Counting massless matter in F-theory with CAP

Martin Bies

ULB Brussels

Hep-Seminars - October 10, 2018

Overview

Presentation based on work with

• T. Weigand, C. Mayrhofer, C. Pehle

1402.5144, 1706.04616, 1706.08528, 1802.08860

• M. Barakat, S. Gutsche, S. Posur, K. M. Saleh

5 CAP-packages on https://github.com/HereAround

• K. Veschgini in progress

Overview

Presentation based on work with

• T. Weigand, C. Mayrhofer, C. Pehle

1402.5144, 1706.04616, 1706.08528, 1802.08860

• M. Barakat, S. Gutsche, S. Posur, K. M. Saleh

5 CAP-packages on https://github.com/HereAround

• K. Veschgini in progress

Outline

- Motivation
- Introduction to F-theory
- G₄-flux and counting massless matter in F-theory
- Applications in F-theory GUT-models

Gravity + Standard Model = ?

String theory – a promising candidate

- Every consistency string theory contains a graviton
- D-branes carry gauge theories
- UV finite theory (at least up to 2-loop order)

Gravity + Standard Model = ?

String theory – a promising candidate

- Every consistency string theory contains a graviton
- D-branes carry gauge theories
- UV finite theory (at least up to 2-loop order)

Drawback: Consistency requires 10d spacetime

Towards the string landscape

Ambiguity: Which manifold \mathcal{B}_3 (and substructure) to choose?

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Introduction to F-theory}\\ G_4\mbox{-flux and counting massless matter in F-theory}\\ \mbox{Applications in F-theory GUT-models} \end{array}$

Towards the string landscape

Ambiguity: Which manifold \mathcal{B}_3 (and substructure) to choose?

Introduction to F-theory G₄-flux and counting massless matter in F-theory Applications in F-theory GUT-models

Means of simplification: The M-theory star

Martin Bies Counting massless matter in F-theory with CAP 5/42

Introduction to F-theory G₄-flux and counting massless matter in F-theory Applications in F-theory GUT-models

Towards a quality check on F-theory vacua

Three Generations of Matter (Fermions) Ш ш mass→ 2.4 MeV 1.27 GeV 171.2 GeV charge→ 2/4 2/3 2/3 0 t 1/2 1/2 spin⊣ 1/2 name up charm top photon 4.8 MeV 104 MeV 4.2 GeV -1/3 -1/3 S Duarks 1/2 1/5 strange bottom down gluon 91.2 GeV <2.2 eV < 0.17 MeV <15.5 MeV V_e 1/2 1/2 30sons (Forces) electron neutrino muon neutrino tau neutrino weak force 0.511 MeV 105.7 MeV 1.777 GeV 80.4 GeV eptons е μ Τ 1/5 1/5 weak electron muon tau

Introduction to F-theory G₄-flux and counting massless matter in F-theory Applications in F-theory GUT-models

Towards a quality check on F-theory vacua

Proposal for quality criterion

Number of standard model particles

Introduction to F-theory G₄-flux and counting massless matter in F-theory Applications in F-theory GUT-models

Towards a quality check on F-theory vacua

Introduction to F-theory G₄-flux and counting massless matter in F-theory Applications in F-theory GUT-models

Towards a quality check on F-theory vacua

Consequence: Modified quality criterion

Number of massless particles in F-theory vacuum

Introduction to F-theory G_4 -flux and counting massless matter in F-theory Applications in F-theory GUT-models

Questions so far?

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Approaching F-theory from IIB string theory

Martin Bies Counting massless matter in F-theory with CAP 9/42

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Approaching F-theory from IIB string theory

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Revision: IIB Supergravity (10D)

Bosonic field content			New
field	symbol	type	•
dilaton metric	ϕ $G_{\mu\nu}$	scalar symmetric 2-tensor	۹
B-field	B_2	2-form	۹
RR 0-form	C_0	0-form	۰
RR 2-form	<i>C</i> ₂	2-form	_
RR 4-form	<i>C</i> ₄	4-form	
Action			
$S_{\rm UP} = \frac{2\pi}{2\pi} \int d^{10}x \left[\sqrt{-G}R - \frac{d\tau \wedge \star d\overline{\tau}}{4\tau} + \frac{dG_3}{4\tau} \right]$			

New fields

- Axio dilaton
 - $au := C_0 + ie^{-\phi}$

•
$$H_3 := dB_2$$

•
$$G_3 := F_3 - \tau H_3$$

$$_{IIB} = \frac{2\pi}{l_s^8} \int_{M_{10}} d^{10}x \left[\sqrt{-GR} - \frac{d\tau \wedge \star d\overline{\tau}}{2(\Im\tau)^2} + \frac{dG_3 \wedge \star d\overline{G_3}}{\Im\tau} + \dots \right]$$

Martin Bies

Counting massless matter in F-theory with CAP 10/42

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

$SL(2,\mathbb{Z})$ invariance of IIB-SUGRA

Classical symmetry: $SL(2, \mathbb{R})$

Given $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$, S_{IIB} is invariant under

$$\begin{pmatrix} C_4 \\ G \end{pmatrix} \mapsto \begin{pmatrix} C_4 \\ G \end{pmatrix}, \quad \tau = C_0 + i e^{-\phi} \mapsto \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} C_2 \\ B_2 \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} C_2 \\ B_2 \end{pmatrix}$$

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

$SL(2,\mathbb{Z})$ invariance of IIB-SUGRA

Classical symmetry: $SL(2, \mathbb{R})$

Given $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in SL(2,\mathbb{R})$, S_{IIB} is invariant under

$$\begin{pmatrix} C_4 \\ G \end{pmatrix} \mapsto \begin{pmatrix} C_4 \\ G \end{pmatrix}, \quad \tau = C_0 + i e^{-\phi} \mapsto \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} C_2 \\ B_2 \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} C_2 \\ B_2 \end{pmatrix}.$$

Reduced symmetry in quantised IIB SUGRA

- Partition function contains factor $exp(2\pi i\tau)$
- \Rightarrow Invariant only if au is transformed by SL(2, \mathbb{Z})
- \Rightarrow Quantised IIB SUGRA has SL(2, \mathbb{Z})-symmetry

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Backreaction of D7-branes

Magnetic charge of D7-brane under C_0

- D7-brane has 8-dimensional world-volume \mathcal{D}_8
- IIB SUGRA contains 0-form field C_0

$$\Rightarrow C_0 \to F_1 = dC_0 \stackrel{*}{\to} F_9 = d\widetilde{C_8} \to \widetilde{C_8}$$

$$\Rightarrow$$
 Magnetic coupling $S_{\text{magnetic}} = \int\limits_{\mathcal{D}_8} C_8$

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Backreaction of D7-branes

Magnetic charge of D7-brane under C_0

- D7-brane has 8-dimensional world-volume \mathcal{D}_8
- IIB SUGRA contains 0-form field C_0

$$\Rightarrow C_0 \to F_1 = dC_0 \stackrel{*}{\to} F_9 = d\widetilde{C_8} \to \widetilde{C_8}$$

$$\Rightarrow$$
 Magnetic coupling $S_{magnetic} = \int_{\mathcal{D}_8} C_8$

Consequence: Backreaction

- Two dimensional space orthogonal to D7-brane
- \Rightarrow W.l.o.g. complex plane $\mathbb C$ with D7-brane at position z_0
- \Rightarrow Since D7-brane is source, C_0 satisfies $\Delta C_0 = \delta(z z_0)$
- $\Rightarrow \tau(z) = C_0(z) + ie^{-\phi(z)} = \frac{1}{2\pi i} \log(z z_0) + \dots$

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Geometrising the $SL(2, \mathbb{Z})$ -invariance

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Geometric 'book-keeping device'

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Approaching F-theory from M-theory

Martin Bies Counting massless matter in F-theory with CAP 15/42

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Approaching F-theory from M-theory

Martin Bies Counting massless matter in F-theory with CAP 15/42

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Defining F-theory from M-theory

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Towards a dictionary between physics and geometry

Strategy and problems

- Use definition of F-theory as M-theory limit
- $\Rightarrow \text{ Compare physics of 11D SUGRA compactification and} \\ \text{geometry of elliptic fibration } \mathbb{C}_{1,\tau} \hookrightarrow Y_4 \twoheadrightarrow \mathcal{B}_3$
 - Y₄ is singular (over D7-branes), so singularities are important

\Rightarrow Two approaches:

- Work with singular Y₄ (e.g. 1310.1931, 1410.4867, 1603.00062)
- Resolve singularities and work with smooth space \hat{Y}_4 (e.g. 1109.3454, 1202.3138)

Choice in this talk

We work with smooth space \hat{Y}_4

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Blow-up resolution in a cartoon

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Cartoon on blow-up resolution

In general obtain affine Dynkin diagrams of A-, B-, C-, D-, E-, F_4 and G_2 -type

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

non-Abelian gauge theories and massless matter

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

non-Abelian gauge theories and massless matter

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

non-Abelian gauge theories and massless matter

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

non-Abelian gauge theories and charged matter

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

non-Abelian gauge theories and charged matter

Motivation Introduction to F-theory G_4 -flux and counting massless matter in F-theory

Applications in F-theory GUT-models

Questions?

From IIB string theory to F-theory From M-theory to F-theory Non-Abelian gauge symmetries on D7-branes

Parametrisation of *G*4-fluxes Description of massless matter Counting massless matter with CAP

Strategy and disclaimer

Strategy

Step	Mathematics
Parametrise G_4 -fluxes	Chow group $CH^2(\hat{Y}_4)$
Describe massless matter	Sheaf cohomology
Count zero modes with CAP	Exts of f. p. graded S-modules

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Strategy and disclaimer

Strategy

Step	Mathematics
Parametrise G_4 -fluxes	Chow group $CH^2(\hat{Y}_4)$
Describe massless matter	Sheaf cohomology
Count zero modes with CAP	Exts of f. p. graded S-modules

Disclaimer

- **①** We choose to resolve singular Y_4 to obtain smooth \hat{Y}_4
- \Rightarrow Can only detect Abelian gauge backgrounds
- \Rightarrow Formulation of non-Abelian gauge fluxes might depart from 1310.1931, 1410.4867, 1603.00062
- ⁽²⁾ Description of G_4 -flux on smooth \hat{Y}_4 exists in language of Cheeger-Simons cohomology 0312069, 0409135, 0409158

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Origin of G_4 -flux in F-theory

11d SUGRA action ($G_4 = dC_3$)

$$S_{11D} = \frac{M_{11D}^9}{2} \int_{M_{11}} d^{11}x \left(\sqrt{-\det G}R - \frac{G_4 \wedge *G_4}{2} - \frac{C_3 \wedge G_4 \wedge G_4}{6} \right)$$

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Origin of G_4 -flux in F-theory

11d SUGRA action ($G_4 = dC_3$)

$$S_{11D} = \frac{M_{11D}^9}{2} \int_{M_{11}} d^{11}x \left(\sqrt{-\det G}R - \frac{G_4 \wedge *G_4}{2} - \frac{C_3 \wedge G_4 \wedge G_4}{6} \right)$$

Consequence

- M2-branes couple electrically to 3-form gauge potential C_3
- $G_4 = dC_3 \in H^{2,2}(\hat{Y}_4)$ is field strength

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

An different way to think of G_4

Theorem of de Rham (1931): Duality of differential forms and cycles

- *M* compact, $C_r(M)$ its *r*-chains and $\Omega^r(M)$ its *r*-forms
- Inner product

$$\langle \cdot, \cdot
angle \colon \mathcal{C}_r(\mathcal{M}) imes \Omega^r(\mathcal{M}) o \mathbb{R} \;, \; (\boldsymbol{c}, \omega) \mapsto \langle \boldsymbol{c}, \omega
angle = \int \omega$$

- \Rightarrow Extends to inner product $\langle \cdot, \cdot \rangle \colon H_r(M) \times H^r(M)$
 - $\bullet\,$ de Rham proved that $\langle\cdot,\cdot\rangle$ is bilinear and non-degenerate
- \Rightarrow $H^{r}(M) \cong H^{\vee}_{r}(M)$ (dual vector spaces)

C

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

An different way to think of G_4

Theorem of de Rham (1931): Duality of differential forms and cycles

- *M* compact, $C_r(M)$ its *r*-chains and $\Omega^r(M)$ its *r*-forms
- Inner product

$$\langle \cdot, \cdot
angle \colon \mathcal{C}_r(\mathcal{M}) imes \Omega^r(\mathcal{M}) o \mathbb{R} \;, \; (\boldsymbol{c}, \omega) \mapsto \langle \boldsymbol{c}, \omega
angle = \int \omega$$

- \Rightarrow Extends to inner product $\langle \cdot, \cdot \rangle \colon H_r(M) \times H^r(M)$
 - $\bullet\,$ de Rham proved that $\langle\cdot,\cdot\rangle$ is bilinear and non-degenerate
- \Rightarrow $H^{r}(M) \cong H^{\vee}_{r}(M)$ (dual vector spaces)

Consequence

 ${\it G}_4 \in {\it H}^{2,2}(\hat{Y}_4,\mathbb{Z})$ can be represented by complex 2-cycle A

C

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Gauge backgrounds and Deligne cohomology

Questions

- What specifies gauge date C_3 beyond field strength G_4 ?
- \Rightarrow Look for structure which combines information on
 - field strength $\mathit{G}_4 \in \mathit{H}^{2,2}_{\mathbb{Z}}(\hat{Y}_4)$
 - Wilson line d.o.f. $\oint \bar{C_3}$

Gauge backgrounds and Deligne cohomology

Questions

- What specifies gauge date C_3 beyond field strength G_4 ?
- \Rightarrow Look for structure which combines information on
 - field strength $\mathit{G}_4 \in \mathit{H}^{2,2}_{\mathbb{Z}}(\hat{Y}_4)$
 - Wilson line d.o.f. $\oint \bar{C_3}$

Natural candidate in mathematics 9801057, 9802093, 0312069, 0409135, 0409158,

1104.2610, 1203.6662, 1212.4505, 1310.1931, 1402.5144

$$0 \to J^2(\hat{Y}_4) \hookrightarrow H^4_D(\hat{Y}_4,\mathbb{Z}(2)) \twoheadrightarrow H^{2,2}_{\mathbb{Z}}(\hat{Y}_4) \to 0$$

H. Esnault, E. Viehweg - 'Beilinson's conjectures on special values of L-functions' 1988

$$\begin{array}{ccc} \text{Intermediate Jacobian} & \leftrightarrow & \text{Wilson lines } \oint C_3 \\ J^2(\hat{Y}_4) \simeq \frac{H^3(\hat{Y}_4,\mathbb{C})}{H^{2,1}(\hat{Y}_4) + H^3(\hat{Y}_4,\mathbb{Z}))} & & \text{Wilson lines } \oint C_3 \\ \text{Deligne cohomology } H^4_D(\hat{Y}_4,\mathbb{Z}(2)) & \leftrightarrow & \text{full gauge data} \\ H^{2,2}_{\mathbb{Z}}(\hat{Y}_4) & \leftrightarrow & \text{field strength } G_4 \end{array}$$

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Practical representation: Chow group

Motivation

- $H_D^4(\hat{Y}_4,\mathbb{Z}(2))$ is hard to handle (practically)
- $\Rightarrow\,$ Easy-to-work-with parametrisation (of subset) from ${\sf CH}^2(\hat{Y}_4)$

M. Green, J. Murre, C. Voisin - 'Algebraic Cycles and Hode Theory', 1994

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Practical representation: Chow group

Motivation

- $H^4_D(\hat{Y}_4,\mathbb{Z}(2))$ is hard to handle (practically)
- \Rightarrow Easy-to-work-with parametrisation (of subset) from CH²(\hat{Y}_4)

M. Green, J. Murre, C. Voisin – 'Algebraic Cycles and Hode Theory', 1994

Basics on the Chow group $CH^k(X)$

- Rational equivalence:
 - $C_1 \sim C_2 \in Z_p(X)$ iff $C_1 C_2$ is zero/pole of a **rational** function defined on p + 1-dim. irreducible subspace of X
- \Rightarrow No longer analytic geometry but rather algebraic geometry
 - CH^k(X) = {rational equivalence classes of codim. k-cycles}

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Practical representation: Chow group

Motivation

- $H^4_D(\hat{Y}_4,\mathbb{Z}(2))$ is hard to handle (practically)
- $\Rightarrow\,$ Easy-to-work-with parametrisation (of subset) from $\mathsf{CH}^2(\hat{Y}_4)$

M. Green, J. Murre, C. Voisin – 'Algebraic Cycles and Hode Theory', 1994

Basics on the Chow group $CH^k(X)$

• Rational equivalence:

 $C_1 \sim C_2 \in Z_p(X)$ iff $C_1 - C_2$ is zero/pole of a **rational** function defined on p + 1-dim. irreducible subspace of X

- \Rightarrow No longer analytic geometry but rather algebraic geometry
 - CH^k(X) = {rational equivalence classes of codim. k-cycles}

Consequence

Full
$$\mathit{G}_4 ext{-}\mathsf{gauge}$$
 data $\leftrightarrow \mathit{A}\in\mathsf{CH}^2(\hat{Y}_4)$ – equ. class of 2-cycle

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

24 / 42

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

• State in irrep. R (weight
$$\beta^{a}(\mathsf{R})$$
)
 $\leftrightarrow S^{a}_{\mathsf{R}} = \sum_{i=1}^{n} n^{a}_{i} \mathbb{P}^{1}_{i}(C_{\mathsf{R}}) \in \mathsf{CH}^{2}(\hat{Y}_{4})$

Parametrisation of *G*₄-fluxes Description of massless matter Counting massless matter with CAP

Parametrisation of *G*₄-fluxes Description of massless matter Counting massless matter with CAP

State in irrep. R (weight
$$\beta^{a}(\mathbf{R})$$
)
 $\leftrightarrow S_{\mathbf{R}}^{a} = \sum_{i=1}^{n} n_{i}^{a} \mathbb{P}_{i}^{1} (C_{\mathbf{R}}) \in CH^{2}(\hat{Y}_{4})$
Full G_{4} -gauge data $\leftrightarrow A \in CH^{2}(\hat{Y}_{4})$
 $S_{\mathbf{R}}^{a}$ and A intersect in points of \hat{Y}_{4}

Parametrisation of *G*₄-fluxes Description of massless matter Counting massless matter with CAP

State in irrep. R (weight
$$\beta^{a}(\mathbf{R})$$
)
 $\leftrightarrow S_{\mathbf{R}}^{a} = \sum_{i=1}^{n} n_{i}^{a} \mathbb{P}_{i}^{1} (C_{\mathbf{R}}) \in CH^{2}(\hat{Y}_{4})$
Full G_{4} -gauge data $\leftrightarrow A \in CH^{2}(\hat{Y}_{4})$
 $S_{\mathbf{R}}^{a}$ and A intersect in points of \hat{Y}_{4}
 $\pi_{*} (S_{\mathbf{R}}^{a} \cdot A) \triangleq$ points in $C_{\mathbf{R}}$

Parametrisation of *G*₄-fluxes **Description of massless matter** Counting massless matter with CAP

State in irrep. R (weight
$$\beta^{a}(\mathbf{R})$$
)
 $\Leftrightarrow S_{\mathbf{R}}^{a} = \sum_{i=1}^{n} n_{i}^{a} \mathbb{P}_{i}^{1} (C_{\mathbf{R}}) \in CH^{2}(\hat{Y}_{4})$
Full G_{4} -gauge data $\Leftrightarrow A \in CH^{2}(\hat{Y}_{4})$
 $S_{\mathbf{R}}^{a}$ and A intersect in points of \hat{Y}_{4}
 $\pi_{*} (S_{\mathbf{R}}^{a} \cdot A) \triangleq$ points in $C_{\mathbf{R}}$
line bundle $L (S_{\mathbf{R}}^{a}, A)$ on $C_{\mathbf{R}}$
 $\mathcal{O}_{C_{\mathbf{R}}} (\pi_{*} (S_{\mathbf{R}}^{a} \cdot A)) \otimes \sqrt{K_{C_{\mathbf{R}}}}$

Parametrisation of *G*₄-fluxes **Description of massless matter** Counting massless matter with CAP

Matching local picture with global data 1706.04616

State in irrep. R (weight
$$\beta^a(\mathbf{R})$$
)
$$\Leftrightarrow S^a_{\mathbf{R}} = \sum_{i=1}^n n^a_i \mathbb{P}^1_i (C_{\mathbf{R}}) \in \mathrm{CH}^2(\hat{Y}_4)$$

Full G_4 -gauge data $\Leftrightarrow A \in \mathrm{CH}^2(\hat{Y}_4)$
 $S^a_{\mathbf{R}}$ and A intersect in points of \hat{Y}_4
 $\pi_* (S^a_{\mathbf{R}} \cdot A) \triangleq$ points in $C_{\mathbf{R}}$

line bundle $L(S^a_{\mathbf{R}}, A)$ on $C_{\mathbf{R}}$
 $\mathcal{O}_{C_{\mathbf{R}}} (\pi_* (S^a_{\mathbf{R}} \cdot A)) \otimes \sqrt{K_{C_{\mathbf{R}}}}$

Consequence

 $\mathcal{N}=1$ chiral multiplets $\mathcal{N}=1$ anti-chiral multiplets chiral index

$$\overset{H^{0}(C_{\mathbf{R}}, L(S_{\mathbf{R}}^{a}, A))}{\overset{H^{1}(C_{\mathbf{R}}, L(S_{\mathbf{R}}^{a}, A))}} \overset{J_{S_{\mathbf{R}}^{a}}}{\overset{\int_{S_{\mathbf{R}}^{a}} G_{4}}}$$

4

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

Pick 'nice' geometry

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

- Pick 'nice' geometry
- \Rightarrow Toric ambient space X_{Σ}

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

• Pick 'nice' geometry \Rightarrow Toric ambient space X_{Σ}

ambient space X_{Σ}

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

• Pick 'nice' geometry \Rightarrow Toric ambient space X_{Σ}

ambient space X_{Σ}

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

• Pick 'nice' geometry \Rightarrow Toric ambient space X_{Σ}

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

- Pick 'nice' geometry
- \Rightarrow Toric ambient space X_{Σ}
- **2** Extend $L(S_{\mathbf{R}}^{a}, A)$ to X_{Σ}
Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

- Pick 'nice' geometry
- \Rightarrow Toric ambient space X_{Σ}
- **2** Extend $L(S_{\mathbf{R}}^{a}, A)$ to X_{Σ}
- $\Rightarrow \ \ \mathsf{Coherent \ sheaf} \ \ \mathcal{F} \ \ \mathsf{sheaf} \ \ \mathcal{F} \ \ \mathsf{sheaf} \ \ \mathcal{F} \ \ \mathsf{l}_{\mathsf{C}_{\mathsf{R}}} \cong \mathcal{L}(S^a_{\mathsf{R}}, \mathcal{A})$

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

- Pick 'nice' geometry
- \Rightarrow Toric ambient space X_{Σ}
- **2** Extend $L(S_{\mathbf{R}}^{a}, A)$ to X_{Σ}
- $\Rightarrow \text{ Coherent sheaf } \mathcal{F} \text{ with } \\ \mathcal{F}|_{C_{\mathbf{R}}} \cong L(S^{a}_{\mathbf{R}}, A)$
- Find computer models for Coh(X_Σ)

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

How to count massless matter? Our strategy is

- Pick 'nice' geometry
- \Rightarrow Toric ambient space X_{Σ}
- **2** Extend $L(S_{\mathbf{R}}^{a}, A)$ to X_{Σ}
- $\Rightarrow \text{ Coherent sheaf } \mathcal{F} \text{ with } \\ \mathcal{F}|_{C_{\mathsf{R}}} \cong L(S^{a}_{\mathsf{R}}, A)$
- Find computer models for Coh(X_Σ)
- Use these models to compute sheaf cohomology

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Simple (ambient) spaces – toric varieties

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Simple (ambient) spaces - toric varieties

Remarks

- In this talk, all toric varieties are smooth and complete
- More background in [CoxLittleSchenk2011]

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Simple (ambient) spaces - toric varieties

Remarks

- In this talk, all toric varieties are smooth and complete
- More background in [CoxLittleSchenk2011]

Example: Projective space $\mathbb{P}^2_{\mathbb{O}}$

•
$$S = \mathbb{Q}[x_1, x_2, x_3]$$
 and deg $(x_i) = 1$

•
$$I_{\mathsf{SR}} = \langle x_1 \cdot x_2 \cdot x_3 \rangle$$

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Coherent sheaves on a toric variety X_{Σ} (with Cox ring S)

Coherent sheaves on a toric variety X_{Σ} (with Cox ring S)

Sheafification functor

- S-fpgrmod: category of finitely presented graded S-modules
- $\mathfrak{Coh}X_{\Sigma}$: category of coherent sheaves on X_{Σ}
- \Rightarrow There exists the sheafification functor

 $\widetilde{}$: S-fpgrmod $\rightarrow \mathfrak{Coh}X_{\Sigma}$, $M \mapsto \widetilde{M}$

Coherent sheaves on a toric variety X_{Σ} (with Cox ring S)

Sheafification functor

- S-fpgrmod: category of finitely presented graded S-modules
- $\mathfrak{Coh}X_{\Sigma}$: category of coherent sheaves on X_{Σ}
- \Rightarrow There exists the sheafification functor

 $\widetilde{}$: S-fpgrmod $\rightarrow \mathfrak{Coh}X_{\Sigma}$, $M \mapsto \widetilde{M}$

Computer models for coherent sheaves

- The category S-fpgrmod can be handled with CAP
- $\Rightarrow S-{\rm fpgrmod \ can \ serve \ as \ computer \ models \ for \ coherent \ sheaves} \\ {}^{1003.1943, \ 1202.3337, \ 1210.1425, \ 1212.4068, \ 1409.2028, \ 1409.6100, \ 1712.03492}$

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

• X_{Σ} toric variety (Cox ring S)

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (Cox ring S)
- Divisor D = V(P₁,..., P_n) cut out by polynomials P_i

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (Cox ring S)
- Divisor D = V(P₁,..., P_n) cut out by polynomials P_i

$$\Rightarrow$$
 Model for $\mathcal{O}_{X_{\Sigma}}(-D)$?

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (Cox ring S)
- Divisor D = V(P₁,..., P_n) cut out by polynomials P_i

$$\Rightarrow$$
 Model for $\mathcal{O}_{X_{\Sigma}}(-D)$?

Answer

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (Cox ring S)
- Divisor D = V(P₁,..., P_n) cut out by polynomials P_i

$$\Rightarrow$$
 Model for $\mathcal{O}_{X_{\Sigma}}(-D)$?

Answer

• $A := \ker (P_1, \dots, P_n) \leftrightarrow \text{relations among the } P_i$

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (Cox ring S)
- Divisor D = V(P₁,..., P_n) cut out by polynomials P_i

$$\Rightarrow$$
 Model for $\mathcal{O}_{X_{\Sigma}}(-D)$?

Answer

- $A := \ker (P_1, \ldots, P_n) \leftrightarrow \text{relations among the } P_i$
- Define $M \in S$ -fpgrmod from exact sequence $\bigoplus_{j=1}^{R_2} S(e_j) \xrightarrow{A} \bigoplus_{i=1}^{R_1} S(d_i) \twoheadrightarrow M \to 0$

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

From Points to Coherent Sheaves

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (Cox ring S)
- Divisor D = V(P₁,..., P_n) cut out by polynomials P_i

$$\Rightarrow$$
 Model for $\mathcal{O}_{X_{\Sigma}}(-D)$?

Answer

- $A := \ker (P_1, \ldots, P_n) \leftrightarrow \text{relations among the } P_i$
- Define $M \in S$ -fpgrmod from exact sequence $\bigoplus_{j=1}^{R_2} S(e_j) \stackrel{A}{\rightarrow} \bigoplus_{i=1}^{R_1} S(d_i) \twoheadrightarrow M \to 0$

 $\Rightarrow \widetilde{M} \cong \mathcal{O}_{X_{\Sigma}}(-D)$, so M is computer model for $\mathcal{O}_{X_{\Sigma}}(-D)$

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Implemented Algorithm

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Implemented Algorithm

Input and Output

- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Implemented Algorithm

Input and Output

- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod

Step-by-step (References in two slides)

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}(X_{\Sigma}) \coloneqq \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Implemented Algorithm

Input and Output

- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod

Step-by-step (References in two slides)

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}\left(X_{\Sigma}
ight)\coloneqq\left\{L\in\operatorname{Pic}\left(X_{\Sigma}
ight)\;,\;h^{k}\left(X_{\Sigma},L
ight)=0
ight\}$$

Geric Find ideal *I* ⊆ *S* along idea of G. Smith s.t.
 $H^{i}(X_{\Sigma}, \widetilde{F}) \cong \operatorname{Ext}_{S}^{i}(I, F)_{0}$

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Implemented Algorithm

Input and Output

- smooth, complete toric variety X_{Σ}
- $F \in S$ -fpgrmod

Step-by-step (References in two slides)

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}\left(X_{\Sigma}
ight)\coloneqq\left\{L\in\operatorname{Pic}\left(X_{\Sigma}
ight)\;,\;h^{k}\left(X_{\Sigma},L
ight)=0
ight\}$$

G Find ideal *I* ⊆ *S* along idea of G. Smith s.t.
 $H^i(X_{\Sigma}, \widetilde{F}) \cong \operatorname{Ext}_S^i(I, F)_0$

• Compute \mathbb{Q} -dimension of $\operatorname{Ext}_{S}^{i}(I, F)_{0}$

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Example computation from 1706.04616

Input and Output

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Example computation from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$
 $h^1(\mathbb{P}^2_{\mathbb{Q}}, \widetilde{F}) =?$

Apply Algorithm

• Compute vanishing sets via *cohomCalg*: $V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Example computation from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$
 $h^1(\mathbb{P}^2_{\mathbb{Q}}, \widetilde{F}) =?$

Apply Algorithm

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Example computation from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$

Apply Algorithm

•
$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

• $I = B^{(44)}_{\Sigma} \equiv \langle x^{44}_{0}, x^{44}_{1}, x^{44}_{2} \rangle$
• Compute presentation of $\operatorname{Ext}^{1}_{S} \left(B^{(44)}_{\Sigma}, F \right)_{0}$:
 $\operatorname{Ext}^{1}_{S} \left(B^{(44)}_{\Sigma}, F \right)_{0}$

=?

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

Example computation from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$

Apply Algorithm

•
$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

• $I = B_{\Sigma}^{(44)} \equiv \langle x_{0}^{44}, x_{1}^{44}, x_{2}^{44} \rangle$
• Compute presentation of $\operatorname{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0}$:
 $\mathbb{Q}^{37425} \rightarrow \mathbb{Q}^{27201} \twoheadrightarrow \operatorname{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0} \rightarrow 0$

=?

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

=?

/ 42

Example computation from 1706.04616

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow F$ and F defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow F \rightarrow 0$

Apply Algorithm

•
$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

• $I = B_{\Sigma}^{(44)} \equiv \langle x_{0}^{44}, x_{1}^{44}, x_{2}^{44} \rangle$
• $\mathbb{Q}^{37425} \rightarrow \mathbb{Q}^{27201} \rightarrow \operatorname{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0} \rightarrow 0$
 $\Rightarrow 28 = \dim_{\mathbb{Q}} \left[\operatorname{Ext}_{S}^{1} \left(B_{\Sigma}^{(44)}, F \right)_{0} \right] = h^{1} \left(\mathbb{P}^{2}_{\mathbb{Q}}, \widetilde{F} \right)$
Martin Bies — Counting massless matter in E-theory with 642 - 27

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

- Have combined
 - cohomCalg by R. Blumenhagen et al.
 - $1003.5217,\ 1006.0780,\ 1006.2392,\ 1010.3717$
 - work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25

- Have combined
 - cohomCalg by R. Blumenhagen et al.
 - $1003.5217,\ 1006.0780,\ 1006.2392,\ 1010.3717$
 - work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- \Rightarrow Our algorithm applies 1802.08860
 - on more general toric spaces (than idea of G. Smith)
 - to **all coherent sheaves** (i.e. not 'only' line bundles as *cohomCalg*)

- Have combined
 - cohomCalg by R. Blumenhagen et al.
 - $1003.5217,\ 1006.0780,\ 1006.2392,\ 1010.3717$
 - work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- \Rightarrow Our algorithm applies 1802.08860
 - on more general toric spaces (than idea of G. Smith)
 - to **all coherent sheaves** (i.e. not 'only' line bundles as *cohomCalg*)
 - Have improved computation of $\mathbb{Q}\text{-dimension}$ of $\mathsf{Ext}_{\mathcal{S}}^i$ by
 - parallelisation
 - replacing Groebner basis computations by Gauß-eliminations

Parametrisation of G_4 -fluxes Description of massless matter Counting massless matter with CAP

- Have combined
 - cohomCalg by R. Blumenhagen et al.
 - $1003.5217,\ 1006.0780,\ 1006.2392,\ 1010.3717$
 - work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- \Rightarrow Our algorithm applies 1802.08860
 - on more general toric spaces (than idea of G. Smith)
 - to **all coherent sheaves** (i.e. not 'only' line bundles as *cohomCalg*)
 - Have improved computation of $\mathbb{Q}\text{-dimension}$ of $\mathsf{Ext}_{\mathcal{S}}^i$ by
 - parallelisation
 - replacing Groebner basis computations by Gauß-eliminations
- ⇒ Improved performance 1802.08860

- Have combined
 - cohomCalg by R. Blumenhagen et al.
 - $1003.5217,\ 1006.0780,\ 1006.2392,\ 1010.3717$
 - work of G. Smith et al. on computing sheaf cohomologies math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- \Rightarrow Our algorithm applies 1802.08860
 - on more general toric spaces (than idea of G. Smith)
 - to **all coherent sheaves** (i.e. not 'only' line bundles as *cohomCalg*)
 - \bullet Have improved computation of $\mathbb{Q}\text{-dimension}$ of $\mathsf{Ext}_{\mathcal{S}}^i$ by
 - parallelisation
 - replacing Groebner basis computations by Gauß-eliminations
- ⇒ Improved performance 1802.08860
 - Available at GitHub https://github.com/HereAround

Parametrisation of G₄-fluxes Description of massless matter Counting massless matter with CAP

Questions so far?

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Hypercharge flux in F-theory GUT models

How to break SU(5) to $SU(3) \times SU(2) \times U(1)$?

- Higgs effect
 - Requires knowledge of Higgs potential V
 - \Rightarrow String theory: Derive V from geometry of \mathcal{B}_3
 - \Rightarrow Fairly involved, so typically V is not known
- Alternative: Hypercharge flux 0802.2969, 0802.3391, ...
 - Relies on Stückelberg masses
 - \Rightarrow No knowledge of Higgs potential V required
Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Hypercharge flux in F-theory GUT models

How to break SU(5) to $SU(3) \times SU(2) \times U(1)$?

- Higgs effect
 - Requires knowledge of Higgs potential V
 - \Rightarrow String theory: Derive V from geometry of \mathcal{B}_3
 - \Rightarrow Fairly involved, so typically V is not known
- Alternative: Hypercharge flux 0802.2969, 0802.3391, ...
 - Relies on Stückelberg masses
 - \Rightarrow No knowledge of Higgs potential V required

Non-trivial check for CAP-performance

- Hypercharge flux A_Y never pullback of line bundle from Δ
- \Rightarrow A_Y requires full power of algorithms in CAP
- \Rightarrow Computation of massless spectrum possible 1706.04616, 1802.08860

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Hypercharge flux in F-theory GUT models

How to break SU(5) to $SU(3) \times SU(2) \times U(1)$?

- Higgs effect
 - Requires knowledge of Higgs potential V
 - \Rightarrow String theory: Derive V from geometry of \mathcal{B}_3
 - \Rightarrow Fairly involved, so typically V is not known
- Alternative: Hypercharge flux 0802.2969, 0802.3391, ...
 - Relies on Stückelberg masses
 - \Rightarrow No knowledge of Higgs potential V required

Non-trivial check for CAP-performance

- Hypercharge flux A_Y never pullback of line bundle from Δ
- \Rightarrow A_Y requires full power of algorithms in CAP
- \Rightarrow Computation of massless spectrum possible 1706.04616, 1802.08860
 - Can study moduli dependence of massless spectrum

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How the complex structure moduli enter

Moduli in $SU(5) \times U(1)_X$ -Tate model from 1706.04616

- Matter curve $\supset C_{\mathbf{5}_{-2}} = V(a_{1,0} \cdot a_{4,3} a_{3,2} \cdot a_{2,1}) \subseteq \mathbb{P}^2_{\mathbb{Q}}$
- $a_{1,0} = c_1 x_1^4 + c_2 x_1^3 x_2 + c_3 x_1^2 x_2 x_3 + \ldots \in \mathbb{Q}[x_1, x_2, x_3]$
- deg $a_{1,0} = 4$, deg $a_{2,1} = 7$, deg $a_{3,2} = 10$, deg $a_{4,3} = 13$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How the complex structure moduli enter

Moduli in $SU(5) \times U(1)_X$ -Tate model from 1706.04616

• Matter curve $\supset C_{\mathbf{5}_{-2}} = V(a_{1,0} \cdot a_{4,3} - a_{3,2} \cdot a_{2,1}) \subseteq \mathbb{P}^2_{\mathbb{Q}}$

•
$$a_{1,0} = c_1 x_1^4 + c_2 x_1^3 x_2 + c_3 x_1^2 x_2 x_3 + \ldots \in \mathbb{Q}[x_1, x_2, x_3]$$

• deg
$$a_{1,0} = 4$$
, deg $a_{2,1} = 7$, deg $a_{3,2} = 10$, deg $a_{4,3} = 13$

Strategy

- Moduli c_i enter definition of line bundle $L(S^a_{\mathbb{R}}(C_{\mathbb{R}}), A)$
- Smoothness of matter curve C_R NOT required for CAP
- \Rightarrow Can perform computation for **non-generic** values c_i
- \Rightarrow Probe moduli dependence of massless spectrum

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Example: $SU(5) \times U(1)$ -Tate Model ($\mathbf{R} = \mathbf{5}_{-2}$) 1706.04616

	$\widetilde{a_{1,0}}$	$\widetilde{a_{2,1}}$	<i>a</i> _{3,2}	<i>a</i> _{4,3}	$h^0(C_{\mathbf{R}},L_{\mathbf{R}})$
M_1	$(x_1 - x_2)^4$	x ₁ ⁷	x ₂ ¹⁰	x ₃ ¹³	22
M_2	$(x_1 - x_2) x_3^3$	$x_1^{\overline{7}}$	x_2^{10}	x ₃ ¹³	21
<i>M</i> ₃	x ₃ ⁴	x_1^7	$x_{2}^{7}(x_{1}+x_{2})^{3}$	$x_3^{12}(x_1-x_2)$	11
M_4	$(x_1 - x_2)^3 x_3$	x_1^7	x ₂ ¹⁰	x ₃ ¹³	9
M_5	x ₃ ⁴	x_1^7	$x_{2}^{8}(x_{1}+x_{2})^{2}$	$x_3^{11}(x_1-x_2)^2$	7
M_6	x ₃ ⁴	x_{1}^{7}	x ₂ ¹⁰	$x_3^8 (x_1 - x_2)^5$	6
<i>M</i> ₇	x ₃ ⁴	x_1^7	$x_2^9(x_1+x_2)$	$x_3^{10}(x_1-x_2)^3$	5

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

 $SU(5) imes U(1)_X$ GUT with $\Delta\cong dP_3$ 1802.08860

Summary

- Three matter curves C_{10_1} , C_{5_3} and $C_{5_{-2}}$
- Fix G_4 -flux A and hypercharge flux A_Y
- ⇒ Parametrisation of moduli space by 208 parameters

Strategy

- Recently: Focus on 3-dim. patches of parameter space
- For future work: Extend analysis to understand global structure

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{Introduction to F-theory} \\ G_4\mbox{-flux and counting massless matter in F-theory} \\ \mbox{Applications in F-theory GUT-models} \end{array}$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

$h^0(\mathcal{C}_{10}, L(S^a_{\mathsf{R}}, A))$ with $\mathsf{R} = (\mathbf{3}, \mathbf{2})_{1_X, 1_Y}$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Result explained by decision tree

obtained from scikit-learn: 4913 data points, 3193 used for training, 1720 correctly predicted

Questions so far?

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Step 1 – Physics analysis of massless matter in F-theory

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Step 1 – Physics analysis of massless matter in F-theory

Steps and results

• With T. Weigand, C. Mayrhofer, C. Pehle

1402.5144, 1706.04616, 1706.08528, 1802.08860

- $\bullet~\mathsf{Use}~\mathsf{A}\in\mathsf{CH}^2(\hat{Y}_4)$ as parametrisation of full $\mathit{G}_4\text{-}\mathsf{gauge}$ data
- $\Rightarrow \text{ Identified line bundles } L(S_{\mathbf{R}}^{i}, A) \text{ such that} \\ \text{ Chiral } \mathcal{N} = 1 \text{ multiplets } \leftrightarrow H^{0}(C_{\mathbf{R}}, L(S_{\mathbf{R}}^{i}, A)) \\ \text{ Anti-chiral } \mathcal{N} = 1 \text{ multiplets } \leftrightarrow H^{1}(C_{\mathbf{R}}, L(S_{\mathbf{R}}^{i}, A)) \\ \text{ Challengey } L(S_{\mathbf{R}}^{i}, A) \text{ in general net pullback}$
 - Challenge: $L(S_{\mathbf{R}}^{i}, A)$ in general **not pullback**

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Step 2 – Compute sheaf cohomologies on toric varieties

Building blocks

- Have combined two approaches:
 - cohomCalg by R. Blumenhagen et al. 1003.5217, 1006.0780, 1006.2392, 1010.3717
 - 2 idea of G. Smith et al.
 - math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
- Model coherent sheaves with S-fpgrmod on toric varieties

 $1003.1943,\ 1202.3337,\ 1210.1425,\ 1212.4068,\ 1409.2028,\ 1409.6100,\ 1712.03492$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Step 2 – Compute sheaf cohomologies on toric varieties

Building blocks

- Have combined two approaches:
 - cohomCalg by R. Blumenhagen et al. 1003.5217, 1006.0780, 1006.2392, 1010.3717
 - idea of G. Smith et al.
 - $math/9807170,\ math/0305214,\ DOI:\ 10.4171/OWR/2013/25$
- Model coherent sheaves with S-fpgrmod on toric varieties

 $1003.1943,\ 1202.3337,\ 1210.1425,\ 1212.4068,\ 1409.2028,\ 1409.6100,\ 1712.03492$

Properties of algorithm

- In collaboration with M. Barakat et al. (Siegen university) implemented in CAP https://github.com/homalg-project/CAP_project
- Applies to smooth, complete toric varieties 1802.08860
- Has improved performance 1802.08860
- Available at GitHub https://github.com/HereAround

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Step 3 – Applications to F-Theory GUTs

Challenges in F-theory GUT-models

- Hypercharge flux A_Y (used for GUT-breaking) not pullback
- Applicability of CAP requires thorough investigation of geometry (e.g. explicit isomorphism dP₃ ≃ Δ)

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Step 3 – Applications to F-Theory GUTs

Challenges in F-theory GUT-models

- Hypercharge flux A_Y (used for GUT-breaking) not pullback
- Applicability of CAP requires thorough investigation of geometry (e.g. explicit isomorphism dP₃ ≃ Δ)

Results

- **(**) We have conjectured a construction for isomorphism $dP_3 \cong \Delta$
- \Rightarrow Passes lots on consistency checks
- 2 CAP can indeed handle A_Y
- \Rightarrow Given $dP_3 \cong \Delta$, computation of massless spectra feasible

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Current and near future developments

Moduli dependence of massless spectra

- Matter curves **not** required to be **smooth** (nor complete intersections)
- \Rightarrow Can study moduli space dependence of massless spectrum

Several challenges

- Moduli space (parametrisation) high dimensional
- \Rightarrow Dimensional reduction?
- Machine learning suited for image processing (e.g. facial recognition, detection of cancer, ...)
- \Rightarrow Make sense of our high-dimensional data?
- Understand cohomology jumps as jumping lines along works of R. L. E. Schwarzenberger (1961) or M. Mulase (1979)

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Other possible applications include

• Zero mode counting in topological string, IIB or heterotic compactifications 0403166, 0808.3621, 1106.4804, ...

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Other possible applications include

- Zero mode counting in topological string, IIB or heterotic compactifications 0403166, 0808.3621, 1106.4804, ...
- T-branes as coherent sheaves (1410.4867, 1603.00062)

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Other possible applications include

- Zero mode counting in topological string, IIB or heterotic compactifications 0403166, 0808.3621, 1106.4804, ...
- T-branes as coherent sheaves (1410.4867, 1603.00062)
- Involved geometrical analysis (e.g. intersection numbers)

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Other possible applications include

- Zero mode counting in topological string, IIB or heterotic compactifications 0403166, 0808.3621, 1106.4804, ...
- T-branes as coherent sheaves (1410.4867, 1603.00062)
- Involved geometrical analysis (e.g. intersection numbers)

• . . .

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Thank you for your attention!

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

From Divisors to Modules

Input and Output

•
$$C = V(g_1, \dots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \dots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

From Divisors to Modules

Input and Output

•
$$C = V(g_1, \ldots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \ldots, f_n) \in \text{Div}(C)$
 $\longrightarrow M \text{ s.t. supp}(\widetilde{M}) = 0$
and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

Step 1: $S(C) := S/\langle g_1, \dots, g_k
angle$, $\pi \colon S \twoheadrightarrow S(C)$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

From Divisors to Modules II

Step 2: Extend by zero to coherent sheaf on X_{Σ}

 $A \Rightarrow M = A \otimes B$ satisfies $\text{Supp}(\widetilde{M}) = C$ and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

From Divisors to Modules III

Input and Output

•
$$C = V(g_1, \ldots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \ldots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. } \text{supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(+D)$

Strategy

- Compute A_C
- Extend by zero by considering $A^{\vee} \otimes B$
- $A \Rightarrow M^{\vee} := A^{\vee} \otimes B$ satisfies $\operatorname{Supp}(\widetilde{M}) = C$ and $\widetilde{M}|_{C} \cong \mathcal{O}_{C}(+D)$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

An idea of the sheafification functor

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

An idea of the sheafification functor

Affine open cover

- Toric variety X_{Σ} with Cox ring S
- \Rightarrow Covered by affine opens $\left\{ U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})}) \right\}_{\sigma \in \Sigma}$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

An idea of the sheafification functor

Affine open cover

- Toric variety X_{Σ} with Cox ring S
- \Rightarrow Covered by affine opens $\left\{ U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})}) \right\}_{\sigma \in \Sigma}$

Localising (\leftrightarrow restricting) a module

•
$$M \in S$$
-fpgrmod

$$\Rightarrow M_{(x^{\hat{\sigma}})}$$
 is f.p. $S_{(x^{\hat{\sigma}})}$ -module

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

An idea of the sheafification functor

Affine open cover

- Toric variety X_{Σ} with Cox ring S
- \Rightarrow Covered by affine opens $\left\{ U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})}) \right\}_{\sigma \in \Sigma}$

Localising (\leftrightarrow restricting) a module

•
$$M \in S$$
-fpgrmod

$$\Rightarrow M_{(x^{\hat{\sigma}})}$$
 is f.p. $S_{(x^{\hat{\sigma}})}$ -module

Consequence

•
$$M_{(x^{\hat{\sigma}})} \leftrightarrow \text{coherent sheaf on } U_{\sigma} = \operatorname{Specm}(S_{(x^{\hat{\sigma}})})$$

• local sections: $\widetilde{M_{(x^{\hat{\sigma}})}}(D(f)) = M_{(x^{\hat{\sigma}})} \otimes_{S_{(x^{\hat{\sigma}})}} \left(S_{(x^{\hat{\sigma}})}\right)_{f}$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Module M₅ from 1706.04616: Quality Check I

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Module M₅ from 1706.04616: Quality Check I

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Module M₅ from 1706.04616: Quality Check I

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Module M₅ from 1706.04616: Quality Check II

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Module M₅ from 1706.04616: Quality Check II

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

Preparation

- $p \in Cl(X_{\Sigma})$ ample, $m(p) = \{m_1, \dots, m_k\}$ all monomials of degree p and $l(p, e) = \langle m_1^e, \dots, m_k^e \rangle$
- Pick e = 0 and increase it until subsequent conditions are met
Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

• Look at spectral sequence
$$\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} (\widetilde{I(p,e)}, \widetilde{M})$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\nabla}}}^{p+q}\left(\widetilde{I(p,e)},\widetilde{M}\right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\nabla}}}^{p+q}\left(\widetilde{I(p,e)},\widetilde{M}\right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\nabla}}}^{p+q}\left(\widetilde{I(p,e)},\widetilde{M}\right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does

 \[
 E_2^{p,q} \]
 degenerate (on *E*₂-sheet)? Is its limit (co)homology
 H^m (**C**⁰) of complex of global sections of vector bundles?
- \Rightarrow If no increase *e* until this is the case!

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

• $V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\nabla}}}^{p+q}\left(\widetilde{I(p,e)},\widetilde{M}\right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does

 \[
 E_2^{p,q} \]
 degenerate (on *E*₂-sheet)? Is its limit (co)homology
 H^m (**C**⁰) of complex of global sections of vector bundles?
- \Rightarrow If no increase *e* until this is the case!
 - \bullet Long exact sequence: sheaf cohomology \leftrightarrow local cohomology

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

How to determine the ideal *I* in step 2 of algorithm?

Input

•
$$M \in S$$
-fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\nabla}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does E^{p,q}₂ degenerate (on E₂-sheet)? Is its limit (co)homology H^m (C⁰) of complex of global sections of vector bundles?
- \Rightarrow If no increase *e* until this is the case!
 - \bullet Long exact sequence: sheaf cohomology \leftrightarrow local cohomology
- $\Rightarrow \text{ Increase } e \text{ further until } H^m\left(\mathbf{C}^0\right) \cong \operatorname{Ext}^m_S\left(I\left(p,e\right),M\right)_0$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

The Hom-Embedding

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 1 – Category of projective graded S-modules

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: Mon $(S) o \mathbb{Z}^n$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: ${\sf Mon}\,(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: ${\sf Mon}\,(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$

Objects: $M = \bigoplus_{d \in I} S(d)$

• $I \subseteq \mathbb{Z}^n$ an indexing set

• graded, i.e.
$$S_i M_j \subseteq M_{i+j}$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: ${\sf Mon}\,(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$

Objects: $M = \bigoplus_{d \in I} S(d)$

• $I \subseteq \mathbb{Z}^n$ an indexing set

• graded, i.e.
$$S_i M_j \subseteq M_{i+j}$$

Morphisms:

morphisms of graded modules

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

- Polynomial ring $S = \mathbb{Q}[x_1, \ldots, x_n]$
- Homomorphism of monoids deg: Mon $(S) o \mathbb{Z}^n$

Definition

- $S_e \subseteq S$: subgroup of homogeneous polynomials of degree e
- S(d): graded ring with $S(d)_e = S_{e+d}$

Objects: $M = \bigoplus_{d \in I} S(d)$

• $I \subseteq \mathbb{Z}^n$ an indexing set

• graded, i.e.
$$S_i M_j \subseteq M_{i+j}$$

Morphisms:

morphisms of graded modules

Martin Bies

Example: S the Cox ring of \mathbb{P}^2_{\square}

$$\varphi \colon S(-1) \xrightarrow{(x_1)} S(0)$$
 is morphism in this category since

$$\underbrace{\mathcal{S}\left(-1\right) \ni 1}_{\text{degree1}} \mapsto \varphi\left(1\right) = \underbrace{x_{1} \in \mathcal{S}\left(0\right)}_{\text{degree1}}$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod $\widehat{=}$ morphisms of projective graded S-modules

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod $\widehat{=}$ morphisms of projective graded S-modules

Example on $\mathbb{P}^2_{\mathbb{Q}}$: $S = \mathbb{Q}[x_1, x_2, x_3]$, deg $(x_i) = 1$

 $M_{arphi}\equiv {
m coker}\left(arphi
ight)$ and $M_{\psi}\equiv {
m coker}\left(\psi
ight)$ are abstractly described by

$$\psi \colon S(-2)^{\oplus 3} \xrightarrow{R} S(-1)^{\oplus 3}, \quad R = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}, \quad \varphi \colon 0 \to S(0)$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod $\widehat{=}$ morphisms of projective graded S-modules

Example on $\mathbb{P}^2_{\mathbb{Q}}$: $S = \mathbb{Q}[x_1, x_2, x_3]$, deg $(x_i) = 1$

 $\mathit{M}_{arphi}\equiv\operatorname{coker}\left(arphi
ight)$ and $\mathit{M}_{\psi}\equiv\operatorname{coker}\left(\psi
ight)$ are abstractly described by

$$\psi \colon S(-2)^{\oplus 3} \xrightarrow{R} S(-1)^{\oplus 3}, \quad R = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}, \quad \varphi \colon 0 \to S(0)$$

Notation

$$\begin{array}{c}
S(-2)^{\oplus 3} \\
R \\
S(-1)^{\oplus 3}
\end{array}$$

$$\begin{array}{c}
0 \\
\downarrow 0 \\
S(0)
\end{array}$$

Martin Bies Counting massless matter in F-theory with CAP 52/42

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 3: Morphisms

Definition: Morphism $M_{\psi} \rightarrow M_{\omega}$ is commutative diagram

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 3: Morphisms

Example: Morphism $M_{\psi} \rightarrow M_{\varphi}$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

S-fpgrmod 3: Morphisms

Example: Morphism $M_{\psi} \rightarrow M_{\varphi}$

Implementation for CAP at https://github.com/HereAround:

- 'CAPCategoryOfProjectiveGradedModules'
- 'CAPPresentationCategory'
- 'PresentationByProjectiveGradedModules'

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – general idea

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – general idea

Definition

$$H^{0}(X_{\Sigma},\mathcal{F}) \coloneqq \Gamma\left(\mathscr{H}_{OM \mathcal{O}_{X}}(\mathcal{O}_{X},\mathcal{F})\right)$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – general idea

Definition

$$H^{0}(X_{\Sigma},\mathcal{F}) \coloneqq \Gamma(\mathscr{H}_{OM}\mathcal{O}_{X}(\mathcal{O}_{X},\mathcal{F}))$$

Idea

•
$$M$$
 such that $\widetilde{M} \cong \mathcal{O}_X$

•
$$F$$
 such that $F \cong \mathcal{F}$

$$\Rightarrow \Gamma\left(\mathscr{H}_{om}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X},\mathcal{F}\right)\right) \stackrel{?}{=} \operatorname{Hom}_{\mathcal{S}}\left(M,F\right)_{0}$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – general idea

Definition

$$H^{0}(X_{\Sigma},\mathcal{F}) \coloneqq \Gamma(\mathscr{H}_{OM}\mathcal{O}_{X}(\mathcal{O}_{X},\mathcal{F}))$$

Idea

•
$$M$$
 such that $\widetilde{M} \cong \mathcal{O}_X$

•
$$F$$
 such that $F \cong \mathcal{F}$

$$\Rightarrow \Gamma\left(\mathscr{H}_{om}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X},\mathcal{F}\right)\right) \stackrel{?}{=} \operatorname{Hom}_{\mathcal{S}}\left(M,F\right)_{0}$$

Careful!

In general wrong - have to choose M carefully

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – different models for the structure sheaf

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – is B_{Σ} or S better?

Task

• On
$$\mathbb{P}^2_{\mathbb{Q}}$$
, $F = B_{\Sigma} = \langle x_1, x_2, x_3 \rangle$ satisfies $\widetilde{F} \cong \mathcal{O}_{\mathbb{P}^2_{\mathbb{Q}}}$

$$\Rightarrow H^0(\mathbb{P}^2_{\mathbb{Q}},\widetilde{F})\cong \mathbb{Q}^1$$

 \Rightarrow Task: Reproduce this from Hom_S $(X, F)_0$ with $X \in \{S, B_{\Sigma}\}$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – is B_{Σ} or S better?

Task

• On
$$\mathbb{P}^2_{\mathbb{Q}}$$
, $F = B_{\Sigma} = \langle x_1, x_2, x_3 \rangle$ satisfies $\widetilde{F} \cong \mathcal{O}_{\mathbb{P}^2_{\mathbb{Q}}}$

$$\Rightarrow H^0(\mathbb{P}^2_{\mathbb{Q}},\widetilde{F})\cong \mathbb{Q}^1$$

 \Rightarrow Task: Reproduce this from Hom_S $(X, F)_0$ with $X \in \{S, B_{\Sigma}\}$

Try 1: X = S

Hom_S $(S, F)_0 \cong \mathbb{Q}^0$ – wrong result!

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Computing H^0 – is B_{Σ} or S better?

Task

• On
$$\mathbb{P}^2_{\mathbb{Q}}$$
, $F = B_{\Sigma} = \langle x_1, x_2, x_3 \rangle$ satisfies $\widetilde{F} \cong \mathcal{O}_{\mathbb{P}^2_{\mathbb{Q}}}$

$$\Rightarrow H^0(\mathbb{P}^2_{\mathbb{Q}},\widetilde{F})\cong \mathbb{Q}^1$$

 \Rightarrow Task: Reproduce this from Hom_S $(X, F)_0$ with $X \in \{S, B_{\Sigma}\}$

Try 1: X = S

Hom_S $(S, F)_0 \cong \mathbb{Q}^0$ – wrong result!

Try 2: $X = B_{\Sigma}$

Hom_S $(B_{\Sigma}, F)_0 \cong \mathbb{Q}^1$ – correct result!

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Sketch of Algorithm in CAP

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Sketch of Algorithm in CAP

Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_{Σ}
- $M \in S$ -fpgrmod

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

Sketch of Algorithm in CAP

Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_{Σ}
- $M \in S$ -fpgrmod

Step-by-step

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}\left(X_{\Sigma}
ight):=\left\{L\in \operatorname{Pic}\left(X_{\Sigma}
ight)\;,\;h^{k}\left(X_{\Sigma},L
ight)=0
ight\}$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

 $h^i\left(X_{\Sigma},\widetilde{M}\right)$

Sketch of Algorithm in CAP

Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_{Σ}
- $M \in S$ -fpgrmod

Step-by-step

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}\left(X_{\Sigma}
ight):=\left\{L\in \operatorname{Pic}\left(X_{\Sigma}
ight)\;,\;h^{k}\left(X_{\Sigma},L
ight)=0
ight\}$$

Solution Find ideal $I \subseteq S$ (along idea of G. Smith) s.t.

$$H^{i}\left(X_{\Sigma},\widetilde{M}\right)\cong\operatorname{Ext}_{S}^{i}\left(I,M\right)_{0}$$

Additional challenge in GUT-models: Hypercharge flux Moduli dependence of massless spectrum Summary of talk

 $h^i\left(X_{\Sigma},\widetilde{M}\right)$

Sketch of Algorithm in CAP

Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_{Σ}
- $M \in S$ -fpgrmod

Step-by-step

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}\left(X_{\Sigma}
ight):=\left\{L\in \operatorname{Pic}\left(X_{\Sigma}
ight)\;,\;h^{k}\left(X_{\Sigma},L
ight)=0
ight\}$$

Solution Find ideal $I \subseteq S$ (along idea of G. Smith) s.t.

$$H^{i}\left(X_{\Sigma},\widetilde{M}\right)\cong\operatorname{Ext}_{S}^{i}\left(I,M\right)_{0}$$