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Gravity + Standard Model = ?

String theory – a promising candidate
Every consistency string theory contains a graviton
D-branes carry gauge theories
UV finite theory (at least up to 2-loop order)

Drawback: Consistency requires 10d spacetime

S =

our 4-dim. world W

×

‘small’ 6-dim. manifold B3
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Towards the string landscape

Ambiguity: Which manifold B3 (and substructure) to choose?

S =

our 4-dim. world W

×

‘small’ 6-dim. manifold B3

Choices – curse or blessing?

Many possible choices for B3 (and substructure)
Holy grail: Find B3 (and substructure) such that string theory
on S =W ×B3 reproduces physics experienced in W
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Means of simplification: The M-theory star

type IIA F-theory

type IIBtype I

heterotic SO(32)

heterotic E8 × E8 11d SUGRA

T

TS

S

S

S

M-Theory

low
energies

gs, α
′ � 1 (α′ = l2s

4π2 )
α′ � 1 but

gs strongly coupled
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Towards a quality check on F-theory vacua

Proposal for quality criterion
Number of standard model particles
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Towards a quality check on F-theory vacua

101 105 1010 1015 1020

quantum gravity

α−1
em (Λ)

α−1
w (Λ)

α−1
s (Λ)

CERN (14TeV)

Λ/GeV

α−1
i (Λ)

Consequence: Modified quality criterion
Number of massless particles in F-theory vacuum
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Questions so far?
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Approaching F-theory from IIB string theory

type IIA F-theory

type IIBtype I

heterotic SO(32)

heterotic E8 × E8 11d SUGRA

T

TS

S

S

S

M-Theory

low
energies

gs, α
′ � 1 (α′ = l2s

4π2 )
α′ � 1 but

gs strongly coupled
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Revision: IIB Supergravity (10D)
Bosonic field content

field symbol type

dilaton φ scalar
metric Gµν symmetric 2-tensor
B-field B2 2-form

RR 0-form C0 0-form
RR 2-form C2 2-form
RR 4-form C4 4-form

New fields
Axio dilaton
τ := C0 + ie−φ

H3 := dB2

G3 := F3 − τH3

. . .

Action

SIIB =
2π
l8s

∫

M10

d10x
[√
−GR − dτ ∧ ?dτ

2 (=τ)2 +
dG3 ∧ ?dG3

=τ + . . .

]
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

SL(2,Z) invariance of IIB-SUGRA

Classical symmetry: SL(2,R)

Given
(

a b
c d

)
∈ SL(2,R), SIIB is invariant under

( C4
G

)
7→
( C4

G

)
, τ = C0 + ie−φ 7→ aτ + b

cτ + d
,
(

C2
B2

)
7→
(

a b
c d

)( C2
B2

)
.

Reduced symmetry in quantised IIB SUGRA

Partition function contains factor exp(2πiτ)

⇒ Invariant only if τ is transformed by SL(2,Z)

⇒ Quantised IIB SUGRA has SL(2,Z)-symmetry
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Backreaction of D7-branes

Magnetic charge of D7-brane under C0

D7-brane has 8-dimensional world-volume D8

IIB SUGRA contains 0-form field C0

⇒ C0 → F1 = dC0
∗→ F9 = dC̃8 → C̃8

⇒ Magnetic coupling Smagnetic =
∫
D8

C̃8

Consequence: Backreaction
Two dimensional space orthogonal to D7-brane

⇒ W.l.o.g. complex plane C with D7-brane at position z0

⇒ Since D7-brane is source, C0 satisfies ∆C0 = δ(z − z0)

⇒ τ(z) = C0(z) + ie−φ(z) = 1
2πi log(z − z0) + . . .
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Geometrising the SL(2,Z)-invariance
=z

<z

τ

1

C1,τ

IIB-SUGRA Torus C1,τ

Axio-dilaton τ(z) complex structure
SL(2,Z)-invariance Symmetry group

D7-brane: τ(z) = log(z−z0)
2πi + . . . Singular torus
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Geometric ‘book-keeping device’

∆

base B3

fibre C1,τ

total space Y4
π

π

π

IIB-SUGRA Geometry
union of loci of D7-branes Singular locus ∆ of elliptic
in IIB-compactification fibration C1,τ ↪→ Y4

π� B6
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Defining F-theory from M-theory

11d SUGRA on M1,2 × Y4:
π : Y4 � B3 and π−1{p} ∼= C1,τ with 1-cycles S1

A(p), S
1
B(p)

Shrink S1
A(p) to zero

IIA string theory on M1,2 × X:
πX : X � B3 and π−1

X {p} ∼= S1
B

T-duality along S1
B(p)

τ(p) remains
constant

IIB string theory on M1,2 × X̃:
π̃X : X̃ � B3 and π̃X

−1{p} ∼= S̃1
B(p) with R̃B(p) = α′

RB(p)

Decompactify S̃1
B(p), i.e. R̃B(p) → ∞

IIB string theory on M1,2 × R × B3 ≡ M1,3 × B3

S1
B

S1
A

S1
B

S̃1
B

S̃1
B
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Towards a dictionary between physics and geometry

Strategy and problems
Use definition of F-theory as M-theory limit

⇒ Compare physics of 11D SUGRA compactification and
geometry of elliptic fibration C1,τ ↪→ Y4 � B3

Y4 is singular (over D7-branes), so singularities are important
⇒ Two approaches:

1 Work with singular Y4 (e. g. 1310.1931, 1410.4867,
1603.00062)

2 Resolve singularities and work with smooth space Ŷ4 (e. g.
1109.3454, 1202.3138)

Choice in this talk

We work with smooth space Ŷ4
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Blow-up resolution in a cartoon
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From IIB string theory to F-theory
From M-theory to F-theory
Non-Abelian gauge symmetries on D7-branes

Cartoon on blow-up resolution

...

. . .

. . . . . .

In general obtain . . .
. . . affine Dynkin diagrams of A-, B-, C-, D-, E-, F4 and G2-type
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non-Abelian gauge theories and massless matter

∆

base B3

fibre C1,τ

total space Y4
π

π

π
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non-Abelian gauge theories and massless matter

Singular locus ∆

generic point

location of D7-branes

Gauge group G on D7-branes

M2-branes wrapping formal
sum of P1

i s corresponding to
weight βa(R) of irrep. R of G
encode matter
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Questions?
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Parametrisation of G4-fluxes
Description of massless matter
Counting massless matter with CAP

Strategy and disclaimer
Strategy

Step Mathematics
Parametrise G4-fluxes Chow group CH2(Ŷ4)

Describe massless matter Sheaf cohomology
Count zero modes with CAP Exts of f. p. graded S-modules

Disclaimer
1 We choose to resolve singular Y4 to obtain smooth Ŷ4

⇒ Can only detect Abelian gauge backgrounds
⇒ Formulation of non-Abelian gauge fluxes might depart from

1310.1931, 1410.4867, 1603.00062
2 Description of G4-flux on smooth Ŷ4 exists in language of

Cheeger-Simons cohomology 0312069, 0409135, 0409158
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Parametrisation of G4-fluxes
Description of massless matter
Counting massless matter with CAP

Origin of G4-flux in F-theory

11d SUGRA action (G4 = dC3)

S11D =
M9

11D
2

∫

M11

d11x
(√
−detGR − G4 ∧ ∗G4

2
− C3 ∧ G4 ∧ G4

6

)

Consequence
M2-branes couple electrically to 3-form gauge potential C3

G4 = dC3 ∈ H2,2(Ŷ4) is field strength
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Description of massless matter
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An different way to think of G4

Theorem of de Rham (1931): Duality of differential forms and
cycles

M compact, Cr (M) its r -chains and Ωr (M) its r -forms
Inner product

〈·, ·〉 : Cr (M)× Ωr (M)→ R , (c , ω) 7→ 〈c , ω〉 =

∫

c

ω

⇒ Extends to inner product 〈·, ·〉 : Hr (M)× H r (M)

de Rham proved that 〈·, ·〉 is bilinear and non-degenerate
⇒ H r (M) ∼= H∨r (M) (dual vector spaces)

Consequence

G4 ∈ H2,2(Ŷ4,Z) can be represented by complex 2-cycle A

Martin Bies Counting massless matter in F-theory with CAP 23 / 42
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An different way to think of G4

Theorem of de Rham (1931): Duality of differential forms and
cycles

M compact, Cr (M) its r -chains and Ωr (M) its r -forms
Inner product

〈·, ·〉 : Cr (M)× Ωr (M)→ R , (c , ω) 7→ 〈c , ω〉 =

∫

c

ω

⇒ Extends to inner product 〈·, ·〉 : Hr (M)× H r (M)

de Rham proved that 〈·, ·〉 is bilinear and non-degenerate
⇒ H r (M) ∼= H∨r (M) (dual vector spaces)

Consequence

G4 ∈ H2,2(Ŷ4,Z) can be represented by complex 2-cycle A
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Gauge backgrounds and Deligne cohomology
Questions

What specifies gauge date C3 beyond field strength G4?
⇒ Look for structure which combines information on

field strength G4 ∈ H2,2
Z (Ŷ4)

Wilson line d.o.f.
∮

C3

Natural candidate in mathematics 9801057, 9802093, 0312069, 0409135, 0409158,

1104.2610, 1203.6662, 1212.4505, 1310.1931, 1402.5144

0→ J2(Ŷ4) ↪→ H4
D(Ŷ4,Z(2)) � H2,2

Z (Ŷ4)→ 0
H. Esnault, E. Viehweg – ‘Beilinson’s conjectures on special values of L-functions’ 1988

Intermediate Jacobian ↔ Wilson lines
∮

C3
J2(Ŷ4) ' H3(Ŷ4,C)

H2,1(Ŷ4)+H3(Ŷ4,Z))

Deligne cohomology H4
D(Ŷ4,Z(2)) ↔ full gauge data

H2,2
Z (Ŷ4) ↔ field strength G4
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Deligne cohomology H4
D(Ŷ4,Z(2)) ↔ full gauge data

H2,2
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Practical representation: Chow group
Motivation

H4
D(Ŷ4,Z(2)) is hard to handle (practically)

⇒ Easy-to-work-with parametrisation (of subset) from CH2(Ŷ4)
M. Green, J. Murre, C. Voisin – ‘Algebraic Cycles and Hode Theory’, 1994

Basics on the Chow group CHk(X )

Rational equivalence:
C1 ∼ C2 ∈ Zp(X ) iff C1 − C2 is zero/pole of a rational
function defined on p + 1-dim. irreducible subspace of X

⇒ No longer analytic geometry but rather algebraic geometry
CHk(X ) = {rational equivalence classes of codim. k-cycles}

Consequence

Full G4-gauge data ↔ A ∈ CH2(Ŷ4) – equ. class of 2-cycle

Martin Bies Counting massless matter in F-theory with CAP 25 / 42



Motivation
Introduction to F-theory

G4-flux and counting massless matter in F-theory
Applications in F-theory GUT-models

Parametrisation of G4-fluxes
Description of massless matter
Counting massless matter with CAP

Practical representation: Chow group
Motivation

H4
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Local picture: Twisted Theory on D7-branes 0802.2969, 0802.3391

charged under
La|Cab

⊗ L∨
b |Cab

D7-brane Σa

D7-brane Σb
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Local picture: Twisted Theory on D7-branes 0802.2969, 0802.3391

charged under
La|Cab

⊗ L∨
b |Cab

D7-brane Σa

D7-brane Σb

line bundle La

line bundle Lb

matter curve
Cab := Σa ∩ Σb

charged under
La|Cab

⊗ L∨
b |Cab

Chiral N = 1 multiplet on Cab ↔ H0(Cab, Lab ⊗
√
KCab

)

Anti-chiral N = 1 multiplet on Cab ↔ H1(Cab, Lab ⊗
√
KCab

)
chiral index ↔ χ(Rab) =

∫
Cab

c1(Lab)

(
√
KCab

spin bundle induced by holomorphic embedding of on Cab)
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Matching local picture with global data 1706.04616

∆

Y4
π

π

π

CR

1 State in irrep. R (weight βa(R))

↔ Sa
R =

n∑

i=1

na
i P1

i (CR) ∈ CH2(Ŷ4)

2 Full G4-gauge data ↔ A ∈ CH2(Ŷ4)

3 Sa
R and A intersect in points of Ŷ4

4 π∗ (Sa
R · A) =̂ points in CR

5 line bundle L (Sa
R,A) on CR

OCR (π∗ (Sa
R · A))⊗

√
KCR

Consequence

N = 1 chiral multiplets ↔ H0 (CR, L (Sa
R,A))

N = 1 anti-chiral multiplets ↔ H1 (CR, L (Sa
R,A))

chiral index ↔
∫
Sa

R
G4
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How to count massless matter? Our strategy is . . .

line bundle L(Sa
R, A) only defined on matter curve CR

∆

Y4
π

π

π

1 Pick ‘nice’ geometry
⇒ Toric ambient space XΣ
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R, A) only defined on matter curve CR

1 Pick ‘nice’ geometry
⇒ Toric ambient space XΣ

2 Extend L(Sa
R,A) to XΣ

⇒ Coherent sheaf F with
F|CR

∼= L(Sa
R,A)

3 Find computer models
for Coh(XΣ)

4 Use these models to
compute sheaf
cohomology
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Simple (ambient) spaces – toric varieties

Remarks
In this talk, all toric varieties are smooth and complete
More background in [CoxLittleSchenk2011]

Example: Projective space P2
Q

S = Q [x1, x2, x3] and deg (xi ) = 1
ISR = 〈x1 · x2 · x3〉
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Coherent sheaves on a toric variety XΣ (with Cox ring S)

Sheafification functor
S-fpgrmod: category of finitely presented graded S-modules
CohXΣ: category of coherent sheaves on XΣ

⇒ There exists the sheafification functor

˜ : S-fpgrmod→ CohXΣ , M 7→ M̃

Computer models for coherent sheaves
The category S-fpgrmod can be handled with CAP

⇒ S-fpgrmod can serve as computer models for coherent sheaves
1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100, 1712.03492
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The category S-fpgrmod can be handled with CAP

⇒ S-fpgrmod can serve as computer models for coherent sheaves
1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100, 1712.03492
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From Points to Coherent Sheaves

How to encode OXΣ
(−D)?

XΣ toric variety (Cox ring S)
Divisor D = V (P1, . . . ,Pn)
cut out by polynomials Pi

⇒ Model for OXΣ
(−D)?

XΣ

Divisor D

Answer

A := ker (P1, . . . ,Pn) ↔ relations among the Pi

Define M ∈ S-fpgrmod from exact sequence
R2⊕

j=1

S (ej)
A→

R1⊕

i=1

S (di ) � M → 0

⇒ M̃ ∼= OXΣ
(−D), so M is computer model for OXΣ

(−D)
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Implemented Algorithm

Input and Output

smooth, complete toric variety XΣ

F ∈ S-fpgrmod
hi
(
XΣ, F̃

)

Step-by-step (References in two slides)

1 Use cohomCalg to compute (0 ≤ k ≤ dimQ (XΣ))

V k (XΣ) :=
{

L ∈ Pic (XΣ) , hk (XΣ, L) = 0
}

2 Find ideal I ⊆ S along idea of G. Smith s.t.

H i (XΣ, F̃ ) ∼= ExtiS (I ,F )0

3 Compute Q-dimension of ExtiS (I ,F )0
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Example computation from 1706.04616

Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ F and F defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � F → 0

h1
(
P2
Q, F̃

)
=?

Apply Algorithm

1 V 0(P2
Q) = (−∞,−1]Z , V 1(P2

Q) = Z, V 2(P2
Q) = [−2,∞)Z

2

3

Q37425 → Q27201 �

Ext1S
(
B(44)

Σ ,F
)

0

→ 0
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Summary on implementation in CAP

Have combined
cohomCalg by R. Blumenhagen et al.
1003.5217, 1006.0780, 1006.2392, 1010.3717

work of G. Smith et al. on computing sheaf cohomologies
math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25

⇒ Our algorithm applies 1802.08860

on more general toric spaces (than idea of G. Smith)
to all coherent sheaves (i. e. not ‘only’ line bundles as
cohomCalg)

Have improved computation of Q-dimension of ExtiS by
parallelisation
replacing Groebner basis computations by Gauß-eliminations

⇒ Improved performance 1802.08860

Available at GitHub https://github.com/HereAround
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Additional challenge in GUT-models: Hypercharge flux
Moduli dependence of massless spectrum
Summary of talk

Hypercharge flux in F-theory GUT models

How to break SU(5) to SU(3)× SU(2)× U(1)?

Higgs effect
Requires knowledge of Higgs potential V

⇒ String theory: Derive V from geometry of B3
⇒ Fairly involved, so typically V is not known

Alternative: Hypercharge flux 0802.2969, 0802.3391, . . .

Relies on Stückelberg masses
⇒ No knowledge of Higgs potential V required

Non-trivial check for CAP-performance
Hypercharge flux AY never pullback of line bundle from ∆

⇒ AY requires full power of algorithms in CAP

⇒ Computation of massless spectrum possible 1706.04616, 1802.08860

Can study moduli dependence of massless spectrum
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Higgs effect
Requires knowledge of Higgs potential V

⇒ String theory: Derive V from geometry of B3
⇒ Fairly involved, so typically V is not known

Alternative: Hypercharge flux 0802.2969, 0802.3391, . . .

Relies on Stückelberg masses
⇒ No knowledge of Higgs potential V required

Non-trivial check for CAP-performance
Hypercharge flux AY never pullback of line bundle from ∆

⇒ AY requires full power of algorithms in CAP

⇒ Computation of massless spectrum possible 1706.04616, 1802.08860

Can study moduli dependence of massless spectrum
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How the complex structure moduli enter

Moduli in SU(5)× U(1)X -Tate model from 1706.04616

Matter curve ⊃ C5−2 = V (a1,0 · a4,3 − a3,2 · a2,1) ⊆ P2
Q

a1,0 = c1x4
1 + c2x3

1 x2 + c3x2
1 x2x3 + . . . ∈ Q[x1, x2, x3]

deg a1,0 = 4, deg a2,1 = 7, deg a3,2 = 10, deg a4,3 = 13

Strategy

Moduli ci enter definition of line bundle L(Sa
R(CR),A)

Smoothness of matter curve CR NOT required for CAP
⇒ Can perform computation for non-generic values ci

⇒ Probe moduli dependence of massless spectrum
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Example: SU(5)xU(1)-Tate Model (R = 5−2) 1706.04616

ã1,0 ã2,1 ã3,2 ã4,3 h0 (CR, LR)

M1 (x1 − x2)4 x7
1 x10

2 x13
3 22

M2 (x1 − x2) x3
3 x7

1 x10
2 x13

3 21
M3 x4

3 x7
1 x7

2 (x1 + x2)3 x12
3 (x1 − x2) 11

M4 (x1 − x2)3 x3 x7
1 x10

2 x13
3 9

M5 x4
3 x7

1 x8
2 (x1 + x2)2 x11

3 (x1 − x2)2 7
M6 x4

3 x7
1 x10

2 x8
3 (x1 − x2)5 6

M7 x4
3 x7

1 x9
2 (x1 + x2) x10

3 (x1 − x2)3 5
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SU(5)× U(1)X GUT with ∆ ∼= dP3 1802.08860

Summary
Three matter curves C101 , C53 and C5−2

Fix G4-flux A and hypercharge flux AY

⇒ Parametrisation of moduli space by 208 parameters

Strategy
Recently: Focus on 3-dim. patches of parameter space
For future work: Extend analysis to understand global structure
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h0(C101, L(Sa
R,A)) with R = (3,2)1X ,1Y

generic: 3, cyan: 4, green: 5, blue: 6, pink: 8
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Result explained by decision tree
X5 ≤ 0.125
gini = 0.211

samples = 4421
value = [3910, 229, 266, 15, 1]

class = 3

X5 ≤ -0.125
gini = 0.29

samples = 2345
value = [1955, 116, 266, 7, 1]

class = 3

True

X6 ≤ 0.125
gini = 0.11

samples = 2076
value = [1955, 113, 0, 8, 0]

class = 3

False

X6 ≤ -0.125
gini = 0.112

samples = 2078
value = [1955, 116, 0, 7, 0]

class = 3

X0 ≤ 0.125
gini = 0.007

samples = 267
value = [0, 0, 266, 0, 1]

class = 5

gini = 0.0
samples = 987

value = [987, 0, 0, 0, 0]
class = 3

X6 ≤ 0.125
gini = 0.201

samples = 1091
value = [968, 116, 0, 7, 0]

class = 3

X0 ≤ 0.125
gini = 0.107

samples = 123
value = [0, 116, 0, 7, 0]

class = 4

gini = 0.0
samples = 968

value = [968, 0, 0, 0, 0]
class = 3

X0 ≤ -0.125
gini = 0.195

samples = 64
value = [0, 57, 0, 7, 0]

class = 4

gini = 0.0
samples = 59

value = [0, 59, 0, 0, 0]
class = 4

gini = 0.0
samples = 57

value = [0, 57, 0, 0, 0]
class = 4

gini = 0.0
samples = 7

value = [0, 0, 0, 7, 0]
class = 6

X0 ≤ -0.125
gini = 0.014

samples = 137
value = [0, 0, 136, 0, 1]

class = 5

gini = 0.0
samples = 130

value = [0, 0, 130, 0, 0]
class = 5

gini = 0.0
samples = 123

value = [0, 0, 123, 0, 0]
class = 5

X6 ≤ 0.125
gini = 0.133

samples = 14
value = [0, 0, 13, 0, 1]

class = 5

X6 ≤ -0.125
gini = 0.245
samples = 7

value = [0, 0, 6, 0, 1]
class = 5

gini = 0.0
samples = 7

value = [0, 0, 7, 0, 0]
class = 5

gini = 0.0
samples = 6

value = [0, 0, 6, 0, 0]
class = 5

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 1]
class = 8

X6 ≤ -0.125
gini = 0.198

samples = 1094
value = [973, 113, 0, 8, 0]

class = 3

gini = 0.0
samples = 982

value = [982, 0, 0, 0, 0]
class = 3

gini = 0.0
samples = 973

value = [973, 0, 0, 0, 0]
class = 3

X0 ≤ 0.125
gini = 0.123

samples = 121
value = [0, 113, 0, 8, 0]

class = 4

X0 ≤ -0.125
gini = 0.219

samples = 64
value = [0, 56, 0, 8, 0]

class = 4

gini = 0.0
samples = 57

value = [0, 57, 0, 0, 0]
class = 4

gini = 0.0
samples = 56

value = [0, 56, 0, 0, 0]
class = 4

gini = 0.0
samples = 8

value = [0, 0, 0, 8, 0]
class = 6

obtained from scikit-learn: 4913 data points, 3193 used for training, 1720 correctly predicted
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Questions so far?
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Step 1 – Physics analysis of massless matter in F-theory

Task

4 dim. F-theory
compactification

Count (anti)-chiral massless matter
fields in 4d effective theory

Steps and results

With T. Weigand, C. Mayrhofer, C. Pehle
1402.5144, 1706.04616, 1706.08528, 1802.08860

Use A ∈ CH2(Ŷ4) as parametrisation of full G4-gauge data
⇒ Identified line bundles L(S i

R,A) such that
Chiral N = 1 multiplets ↔ H0(CR, L(S i

R,A))
Anti-chiral N = 1 multiplets ↔ H1(CR, L(S i

R,A))
Challenge: L(S i

R,A) in general not pullback
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Step 2 – Compute sheaf cohomologies on toric varieties

Building blocks
Have combined two approaches:

1 cohomCalg by R. Blumenhagen et al.
1003.5217, 1006.0780, 1006.2392, 1010.3717

2 idea of G. Smith et al.
math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25

Model coherent sheaves with S-fpgrmod on toric varieties
1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100, 1712.03492

Properties of algorithm

In collaboration with M. Barakat et al. (Siegen university)
implemented in CAP https://github.com/homalg-project/CAP_project

Applies to smooth, complete toric varieties 1802.08860

Has improved performance 1802.08860

Available at GitHub https://github.com/HereAround
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Step 3 – Applications to F-Theory GUTs

Challenges in F-theory GUT-models

Hypercharge flux AY (used for GUT-breaking) not pullback
Applicability of CAP requires thorough investigation of
geometry (e. g. explicit isomorphism dP3 ∼= ∆)

Results
1 We have conjectured a construction for isomorphism dP3 ∼= ∆

⇒ Passes lots on consistency checks
2 CAP can indeed handle AY

⇒ Given dP3 ∼= ∆, computation of massless spectra feasible
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Current and near future developments

Moduli dependence of massless spectra

Matter curves not required to be smooth (nor complete
intersections)

⇒ Can study moduli space dependence of massless spectrum

Several challenges
1 Moduli space (parametrisation) high dimensional
⇒ Dimensional reduction?
2 Machine learning suited for image processing (e. g. facial

recognition, detection of cancer, . . . )
⇒ Make sense of our high-dimensional data?
3 Understand cohomology jumps as jumping lines along works of

R. L. E. Schwarzenberger (1961) or M. Mulase (1979)
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Other possible applications include . . .

Zero mode counting in topological string, IIB or heterotic
compactifications 0403166, 0808.3621, 1106.4804, . . .

T-branes as coherent sheaves (1410.4867, 1603.00062)
Involved geometrical analysis (e.g. intersection numbers)
. . .
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Thank you for your attention!
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From Divisors to Modules
Input and Output

C = V (g1, . . . , gk) ⊆ XΣ

D = V (f1, . . . , fn) ∈ Div(C )

M s.t. supp(M̃) = C
and M̃|C ∼= OC (−D)

Step 1: S(C ) := S/〈g1, . . . , gk〉, π : S � S(C )

⊕

j∈J

S (C ) (j) 0

⊕

i∈I

S (C ) (i) S (C )

AC S (C )

ker (m)

0

m = (π (f1) , . . . , π (fn))

0

∼
ι

∼
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From Divisors to Modules II
Step 2: Extend by zero to coherent sheaf on XΣ

⊕
j∈J S (j)

⊕
i∈I S (i)

A

ke
r(

m
)′

∼

⊗

⊕
k∈K S (k)

S (C )

B




g1
...

gk




∼

⇒ M = A⊗ B satisfies Supp(M̃) = C and M̃|C ∼= OC (−D)
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From Divisors to Modules III

Input and Output

C = V (g1, . . . , gk) ⊆ XΣ

D = V (f1, . . . , fn) ∈ Div(C )

M s.t. supp(M̃) = C
and M̃|C ∼= OC (+D)

Strategy
1 Compute AC

2 Dualise via A∨C := HomS(C) (S (C ) ,AC )

3 Extend by zero by considering A∨ ⊗ B
⇒ M∨ := A∨ ⊗ B satisfies Supp(M̃) = C and M̃|C ∼= OC (+D)
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An idea of the sheafification functor

Affine open cover
Toric variety XΣ with Cox ring S

⇒ Covered by affine opens
{

Uσ = Specm(S(x σ̂))
}
σ∈Σ

Localising (↔ restricting) a module

M ∈ S-fpgrmod
⇒ M(x σ̂) is f.p. S(x σ̂)-module

Consequence

M(x σ̂) ↔ coherent sheaf on Uσ = Specm(S(x σ̂))

local sections: M̃(x σ̂) (D (f )) = M(x σ̂) ⊗S
(xσ̂)

(
S(x σ̂)

)
f

Martin Bies Counting massless matter in F-theory with CAP 46 / 42



Motivation
Introduction to F-theory

G4-flux and counting massless matter in F-theory
Applications in F-theory GUT-models

Additional challenge in GUT-models: Hypercharge flux
Moduli dependence of massless spectrum
Summary of talk

An idea of the sheafification functor

Affine open cover
Toric variety XΣ with Cox ring S

⇒ Covered by affine opens
{

Uσ = Specm(S(x σ̂))
}
σ∈Σ

Localising (↔ restricting) a module

M ∈ S-fpgrmod
⇒ M(x σ̂) is f.p. S(x σ̂)-module

Consequence

M(x σ̂) ↔ coherent sheaf on Uσ = Specm(S(x σ̂))

local sections: M̃(x σ̂) (D (f )) = M(x σ̂) ⊗S
(xσ̂)

(
S(x σ̂)

)
f

Martin Bies Counting massless matter in F-theory with CAP 46 / 42



Motivation
Introduction to F-theory

G4-flux and counting massless matter in F-theory
Applications in F-theory GUT-models

Additional challenge in GUT-models: Hypercharge flux
Moduli dependence of massless spectrum
Summary of talk

An idea of the sheafification functor

Affine open cover
Toric variety XΣ with Cox ring S

⇒ Covered by affine opens
{

Uσ = Specm(S(x σ̂))
}
σ∈Σ

Localising (↔ restricting) a module

M ∈ S-fpgrmod
⇒ M(x σ̂) is f.p. S(x σ̂)-module

Consequence

M(x σ̂) ↔ coherent sheaf on Uσ = Specm(S(x σ̂))

local sections: M̃(x σ̂) (D (f )) = M(x σ̂) ⊗S
(xσ̂)

(
S(x σ̂)

)
f

Martin Bies Counting massless matter in F-theory with CAP 46 / 42



Motivation
Introduction to F-theory

G4-flux and counting massless matter in F-theory
Applications in F-theory GUT-models

Additional challenge in GUT-models: Hypercharge flux
Moduli dependence of massless spectrum
Summary of talk

An idea of the sheafification functor

Affine open cover
Toric variety XΣ with Cox ring S

⇒ Covered by affine opens
{

Uσ = Specm(S(x σ̂))
}
σ∈Σ

Localising (↔ restricting) a module

M ∈ S-fpgrmod
⇒ M(x σ̂) is f.p. S(x σ̂)-module

Consequence

M(x σ̂) ↔ coherent sheaf on Uσ = Specm(S(x σ̂))

local sections: M̃(x σ̂) (D (f )) = M(x σ̂) ⊗S
(xσ̂)

(
S(x σ̂)

)
f

Martin Bies Counting massless matter in F-theory with CAP 46 / 42



Motivation
Introduction to F-theory

G4-flux and counting massless matter in F-theory
Applications in F-theory GUT-models

Additional challenge in GUT-models: Hypercharge flux
Moduli dependence of massless spectrum
Summary of talk

Module M5 from 1706.04616: Quality Check I

e

di
m

Q

[ Ex
t0 S

( B
(e

)
Σ
,M

5) =
0]

0 6 12 18 24 30 36 42 48
0

4

8

12

16

20
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How to determine the ideal I in step 2 of algorithm?

Input
M ∈ S-fpgrmod
V k (XΣ) =

{
L ∈ Pic (XΣ) , hk (XΣ, L) = 0

}

How to find ideal I?

Look at spectral sequence Ep,q
2 ⇒ Extp+q

OXΣ

(
˜I (p, e), M̃

)

Some objects Ep,q
2 vanish as seen by V k (XΣ)

Does Ep,q
2 degenerate (on E2-sheet)? Is its limit (co)homology

Hm (C0) of complex of global sections of vector bundles?
⇒ If no – increase e until this is the case!

Long exact sequence: sheaf cohomology ↔ local cohomology
⇒ Increase e further until Hm (C0) ∼= ExtmS (I (p, e) ,M)0
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The Hom-Embedding

R G∨
M ⊗RN R∨

M ⊗RN

G G∨
M ⊗GN R∨

M ⊗GN

HomS (M,N) G∨
M ⊗N R∨

M ⊗N

ρ

id
G

∨M
⊗
ρ
N

id
R

∨M
⊗
ρ
N

ρ∨M ⊗ idGN

ρ∨M ⊗ idRNβ

α

ι ρ∨M ⊗ idN
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S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

Polynomial ring S = Q [x1, . . . , xn]

Homomorphism of monoids deg : Mon (S)→ Zn

Definition
Se ⊆ S : subgroup of homogeneous polynomials of degree e
S (d): graded ring with S(d)e = Se+d

Objects: M =
⊕

d∈I S (d)

I ⊆ Zn an indexing set
graded, i. e. SiMj ⊆ Mi+j

Morphisms:
morphisms of graded modules

Example: S the Cox ring of P2
Q

ϕ : S(−1)
(x1)−−→ S(0) is morphism

in this category since

S (−1) 3 1︸ ︷︷ ︸
degree1

7→ ϕ (1) = x1 ∈ S (0)︸ ︷︷ ︸
degree1
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S-fpgrmod 2: Objects
General rule:
Objects in S-fpgrmod =̂ morphisms of projective graded S-modules

Example on P2
Q: S = Q [x1, x2, x3], deg(xi ) = 1

Mϕ ≡ coker (ϕ) and Mψ ≡ coker (ψ) are abstractly described by

ψ : S (−2)⊕3 R−→ S (−1)⊕3 , R =

(
0 −x3 x2
x3 0 −x1
−x2 x1 0

)
, ϕ : 0→ S (0)

Notation

S (−2)
⊕3

0

S (−1)
⊕3

S (0)

R 0
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S-fpgrmod 3: Morphisms
Definition: Morphism Mψ → Mϕ is commutative diagram

S (−2)
⊕3

0

S (−1)
⊕3

S (0)

R

A

B

0 R =




0 −x3 x2
x3 0 −x1
−x2 x1 0
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Example: Morphism Mψ → Mϕ

S (−2)
⊕3

0

S (−1)
⊕3

S (0)

R

0




x1
x2
x3




0 R =




0 −x3 x2
x3 0 −x1
−x2 x1 0




Implementation for CAP at https://github.com/HereAround:

‘CAPCategoryOfProjectiveGradedModules’
‘CAPPresentationCategory’
‘PresentationByProjectiveGradedModules’
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Computing H0 – general idea

Definition

H0 (XΣ,F) := Γ (HomOX (OX ,F))

Idea

M such that M̃ ∼= OX

F such that F̃ ∼= F
⇒ Γ (HomOX (OX ,F))

?
= HomS (M,F )0

Careful!
In general wrong – have to choose M carefully
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Computing H0 – different models for the structure sheaf

Example: BΣ = 〈x1, x2, x3〉 and S are models for OP2Q

0 S (−2)
⊕3

0 S (−1)
⊕3

0

0 S (−1)
⊕3

S (0) S (0) 0

0 BΣ S(P2
Q) S(P2

Q)/BΣ 0

0 B̃ (Σ) S̃
(
P2
Q
) ˜S

(
P2
Q
)
/BΣ 0

0

0

0

R

0

(
x1
x2
x3

) 0

0

id

(
x1
x2
x3

)

0

0

0

ker (ι) ι coker (ι) 0

˜

ker (ι̃)

˜

ι

˜

coker (ι̃)

˜

0

˜
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Computing H0 – is BΣ or S better?

Task

On P2
Q, F = BΣ = 〈x1, x2, x3〉 satisfies F̃ ∼= OP2Q

⇒ H0(P2
Q, F̃ ) ∼= Q1

⇒ Task: Reproduce this from HomS (X ,F )0 with X ∈ {S ,BΣ}

Try 1: X = S

HomS (S ,F )0
∼= Q0 – wrong result!

Try 2: X = BΣ

HomS (BΣ,F )0
∼= Q1 – correct result!
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Sketch of Algorithm in CAP

Input and Output

(smooth, complete) or (simplicial,
projective) toric variety XΣ

M ∈ S-fpgrmod
hi
(
XΣ, M̃

)

Step-by-step

1 Use cohomCalg to compute (0 ≤ k ≤ dimQ (XΣ))

V k (XΣ) :=
{

L ∈ Pic (XΣ) , hk (XΣ, L) = 0
}

2 Find ideal I ⊆ S (along idea of G. Smith) s.t.

H i
(
XΣ, M̃

)
∼= ExtiS (I ,M)0

3 Compute Q-dimension of ExtiS (I ,M)0
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