Intersecting D6-Brane Models

Martin Bies

May 23, 2012

Martin Bies Intersecting D6-Brane Models

Placement of D6-brane Compactification Stability

Section 1

Intersecting D6-brane setup

Internal and external space

Stategie

- $\mathbb{R}^{1,9} = \mathbb{R}^{1,3} \times \mathbb{R}^6$
- \bullet cover external space $\mathbb{R}^{1,3}$ by each D6-brane
- $\Rightarrow\,$ D6-branes 3-dimensional in internal space \mathbb{R}^6

Picture $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Separation of the internal space

Factorizable branes

- $\mathbb{R}^6 = \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2$
- Our choice each D6-brane is a line in each \mathbb{R}^2

Picture

Toroidal compactification

Strategie

- Roll up each coordinate on circle
- \Rightarrow D6-brane becomes 3-cycle $\pi_a = \prod_{l=1}^3 \left(n_a^l \left[a^l \right] + m_a^l \left[b^l \right] \right)$

Picture

Placement of D6-branes Compactification Stability

Toroidal Compactification II

Topological intersection number

$$\pi_a \circ \pi_b = \prod_{l=1}^3 \left(n_a^l m_b^l - n_b^l m_a^l \right)$$

Placement of D6-branes Compactification Stability

3

Toroidal Compactification II

Topological intersection number

$$\pi_a \circ \pi_b = \prod_{l=1}^3 \left(n_a^l m_b^l - n_b^l m_a^l \right)$$

Example

•
$$\pi_a = (3,1) \times (1,0) \times (1,0)$$

• $\pi_b = (0,1) \times (0,1) \times (0,1)$
 $\Rightarrow \pi_a \circ \pi_b = 3 \cdot 1 \cdot 1 =$

Placement of D6-branes Compactification Stability

Toroidal Compactification II

Topological intersection number

$$\pi_a \circ \pi_b = \prod_{l=1}^3 \left(n_a^l m_b^l - n_b^l m_a^l \right)$$

Example

•
$$\pi_a = (3,1) \times (1,0) \times (1,0)$$

• $\pi_b = (0,1) \times (0,1) \times (0,1)$

$$\Rightarrow \pi_a \circ \pi_b = 3 \cdot 1 \cdot 1 = 3$$

Conclusion

• Multiple intersections possible

Stability conditions

Facts for D6-brane models

- (R-R tadpoles canceled) and (NS-NS tadpoles canceled)
 ⇔ (R-R tadpoles canceled) and (model supersymmetric)
- ⇒ Requires orientifold

Stability conditions

Facts for D6-brane models

- (R-R tadpoles canceled) and (NS-NS tadpoles canceled)
 ⇔ (R-R tadpoles canceled) and (model supersymmetric)
- ⇒ Requires orientifold

Orientifolding

- Define complex coordinate $z^{I} = x^{I} + iy^{I}$ on each T^{2} .
- Define involution $\overline{\sigma}$: $(z^1, z^2, z^3) \mapsto (\overline{z}^1, \overline{z}^2, \overline{z}^3)$
- Consider orientifold $(T^2 \times T^2 \times T^2) / (\overline{\sigma} \times \Omega)$

More on the constraints

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Section 2

Search for the Standard Model

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ • Phenomenology

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

➤ Wrapping numbers

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Models on $T^2 imes T^2 imes T^2 / (\overline{\sigma} imes \Omega)$. Phenomenology . Wrapping numbers

Na

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Wrapping numbers

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ • Phenomenology

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

➤ Wrapping numbers

Models on $T^2 imes \overline{T^2 imes T^2} / (\overline{\overline{\sigma} imes \Omega}) \bullet Phenomenology$

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

→ Wrapping numbers

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ • Phenomenology

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Wrapping numbers

Models on $T^2 imes T^2 imes T^2 / (\overline{\sigma} imes \Omega)$. Phenomenology

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Models on different orientifolds

Example: $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega)$ · More details

- 11 semi-realistic models constructed, meaning that e.g.
 - × matter particles missing (or too many present)
 - × exotic matter present

Models on different orientifolds

Models on different orientifolds

Example: $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega)$ More details

• 11 semi-realistic models constructed, meaning that e.g.

- × matter particles missing (or too many present)
- × exotic matter present

Extension of search

Different orientifolds

•
$$(T^2 \times T^2 \times T^2) / (\mathbb{Z}_4 \times \overline{\sigma} \times \Omega)$$

• $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_4 \times \overline{\sigma} \times \Omega)$

Models on different orientifolds

Models on different orientifolds

Example: $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega)$ More details

• 11 semi-realistic models constructed, meaning that e.g.

- × matter particles missing (or too many present)
- × exotic matter present

Extension of search

- Different orientifolds
 - $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_4 \times \overline{\sigma} \times \Omega)$
 - $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_4 \times \overline{\sigma} \times \Omega)$

 \Rightarrow Also semi-realistic models found

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Conclusion on D6-brane models

Pros

- Standard Model like structures
- Unification with GR possible
- Prediction of gauge couplings

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Conclusion on D6-brane models

Pros

- Standard Model like structures
- Unification with GR possible
- Prediction of gauge couplings

Cons

• Only semi-realistic

Models on $T^2 \times T^2 \times T^2 / (\overline{\sigma} \times \Omega)$ Models on different orientifolds

Thank you for your attention!

Stability Conditions

Cancelation of R-R tadpoles

•
$$\sum_{a} N_{a} (\pi_{a} + \pi'_{a}) - 4\pi_{O6} = 0$$

Stability Conditions

Cancelation of R-R tadpoles

- $\sum_{a} N_{a} (\pi_{a} + \pi'_{a}) 4\pi_{O6} = 0$
- **But** R-R charges classified by K-theory groups (rather than homology groups)
- \Rightarrow Require in addition even number of $USp(2,\mathbb{C})$ fundamentals

Stability Conditions II

Supersymmetry condition

• Supersymmetry constraint: $\sum_{l=1}^{3} \Theta_{a}^{l} = 0 \mod 2\pi$

Picture

Back to original slide

ab-sector

Definition

• Strings from π_a to π_b form **ab-sector**

ab-sector

Definition

• Strings from π_a to π_b form **ab-sector**

Properties

- $U(N_a) U(N_b)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
- \Rightarrow Propatation **only** in the external space $\mathbb{R}^{1,3}$
 - multiple intersection $\pi_a \circ \pi_b = 3$ is possible

ab-sector

Definition

• Strings from π_a to π_b form **ab-sector**

Properties

- $U(N_a) U(N_b)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
- \Rightarrow Propatation **only** in the external space $\mathbb{R}^{1,3}$
 - multiple intersection $\pi_a \circ \pi_b = 3$ is possible

Conclusion

ab-sector can give rise to matter particles

Definition

• Strings from π_a to π_a form **aa-sector**

Definition

• Strings from π_a to π_a form **aa-sector**

Properties

- Adjoint representations of $U(N_a)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^2 \times T^2 \times T^2$
- \Rightarrow Winding and KK-states can appear

Definition

• Strings from π_a to π_a form **aa-sector**

Properties

- Adjoint representations of $U(N_a)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^2 \times T^2 \times T^2$
- \Rightarrow Winding and KK-states can appear

Conclusion

• aa-sector can give rise to Standard Model gauge bosons

Family replication in intersecting D6-brane models

Topological intersection number

Define

$$\begin{bmatrix} a^{I} \end{bmatrix} \circ \begin{bmatrix} b^{J} \end{bmatrix} = - \begin{bmatrix} b^{J} \end{bmatrix} \circ \begin{bmatrix} a^{I} \end{bmatrix} = \delta^{IJ}$$

All other intersections vanish.

• Then for two 3-cycles

•
$$\pi_{a} = \prod_{l=1}^{3} (n'_{a} [a'] + m'_{a} [b'])$$

• $\pi_{b} = \prod_{l=1}^{3} (n'_{b} [a'] + m'_{b} [b'])$

the topological intersection number is

$$\pi_a \circ \pi_b = \prod_{l=1}^3 \left(n_a^l m_b^l - n_b^l m_a^l \right)$$

Family replication in intersecting D6-brane models II

Example

•
$$\pi_a = (3,1) \times (1,0) \times (1,0)$$

•
$$\pi_b = (0,1) \times (0,1) \times (0,1)$$

$$\Rightarrow \pi_a \circ \pi_b = 3 \cdot (-1) \cdot (-1) = 3$$

Family replication in intersecting D6-brane models II

Example

•
$$\pi_a = (3,1) \times (1,0) \times (1,0)$$

•
$$\pi_b = (0,1) \times (0,1) \times (0,1)$$

$$\Rightarrow \pi_a \circ \pi_b = 3 \cdot (-1) \cdot (-1) = 3$$

Consequence

- Multiple intersections possible
- \Rightarrow Integrates family replication into intersecting D6-brane models

Masses For Strings

General formula

$$\alpha' M^2 = N_{\perp,\nu} + \frac{Y^2}{4\pi^2 \alpha'} + \nu \cdot \sum_{l=1}^3 \left| \vartheta_{ab}^l \right| - \nu$$

•
$$Y \cong$$
 length of string
• $\nu = \begin{cases} 0 & \text{Ramond sector} \\ \frac{1}{2} & \text{Neveu-Schwarz sector} \end{cases}$
• $\vartheta_{ab}^{I} \cong$ intersection angle in I-th two-torus

Masses For Strings

General formula

$$\alpha' M^2 = N_{\perp,\nu} + \frac{Y^2}{4\pi^2 \alpha'} + \nu \cdot \sum_{l=1}^3 \left| \vartheta_{ab}^l \right| - \nu$$

•
$$Y \cong$$
 length of string
• $\nu = \begin{cases} 0 & \text{Ramond sector} \\ \frac{1}{2} & \text{Neveu-Schwarz sector} \end{cases}$
• $\vartheta_{ab}^{I} \cong$ intersection angle in I-th two-torus

Example

Ground state in NS-sector has $2\alpha' M^2 = \sum_{l=1}^3 \left| \vartheta_{ab}^l \right| - 1$

Yukawa couplings Back to original slide

General Features

- 2 fermions and Higgs doublet located at different brane intersections
- \Rightarrow Triangular worldsheet governs interaction

$$Y \sim \exp\left(-A^{1}
ight) \cdot \exp\left(-A^{2}
ight) \cdot \exp\left(-A^{3}
ight)$$

Picture

Models on $(\overline{T}^2 \times \overline{T}^2 \times \overline{T}^2) / (\overline{\sigma} \times \Omega)$

Wrapping numbers • Back to original slide

Brane	Wrapping Numbers	Gauge Group
$N_a = 3$	$\left(\frac{1}{\beta^1},0 ight) imes \left(\textit{n}_{\textit{a}}^2,\epsilon\beta^2 ight) imes \left(\frac{1}{ ho},\frac{1}{2} ight)$	U(3)
<i>N</i> ' _a = 3	$\left(\frac{1}{\beta^{1}},0\right) \times \left(n_{a}^{2},-\epsilon\beta^{2}\right) \times \left(\frac{1}{\rho},-\frac{1}{2}\right)$	
$N_b = 2$	$\left(n_b^1, -\epsilon\beta^1\right) \times \left(\frac{1}{\beta^2}, 0\right) \times \left(1, \frac{3\rho}{2}\right)$	U(2)
$N_b'=2$	$\left(n_{b}^{1},\epsilon\beta^{1} ight) imes\left(rac{1}{eta^{2}},0 ight) imes\left(1,-rac{3 ho}{2} ight)$	- ()
$N_c = 1$	$\left(n_{c}^{1}, 3 ho\epsilon\beta^{1} ight) imes \left(rac{1}{eta^{2}}, 0 ight) imes \left(0, 1 ight)$	U(1)
$N_c'=1$	$\left(n_{c}^{1},-3 ho\epsiloneta^{1} ight) imes \left(rac{1}{eta^{2}},0 ight) imes \left(0,-1 ight)$	- ()
$N_d = 1$	$\left(rac{1}{eta^{1}},0 ight) imes\left(n_{d}^{2},-rac{eta^{2}\epsilon}{ ho} ight) imes\left(1,rac{3 ho}{2} ight)$	U(1)
$N_d'=1$	$\left(\frac{1}{\beta^1},0\right) \times \left(n_d^2,\frac{\beta^2\epsilon}{\rho}\right) \times \left(1,-\frac{3\rho}{2}\right)$	

Model on $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega)$

Model on $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega)$ II

Wrapping numbers of branes

Brane	$\left(n_a^1, m_a^1\right) imes \left(n_a^2, m_a^2\right) imes \left(n_a^3, \widetilde{m}_a^3\right)$	Gauge Group
$A_1 = 4$	$(0,1) imes (0,-1) imes \left(2,\widetilde{0} ight)$	$U(1)^{2}$
$A_{2} = 1$	$(1,0) imes(1,0) imes\left(2,\widetilde{0} ight)$	$USp(2,\mathbb{C})_A$
$B_1 = 2$	$(1,0) imes (1,-1) imes \left(1,rac{\widetilde{3}}{2} ight)$	SU(2) imes U(1)
$B_{2} = 1$	$(1,0) imes (0,1) imes \left(0,\widetilde{-1} ight)$	$USp(2,\mathbb{C})_B$
$C_1 = 3 + 1$	$(1,1) imes (1,0) imes \left(1,rac{\widetilde{1}}{2} ight)$	$SU(3) imes U(1)^2$
<i>C</i> ₂ = 2	$(0,1) imes(1,0) imes\left(\overset{\frown}{0,-1} ight)$	$\mathit{USp}\left(4,\mathbb{C} ight)$

Model on $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega)$ III

Wrapping numbers of image branes

Brane	$\left(n_a^1, m_a^1\right) imes \left(n_a^2, m_a^2\right) imes \left(n_a^3, \widetilde{m}_a^3\right)$	Gauge Group
$A'_1 = 4$	$(0,-1) imes (0,1) imes \left(2,\widetilde{0} ight)$	$U(1)^{2}$
$A'_{2} = 1$	$(1,0) imes(1,0) imes\left(2,\widetilde{0} ight)$	$\mathit{USp}\left(2,\mathbb{C} ight)_{\mathcal{A}}$
$B'_1 = 2$	$(1,0) imes (1,1) imes \left(1,-{3\over 2} ight)$	SU(2) imes U(1)
$B'_{2} = 1$	$(1,0) imes (0,-1) imes \left(0,\widetilde{1} ight)$	$USp(2,\mathbb{C})_B$
$C'_1 = 3 + 1$	$(1,1) imes (1,0) imes \left(1,-rac{1}{2} ight)$	$SU(3) imes U(1)^2$
$C'_{2} = 2$	$(0,-1) imes (1,0) imes \left(0,\widetilde{1} ight)$	$\mathit{USp}\left(4,\mathbb{C} ight)$

Label	(P,Q,R,S)	$\left(n_a^{1,o}, n_a^{2,o}, n_a^{3,o}\right)$	$\left(m_{a}^{1,o},m_{a}^{2,o},m_{a}^{3,o} ight)$
A1	(-,+,+,+)	(+, +, -)	(+,+,-)
A2	(+, -, +, +)	(+, +, +)	(+, -, -)
A3	(+,+,-,+)	(+, +, +)	(-,+,-)
A4	(+,+,+,-)	(+, +, +)	(-, -, +)
B1	(+,+,0,0)	(1, +, +)	(0, +, -)
B2	(+, 0, +, 0)	(+, 1, +)	(+, 0, -)
B3	(+, 0, 0, +)	(+, +, 1)	(+, -, 0)
B4	(0, +, +, 0)	(+,+,0)	(-, -, 1)
B5	(0, +, 0, +)	(+, 0, +)	(-, 1, -)
B6	(0, 0, +, +)	(0, +, +)	(1,-,-)

Classification of D6-Branes II

Label	(P,Q,R,S)	$\left(\left(n_{a}^{1,o}, n_{a}^{2,o}, n_{a}^{3,o} \right) \right)$	$\left(m_a^{1,o},m_a^{2,o},m_a^{3,o}\right)$
C1	(1,0,0,0)	(1, 1, 1)	(0,0,0)
C2	(0, 1, 0, 0)	(1, 0, 0)	(0,1,-1)
C3	(0, 0, 1, 0)	(0, 1, 0)	(1,0,-1)
C4	(0, 0, 0, 1)	(0, 0, 1)	(1, -1, 0)

Back to original frame