Intersecting D6-Brane Models

Martin Bies

May 23, 2012

Section 1

Intersecting D6-brane setup

Internal and external space

Stategie

- $\mathbb{R}^{1,9}=\mathbb{R}^{1,3} \times \mathbb{R}^{6}$
- cover external space $\mathbb{R}^{1,3}$ by each D6-brane
\Rightarrow D6-branes 3 -dimensional in internal space \mathbb{R}^{6}

Picture

(a) 4 dim . of branes

(b) 3 dim . of branes

Separation of the internal space

Factorizable branes

- $\mathbb{R}^{6}=\mathbb{R}^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{2}$
- Our choice - each D6-brane is a line in each \mathbb{R}^{2}

Picture

Toroidal compactification

Strategie

- Roll up each coordinate on circle
\Rightarrow D6-brane becomes 3-cycle $\pi_{a}=\prod_{l=1}^{3}\left(n_{a}^{l}\left[a^{\prime}\right]+m_{a}^{\prime}\left[b^{\prime}\right]\right)$

Picture

Toroidal Compactification II

Topological intersection number

$$
\pi_{a} \circ \pi_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)
$$

Toroidal Compactification II

Topological intersection number

$$
\pi_{a} \circ \pi_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)
$$

Example

$$
\begin{aligned}
& \text { - } \pi_{a}=(3,1) \times(1,0) \times(1,0) \\
& \text { - } \pi_{b}=(0,1) \times(0,1) \times(0,1) \\
& \quad \Rightarrow \pi_{a} \circ \pi_{b}=3 \cdot 1 \cdot 1=3
\end{aligned}
$$

Toroidal Compactification II

Topological intersection number

$$
\pi_{a} \circ \pi_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)
$$

Example

$$
\begin{aligned}
& \text { - } \pi_{a}=(3,1) \times(1,0) \times(1,0) \\
& \quad \pi_{b}=(0,1) \times(0,1) \times(0,1) \\
& \quad \Rightarrow \pi_{a} \circ \pi_{b}=3 \cdot 1 \cdot 1=3
\end{aligned}
$$

Conclusion

- Multiple intersections possible

Stability conditions

Facts for D6-brane models

- (R-R tadpoles canceled) and (NS-NS tadpoles canceled) \Leftrightarrow (R-R tadpoles canceled) and (model supersymmetric)
\Rightarrow Requires orientifold

Stability conditions

Facts for D6-brane models

- (R-R tadpoles canceled) and (NS-NS tadpoles canceled) \Leftrightarrow (R-R tadpoles canceled) and (model supersymmetric)
\Rightarrow Requires orientifold

Orientifolding

- Define complex coordinate $z^{\prime}=x^{\prime}+i y^{\prime}$ on each T^{2}.
- Define involution $\bar{\sigma}:\left(z^{1}, z^{2}, z^{3}\right) \mapsto\left(\bar{z}^{1}, \bar{z}^{2}, \bar{z}^{3}\right)$
- Consider orientifold $\left(T^{2} \times T^{2} \times T^{2}\right) /(\bar{\sigma} \times \Omega)$

Section 2

Search for the Standard Model

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$
Models on different orientifolds

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$

Intersecting D6-brane setup Search for the Standard Model

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$ Models on different orientifolds

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$

Intersecting D6-brane setup Search for the Standard Model

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$ Models on different orientifolds

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$

Intersecting D6-brane setup Search for the Standard Model

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$ Models on different orientifolds

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$

Intersecting D6-brane setup Search for the Standard Model

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$ Models on different orientifolds

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$

Models on different orientifolds

Example: $\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right) \stackrel{\text { More details }}{ }$

- 11 semi-realistic models constructed, meaning that e.g.
X matter particles missing (or too many present)
exotic matter present

Models on different orientifolds

Example: $\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right) \cdot$ More details

- 11 semi-realistic models constructed, meaning that e.g.
X matter particles missing (or too many present) exotic matter present

Extension of search

- Different orientifolds

$$
\begin{aligned}
& \text { - }\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{4} \times \bar{\sigma} \times \Omega\right) \\
& \cdot\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \bar{\sigma} \times \Omega\right)
\end{aligned}
$$

Models on different orientifolds

Example: $\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right) \stackrel{\text { More details }}{ }$

- 11 semi-realistic models constructed, meaning that e.g.
X matter particles missing (or too many present) exotic matter present

Extension of search

- Different orientifolds

$$
\begin{aligned}
& \cdot\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{4} \times \bar{\sigma} \times \Omega\right) \\
& \cdot\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \bar{\sigma} \times \Omega\right)
\end{aligned}
$$

\Rightarrow Also semi-realistic models found

Conclusion on D6-brane models

Pros

- Standard Model like structures
- Unification with GR possible
- Prediction of gauge couplings

Conclusion on D6-brane models

Pros

- Standard Model like structures
- Unification with GR possible
- Prediction of gauge couplings

Cons

- Only semi-realistic

Intersecting D6-brane setup Search for the Standard Model

Models on $T^{2} \times T^{2} \times T^{2} /(\bar{\sigma} \times \Omega)$
Models on different orientifolds

Thank you for your attention!

Stability Conditions

Cancelation of R-R tadpoles

- $\sum_{a} N_{a}\left(\pi_{a}+\pi_{a}^{\prime}\right)-4 \pi_{O 6}=0$

Stability Conditions

Cancelation of R-R tadpoles

- $\sum_{a} N_{a}\left(\pi_{a}+\pi_{a}^{\prime}\right)-4 \pi_{\text {O6 }}=0$
- But R-R charges classified by K-theory groups (rather than homology groups)
\Rightarrow Require in addition even number of $\operatorname{USp}(2, \mathbb{C})$ fundamentals

Stability Conditions II

Supersymmetry condition

- Supersymmetry constraint: $\sum_{l=1}^{3} \Theta_{a}^{l}=0 \bmod 2 \pi$

Picture

Definition

- Strings from π_{a} to π_{b} form ab-sector

ab-sector

Definition

- Strings from π_{a} to π_{b} form ab-sector

Properties

- $U\left(N_{a}\right)-U\left(N_{b}\right)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
\Rightarrow Propatation only in the external space $\mathbb{R}^{1,3}$
- multiple intersection $\pi_{a} \circ \pi_{b}=3$ is possible

ab-sector

Definition

- Strings from π_{a} to π_{b} form ab-sector

Properties

- $U\left(N_{a}\right)-U\left(N_{b}\right)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
\Rightarrow Propatation only in the external space $\mathbb{R}^{1,3}$
- multiple intersection $\pi_{a} \circ \pi_{b}=3$ is possible

Conclusion

- ab-sector can give rise to matter particles

Definition

- Strings from π_{a} to π_{a} form aa-sector

aa-sector

Definition

- Strings from π_{a} to π_{a} form aa-sector

Properties

- Adjoint representations of $U\left(N_{a}\right)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^{2} \times T^{2} \times T^{2}$
\Rightarrow Winding and KK-states can appear

aa-sector

Definition

- Strings from π_{a} to π_{a} form aa-sector

Properties

- Adjoint representations of $U\left(N_{a}\right)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^{2} \times T^{2} \times T^{2}$
\Rightarrow Winding and KK-states can appear

Conclusion

- aa-sector can give rise to Standard Model gauge bosons

Family replication in intersecting D6-brane models

Topological intersection number

- Define

$$
\left[a^{\prime}\right] \circ\left[b^{J}\right]=-\left[b^{J}\right] \circ\left[a^{\prime}\right]=\delta^{\prime J}
$$

All other intersections vanish.

- Then for two 3-cycles

$$
\begin{aligned}
\text { - } \pi_{a} & =\prod_{l=1}^{3}\left(n_{a}^{\prime}\left[a^{\prime}\right]+m_{a}^{\prime}\left[b^{\prime}\right]\right) \\
\text { - } \pi_{b} & =\prod_{l=1}^{3}\left(n_{b}^{\prime}\left[a^{\prime}\right]+m_{b}^{\prime}\left[b^{\prime}\right]\right)
\end{aligned}
$$

the topological intersection number is

$$
\pi_{a} \circ \pi_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)
$$

Family replication in intersecting D6-brane models II

Example

$$
\begin{aligned}
\text { - } \pi_{a}=(3,1) & \times(1,0) \times(1,0) \\
& \pi_{b}=(0,1) \times(0,1) \times(0,1) \\
& \Rightarrow \pi_{a} \circ \pi_{b}=3 \cdot(-1) \cdot(-1)=3
\end{aligned}
$$

Family replication in intersecting D6-brane models II

Example

$$
\begin{aligned}
&-\pi_{a}=(3,1) \times(1,0) \times(1,0) \\
&-\pi_{b}=(0,1) \times(0,1) \times(0,1) \\
& \Rightarrow \pi_{a} \circ \pi_{b}=3 \cdot(-1) \cdot(-1)=3
\end{aligned}
$$

Consequence

- Multiple intersections possible
\Rightarrow Integrates family replication into intersecting D6-brane models

Masses For Strings

General formula

$$
\alpha^{\prime} M^{2}=N_{\perp, \nu}+\frac{Y^{2}}{4 \pi^{2} \alpha^{\prime}}+\nu \cdot \sum_{I=1}^{3}\left|\vartheta_{a b}^{\prime}\right|-\nu
$$

- $Y \widehat{=}$ length of string
- $\nu= \begin{cases}0 & \text { Ramond sector } \\ \frac{1}{2} & \text { Neveu-Schwarz sector }\end{cases}$
- $\vartheta_{a b}^{\prime} \widehat{=}$ intersection angle in I-th two-torus

Masses For Strings

General formula

$$
\alpha^{\prime} M^{2}=N_{\perp, \nu}+\frac{Y^{2}}{4 \pi^{2} \alpha^{\prime}}+\nu \cdot \sum_{I=1}^{3}\left|\vartheta_{a b}^{\prime}\right|-\nu
$$

- $Y \widehat{=}$ length of string
- $\nu= \begin{cases}0 & \text { Ramond sector } \\ \frac{1}{2} & \text { Neveu-Schwarz sector }\end{cases}$
- $\vartheta_{a b}^{\prime} \widehat{=}$ intersection angle in I-th two-torus

Example

Ground state in NS-sector has $2 \alpha^{\prime} M^{2}=\sum_{l=1}^{3}\left|\vartheta_{a b}^{l}\right|-1$

Yukawa couplings

General Features

- 2 fermions and Higgs doublet located at different brane intersections
\Rightarrow Triangular worldsheet governs interaction

$$
Y \sim \exp \left(-A^{1}\right) \cdot \exp \left(-A^{2}\right) \cdot \exp \left(-A^{3}\right)
$$

Picture

Models on $\left(T^{2} \times T^{2} \times T^{2}\right) /(\bar{\sigma} \times \Omega)$

Wrapping numbers Back to original slide

Brane	Wrapping Numbers	Gauge Group
$N_{a}=3$	$\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{a}^{2}, \epsilon \beta^{2}\right) \times\left(\frac{1}{\rho}, \frac{1}{2}\right)$	$U(3)$
$N_{a}^{\prime}=3$	$\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{a}^{2},-\epsilon \beta^{2}\right) \times\left(\frac{1}{\rho},-\frac{1}{2}\right)$	
$N_{b}=2$	$\left(n_{b}^{1},-\epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times\left(1, \frac{3 \rho}{2}\right)$	$U(2)$
$N_{b}^{\prime}=2$	$\left(n_{b}^{1}, \epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times\left(1,-\frac{3 \rho}{2}\right)$	
$N_{c}=1$	$\left(n_{c}^{1}, 3 \rho \epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times(0,1)$	$U(1)$
$N_{c}^{\prime}=1$	$\left(n_{c}^{1},-3 \rho \epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times(0,-1)$	
$N_{d}=1$	$\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{d}^{2},-\frac{\beta^{2} \epsilon}{\rho}\right) \times\left(1, \frac{3 \rho}{2}\right)$	$U(1)$
$N_{d}^{\prime}=1$	$\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{d}^{2}, \frac{\beta^{2} \epsilon}{\rho}\right) \times\left(1,-\frac{3 \rho}{2}\right)$	

Model on $\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right)$

Model on $\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right)$ II

Wrapping numbers of branes

Brane	$\left(n_{a}^{1}, m_{a}^{1}\right) \times\left(n_{a}^{2}, m_{a}^{2}\right) \times\left(n_{a}^{3}, \widetilde{m}_{a}^{3}\right)$	Gauge Group
$A_{1}=4$	$(0,1) \times(0,-1) \times(2, \widetilde{0})$	$U(1)^{2}$
$A_{2}=1$	$(1,0) \times(1,0) \times(2, \widetilde{0})$	$U S p(2, \mathbb{C})_{A}$
$B_{1}=2$	$(1,0) \times(1,-1) \times\left(1, \frac{3}{2}\right)$	$\operatorname{SU}(2) \times U(1)$
$B_{2}=1$	$(1,0) \times(0,1) \times(0, \widetilde{-1})$	$U S p(2, \mathbb{C})_{B}$
$C_{1}=3+1$	$(1,1) \times(1,0) \times\left(1, \frac{1}{2}\right)$	$\operatorname{SU}(3) \times U(1)^{2}$
$C_{2}=2$	$(0,1) \times(1,0) \times(0, \widetilde{-1})$	$U S p(4, \mathbb{C})$

Model on $\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right)$ III

Wrapping numbers of image branes

Brane	$\left(n_{a}^{1}, m_{a}^{1}\right) \times\left(n_{a}^{2}, m_{a}^{2}\right) \times\left(n_{a}^{3}, \widetilde{m}_{a}^{3}\right)$	Gauge Group
$A_{1}^{\prime}=4$	$(0,-1) \times(0,1) \times(2, \widetilde{0})$	$U(1)^{2}$
$A_{2}^{\prime}=1$	$(1,0) \times(1,0) \times(2, \widetilde{0})$	$U S p(2, \mathbb{C})_{A}$
$B_{1}^{\prime}=2$	$(1,0) \times(1,1) \times\left(1,-\frac{3}{2}\right)$	$\operatorname{SU}(2) \times U(1)$
$B_{2}^{\prime}=1$	$(1,0) \times(0,-1) \times(0, \widetilde{1})$	$U S p(2, \mathbb{C})_{B}$
$C_{1}^{\prime}=3+1$	$(1,1) \times(1,0) \times\left(1,-\frac{1}{2}\right)$	$\operatorname{SU}(3) \times U(1)^{2}$
$C_{2}^{\prime}=2$	$(0,-1) \times(1,0) \times(0, \widetilde{1})$	$U S p(4, \mathbb{C})$

Classification of D6-Branes I

Label	(P, Q, R, S)	$\left(n_{a}^{1, o}, n_{a}^{2, o}, n_{a}^{3, o}\right)$	$\left(m_{a}^{1, o}, m_{a}^{2, o}, m_{a}^{3, o}\right)$
A1	$(-,+,+,+)$	$(+,+,-)$	$(+,+,-)$
A2	$(+,-,+,+)$	$(+,+,+)$	$(+,-,-)$
A3	$(+,+,-,+)$	$(+,+,+)$	$(-,+,-)$
A4	$(+,+,+,-)$	$(+,+,+)$	$(-,-,+)$
B1	$(+,+, 0,0)$	$(1,+,+)$	$(0,+,-)$
B2	$(+, 0,+, 0)$	$(+, 1,+)$	$(+, 0,-)$
B3	$(+, 0,0,+)$	$(+,+, 1)$	$(+,-, 0)$
B4	$(0,+,+, 0)$	$(+,+, 0)$	$(-,-, 1)$
B5	$(0,+, 0,+)$	$(+, 0,+)$	$(-, 1,-)$
B6	$(0,0,+,+)$	$(0,+,+)$	$(1,-,-)$

Classification of D6-Branes II

Label	(P, Q, R, S)	$\left(n_{a}^{1, o}, n_{a}^{2, o}, n_{a}^{3, o}\right)$	$\left(m_{a}^{1, o}, m_{a}^{2, o}, m_{a}^{3, o}\right)$
C1	$(1,0,0,0)$	$(1,1,1)$	$(0,0,0)$
C2	$(0,1,0,0)$	$(1,0,0)$	$(0,1,-1)$
C3	$(0,0,1,0)$	$(0,1,0)$	$(1,0,-1)$
C4	$(0,0,0,1)$	$(0,0,1)$	$(1,-1,0)$

[^0]
[^0]: \& Back to original frame

