,F), USp (4,F)
and so on.
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In particular we have

tr (T ) = tr (A) + tr
(
−At

)
= tr (A)− tr (A) = 0 (A.7)

So the generators of the symplectic group are traceless.

A.3. Dimension Of The Symplectic Group
From Equation A.6 one can easily deduces

dimF (USp (2N,F)) =
N · (N + 1)

2︸ ︷︷ ︸
d.o.f. of B

+
N · (N + 1)

2︸ ︷︷ ︸
d.o.f. of C

+ N2︸︷︷︸
d.o.f. of A

= N · (2N + 1) (A.8)

A.4. A Special Subgroup
One defines

USp (2N,C) = Sp (2N,C) ∩ U (2N) ⊂ Sp (2N,C) (A.9)

The generators of USp (2N,C) are then still of the form given in Equation A.6, but
in addition must be Hermitian. This implies

T̃ =

(
A B
B† −At

)
(A.10)

where B is symmetric and A Hermitian. Therefore B has N(N+1)
2

complex degrees of
freedom, whilst A has N2

2
complex degrees of freedom. So

dimC (USp (2N,C)) =
1

2
·N · (2N + 1) =

1

2
dimC (USp (2N,C)) (A.11)

Equivalently

dimR (USp (2N,C)) = N · (2N + 1) = dimC (USp (2N,C)) (A.12)

Finally note that the generators of USp (2N,C) are traceless.
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B. Anomalies

In this chapter we give a detailed derivation for all U (1) anomalies, that arise from
the massless fermionic spectrum on the M/ (σ × Ω) orientifold. This spectrum is
listed in Table 5.1. A summary of all U (1) anomalies that we are going to calculate
during this chapter is given in Table 6.2.

B.1. U(1) - SU(N) - SU(N) Anomalies

The U (1)a - SU (Na)
2 anomalies arise from

Aaaa = Tr
(
Qa (T a)A (T a)B

)
(B.1)

In this case Qa and (T a)A have matching dimensions and we do not split the trace.
We then sum over all states in Table 5.1 that are charged under both U (1)a and
SU (Na). Consequently we find

Aaaa =

(
πU ′a ◦ πUa + πO6 ◦ πUa

)
2

· trA
(
(T a)A (T a)B

)
+

(
πU ′a ◦ πUa − πO6 ◦ πUa

)
2

· trS
(
(T a)A (T a)B

)
+
∑
b 6=a

Nb ·
(
−πUa ◦ πb + πU ′a ◦ πb

)
· trF

(
(T a)A (T a)B

) (B.2)

By using the quadratic casimir coefficients for SU (N), which are listed in Table 6.1,
we can rewrite this expression as

Aaaa =
Na − 2

2

(
πU ′a ◦ πUa + πO6 ◦ πUa

)
δAB +

Na + 2

2

(
πU ′a ◦ πUa − πO6 ◦ πUa

)
δAB

+
1

2
·
∑
b6=a

Nb ·
(
−πUa + πU ′a

)
◦ πb · δAB

(B.3)
By using R-R tadpole cancelation we finally arrive at

Aaaa =
Na

2
πU ′a ◦ πUa · δAB (B.4)

We now move on to calculate the U (1)a - SU (Nb)
2 anomalies for b 6= a. This means

that we have to sum over all states that are charged unter both U (1)a as well as
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SU (Nb). The only such states are strings stretching between the branes πUa and πUb
(as well as their images). Note alo that for a 6= b, Qa and (T a)A are in general not
of the same dimension. This makes it necessary to split the trace. Consequently we
obtain

Aabb = πa ◦ πUb · (−1) ·Na ·
δAB

2
+ π′a ◦ πUb · (1) ·Na ·

δAB

2

=
Na

2
(−πa + π′a) ◦ πUb · δAB

(B.5)

In particular note that this reduces to Equation B.4 for a = b.

B.2. U(1) - USp (2N,C)−USp (2N,C) Anomalies

These anomalies are obtained in precisely the same way as the U (1)a − SU (Nb)
2

anomalies for a 6= b. Consequently one obtains

AaUSpUSp =
Na

2

(
−πUa + πU ′a

)
◦ πUSpb (B.6)

B.3. U(1) - U(1) - U(1) Anomaly
The U (1)a − U (1)b − U (1)c anomalies arise from

Ãabc = tr
(
QaQbQc

)
(B.7)

But open strings have just one starting and one ending point, for which reason they
can be charged under at most two different gauge fields. Consequently this anomaly
vanishes for a 6= b 6= c 6= a. Let us therefore move on to calculate

Ãabb = tr
(
QaQbQb

)
(B.8)

for b 6= a. This anomaly is obtained similar to the U (1)a − SU (Nb)
2 anomalies, for

which reason one obtains

Ãabb = Na ·Nb

(
πUa + πU ′a

)
◦ πUb (B.9)

If we take b = a we have to calculate a U (1)3
a anomaly. One finds

Ãaaa =
1

2

(
πU ′a ◦ πUa − πO6 ◦ πUa

)
· 23 · Na (Na + 1)

2

+
1

2

(
πU ′a ◦ πUa + πO6 ◦ πUa

)
· 23 · Na (Na − 1)

2

+
∑
b6=a

Nb ·
(
πUa ◦ πb

)
· (−1)3 ·Na

+
∑
b6=a

Nb ·
(
πU ′a ◦ πb

)
· (1)3 ·Na

= 2Na ·
[
2Na ·

(
πU ′a ◦ πUa

)
− 2πO6 ◦ πUa

]
−Naπ

U
a ◦

∑
b6=a

Nb [πb + π′b]

(B.10)
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R-R tadpole cancelation requires
∑
bNb (πb + π′b) = 4πO6. In particular this allows

to rewrite
∑
b6=aNb [πb + π′b] to find

Ãaaa = 3N2
aπ

U ′
a ◦ πUa (B.11)

Here a slight subtlety appears. If three U (1)a gauge bosons couple in a triangle dia-
gram, the associated Feynman diagram has symmetry factor S = 3! (see Figure 6.1).
Conversely the U (1)a−U (1)2

b diagram just has S = 2!. When evaluating expressions
for Feynman diagrams one has to divide by S. Strictly speaking this means to devide
the result for Ãaaa by 6 = 3! and the result for Ãabb by 2!.
For our purposes however, only the relative values of the various anomalies matter,
as this is all we need in order to determine whether or not a U (1) gauge field is
anomaly free. Therefore we leave all results but the one for Ãaaa unchanged. The
latter is changed by including an additional factor 1

3
[22]. So our final result for this

anomaly is
Ãaaa = N2

aπ
U ′
a ◦ πUa (B.12)

B.4. Gravitational Anomalies
We conclude this chapter by calculating the gravitational anomaly, given by

Aagg = tr (Qa) (B.13)

So we have to sum over all states that are charged under U (1)a. Baring Table 5.1 in
mind this anomaly is given by

Aagg = Tr (Qa) =
1

2

(
πU ′a ◦ πUa + πO6 ◦ πUa

)
· 2 · Na (Na − 1)

2

+
1

2

(
πU ′a ◦ πUa − πO6 ◦ πUa

)
· 2 · Na · (Na + 1)

2

+
∑
b6=a

Nb

(
πUa ◦ πb

)
· (−1) ·Na +

∑
b6=a

Nb

(
πU ′a ◦ πb

)
· 1 ·Na

= N2
aπ

U ′
a ◦ πUa −Na · πO6 ◦ πUa −Na · πUa ◦

∑
b6=a

Nb (πb + π′b)

(B.14)

Finally we use R-R tadpole cancelation to rewrite the gravitational anomaly as

Aagg = 3Na · πO6 ◦ πUa (B.15)
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C. C++ Program

C.1. Brane Class

C.1.1. Declaration

class Brane{
public :

Brane ( ) ; Brane ( int N) ; ~Brane ( ) ;
virtual bool check ( ) ;
bool checkrp ( ) ;
/∗ var ious g e t s and s e t s . . . ∗/

protected :
// wrapping numbers
int n1 , n2 , n3 ,m1,m2,m3;
// l im i t s f o r the wrapping numbers
int n1U , n1B , n2U , n2B , n3U , n3B ;
int m1U,m1B, m2U, m2B, m3U, m3B;
// wrapping numbers r e l a t i v e l y prime?
bool rp1 ( ) ; bool rp2 ( ) ; bool rp3 ( ) ;

} ;

C.1.2. Implementation

#include " branes . h"
#include <math . h>
∗/ const ructor , de s t ruc to r , s e t s and ge t s . . . ∗/
bool Brane : : check ( ){ return true ; }

int gcd ( int i , int x ){ // gcd o f two p o s i t i v e i n t e g e r s
i f ( x \% i == 0){ return ( i ) ; }
else {return ( gcd ( x , i \% x ) ) ; }

}

bool Brane : : checkrp ( ){ // wrapping numbers r e l a t i v e l y prime?
i f ( rp1 ( ) && rp2 ( ) && rp3 ( ) ) { return true ; }
else {return fa l se ; }

}
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bool Brane : : rp1 ( ){
bool A = fa l se ;
i f ( ( n1 == 0) && ( abs (m1) == 1)){A = true ; }
else i f ( ( abs ( n1 ) == 1)&&(m1 == 0)){A = true ; }
else i f ( ( n1 != 0)&&(m1 != 0)){

A = ( gcd ( abs ( n1 ) , abs (m1))==1);
}
return A;

}
/∗ same rou t ine f o r second and t h i r d to rus . . . ∗/

C.2. A1 Brane Class

C.2.1. Declaration

#include "Branes . h"
class A1Brane : public Brane {
public :

A1Brane ( int B, int U, int N) ; ~A1Brane ( ) ;
bool check ( ) ;

} ;

C.2.2. Implementation

#include "A1Branes . h"

A1Brane : : A1Brane ( int B, int U, int N) : Brane (N) {
// ranges f o r A1−t ype wrapping numbers
n1B = 1 ; n1U = U; n2B = 1 ; n2U = U; n3B = −B; n3U = −1;
m1B = 1 ; m1U = U; m2B = 1 ; m2U = U; m3B = −B; m3U = −1;

}
/∗ d e s t r u c t o r . . . ∗/

bool A1Brane : : check ( ){
// ob ta in Q,R, S t adpo l e s
int q = getQ ( ) ; int r = getR ( ) ; int s = getS ( ) ;
// A1−brane in canonica l form?
bool r e s = fa l se ;
i f ( (0 < q) && (q <= r ) && ( r <= s ) ){

i f ( ( q < r ) && ( r < s ) ){ r e s = true ; }
else i f ( ( q == r ) && ( r<s ) ){

i f ( n1 <= n2 ){ r e s = true ; }
}
else i f ( ( q < r ) && ( r == s ) ){
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i f ( n2 <= n3 ){ r e s = true ; }
}
else i f ( ( q == r ) && ( r == s ) ){

i f ( ( n1 <= n2 ) && (n2 <= n3 ) ){
r e s = true ;

}
}

}
return r e s ;

}

C.3. B1 Brane Class

C.3.1. Declaration

#include "Branes . h"
class B1Brane : public Brane {
public :

B1Brane ( int B, int U, int N) ; ~B1Brane ( ) ;
bool check ( ) ;

private :
bool checkp ( ) ; // P,Q permuted or canon i c a l l y ordered ?
bool checkRS ( ) ; // R, S tadpo l e permutat ions ?

} ;

C.3.2. Implementation

#include "B1Branes . h"
B1Brane : : B1Brane ( int B, int U, int N) : Brane (N) {

// ranges f o r wrapping numbers o f B1−t ype brane
n1B = 1 ; n1U = 1 ; n2B = 1 ; n2U = U; n3B = 1 ; n3U = U;
m1B = 0 ; m1U = 0 ; m2B = 1 ; m2U = U; m3B = −B; m3U = −1;

}
/∗ d e s t r u c t o r . . . ∗/

// P,Q canon i c a l l y ordered ?
bool B1Brane : : checkp ( ){

int p = getP ( ) ; // ge t P tadpo l e
int q = getQ ( ) ; // ge t R tadpo l e
bool r e s = fa l se ;
i f ( (0 < p) && (p <= q )){

i f (p < q){ r e s = true ; }
else i f (p == q){

i f ( n2 <= n3 ){ r e s = true ; }
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}
}
return r e s ;

}

// R<−>S exchange p o s s i b l e −> avoid overcount ing
bool B1Brane : : checkRS (){

int n21 = n1 ; // n1 f o r P<−>Q interchanged brane
int m21 = m1; // m1 fo r P<−>Q interchanged brane
int n22 = n3 ;
int m22 = −m3;
int n23 = n2 ;
int m23 = −m2;
bool r e s = true ;
i f ( n21 < n1 ){ r e s = fa l se ; }
else i f ( n21 == n1 ){

i f ( n22 < n2 ){ r e s = fa l se ; }
else i f ( n22 == n2 ){

i f ( n23 < n3 ){ r e s = fa l se ; }
else i f ( n23 == n3 ){

i f (m21 < m1){ r e s = fa l se ; }
else i f (m21 == m1){

i f (m22 < m2){ r e s = fa l se ; }
else i f (m22 == m2){

i f (m23 < m3){ r e s = fa l se ; }
}

}
}

}
}
return r e s ;

}

bool B1Brane : : check ( ){
return ( checkp ( ) && checkRS ( ) ) ;

}

C.4. Counting Branes

C.4.1. Counting A1-Branes

#include <iostream>
#include <A1Brane . h>
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bool KTheory1 (A1Brane ∗A1){
int i = A1−>getnB ( ) ∗ A1−>getm1 ( )

∗ A1−>getm2 ( ) ∗ A1−>getm3 ( ) ;
i f ( i \% 1){ // i i s odd

return fa l se ;
}
else { return true ; }

}
/∗ same rou t ine f o r the o ther K−theory c on s t r a i n t s ∗/

bool KTheory (A1Brane ∗A1){
i f (KTheory1 (A1) && KTheory2 (A1)

&& KTheory3 (A1) && KTheory4 (A1) ){
return true ;

}
else { return fa l se ; }

}

int main ( ){
int T = 8 ; // t o t a l t adpo l e
A1Brane ∗A = new A1Brane (T,T, 1 ) ; // c rea t e new A1 brane
int counter = 0 ; // count branes
// loop over wrapping numbers o f brane A
for ( int n1=A−>getn1B ( ) ; n1<=A−>getn1U ( ) ; n1++){
for ( int n2=A−>getn2B ( ) ; n2 <=A−>getn2U ( ) ; n2++){
for ( int n3=A−>getn3B ( ) ; n3 <=A−>getn3U ( ) ; n3++){
for ( int m1=A−>getm1B ( ) ; m1<=A−>getm1U ( ) ; m1++){
for ( int m2=A−>getm2B ( ) ; m2<=A−>getm2U ( ) ; m2++){
for ( int m3=A−>getm3B ( ) ; m3<=A−>getm3U ( ) ; m3++){

// s e t wrapping numbers
A−>setwn (n1 ,m1, n2 ,m2, n3 ,m3) ;
i f (A−>check ( ) && A−>getS ( ) <= T

&& A−>checkrp ( ) && KTheory (A)){
counter++; // found s o l u t i o n

}
}

}
}

}
}

}
std : : cout<<counter ; // re turn r e s u l t to cmd
return 0 ;

}
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C.4.2. Counting B1-Branes

By minor changes the code presented in subsection C.4.1 also allows to count B1-type
branes. We list the so-obtained number of A1-type and B1-type branes as well as
their estimates from [15] for tadpoles T ≤ 20 in Table C.1.

T A1 branes B1 branes
Ña (T ) Exact number Na (T ) Ñb (T ) Exact number Nb (T )

1 0.43 1 0.74 0 1 0
2 3.42 5 5.93 0.18 3 0.48
3 11.53 14 20.03 1.00 7 2.72
4 27.34 33 47.48 2.84 14 7.69
5 53.40 57 92.73 5.98 23 16.19
6 92.28 103 160.23 10.68 37 28.89
7 146.53 149 254.44 17.14 52 46.39
8 218.73 226 379.81 25.57 71 69.19
9 311.43 319 540.78 36.13 97 97.76
10 427.20 442 741.81 48.98 127 132.55
11 568.54 550 987.35 64.28 155 173.93
12 738.12 768 1281.85 82.15 196 222.29
13 938.45 920 1629.76 102.73 232 277.96
14 1172.24 1149 2035.53 126.12 278 341.27
15 1441.63 1437 2503.62 152.45 340 412.51
16 1749.81 1767 3038.46 181.82 398 491.98
17 2098.59 2020 3644.53 214.34 449 579.96
18 2491.43 2493 4326.25 250.08 520 676.69
19 2929.82 2807 5088.09 289.17 579 782.44
20 3417.60 3384 5934.50 331.66 666 897.44

Table C.1.: Exact number of A1-type and B1-type branes in canonical form which
undersaturate the R-R tadpole constraints but satisfy the K-theory constraints. For
the estimates two decimal places are displayed.
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