HOApproximator

A package to estimate global sections of a
pullback line bundle on hypersurface
curves in dP3 and H2
2021.11.17

17 November 2021

Martin Bies

Muyang Liu

Martin Bies
Email: martin.bies@alumni.uni-heidelberg.de
Homepage: https://martinbies.github.io/
Address: Department of Mathematics

University of Pennsylvania

David Rittenhouse Laboratory

209 S 33rd St

Philadelphia

PA 19104

Muyang Liu
Email: muyang@sas.upenn. edu
Homepage: https://github.com/lmyreg2017
Address: Department of Physics and Astronomy
University of Pennsylvania
209 South 33rd Street
Philadelphia, PA 19104-6396
United States

mailto://martin.bies@alumni.uni-heidelberg.de
https://martinbies.github.io/
mailto://muyang@sas.upenn.edu
https://github.com/lmyreg2017

HOApproximator 2

Copyright

This package may be distributed under the terms and conditions of the GNU Public License Version 2 or (at
your option) any later version.

Contents

1 Introduction
1.1 Acknowledgements

2 Common functions applied generically to all toric surfaces
2.1 Topological sectioncounter v v i e e
2.2 Examples

3 Spectrum approximation from curve splittings in dP3
3.1 Compute if a curve of given class isirreducible
3.2 Finding the CounterDirectory
3.3 Determine descendantlevel L oL oo
3.4 Approximate hO-spectrum Lo
3.5 Exampleso e e e

4 Spectrum approximation from maximal curve splittings in dP3
4.1 Install elementary topological functions
4.2 Check if acurve class if a power of arigiddivisor
43 Localsectionanalyser.
4.4 Analyse bundle on maximally degenerate curves
45 Examples e

5 Spectrum approximation from curve splittings in H2
5.1 Compute if a curve of given class is irreducible
5.2 Finding the CounterDirectory
5.3 Determine descendantlevelo oL oo
5.4 Approximate hO-spectrum
5.5 Examples e e e e

6 Spectrum approximation from maximal curve splittings in H2
6.1 Install elementary topological functions
6.2 Check if a curve class if a power of atoric divisor
6.3 Localsectionanalyser.
6.4 Analyse bundle on maximally degenerate curves
6.5 Examples e

WD W D

()@ =)

[ele RN BN N

10

10
11
12
13

14
14
14
14
15
15

17
17
17
18
19
19

Index

HOApproximator

21

Chapter 1

Introduction

1.1 Acknowledgements

This algorithm is the result of ongoing collaboration with Mirjam Cveti¢, Ron Donagi, Ling Lin,
Muyang Liu and Fabian Riihle. The corresponding preprint 2007.00009 is available here.

1.2 What is the goal of the HOApproximator package?

HOApproximator provides functionality to estimate global sections from topological counts only. A
refined approximation checks irreducibility of curves, and thereby computes more accurate results, at
the expense of longer runtimes.

1.3 Conventions

The current implementations is specific to hypersurface curves in dP3;, H, and pullback line bundles
thereon. Generalizations thereof are reserved for future work.

In the following, it will be crucial to denote the divisor classes on dP3 and H, without ambiguity.
Let us therefore explain our choice of basis:

* Recall that the Picard group of a dP; has generators H, E|, E,, E3, i.e. the hyperplane class
H of P? and the three exceptional classes E; corresponding to the blowup P's at three generic
points of P2, We use these divisors as basis for the divisor classes of dP3. Thus [1;2,3,4] =
1-H+2-E1+3-E>+4-Es.

« For H,, we assume that the Cox ring is Z>-graded by
X1:(1,0), Xz:(—Z,l), X32(1,0), X4Z(0,1).

We denote the toric divisors by D; = V(x;) and use {D;,D,} as basis of the divisor classes on
H,. Thus, (1,2) =1-D;+2-D;,.

https://arxiv.org/abs/2007.00009

Chapter 2

Common functions applied generically to
all toric surfaces

2.1 Topological section counter

2.1.1 LowerBoundOnSections (for IsInt, IsInt)

> LowerBoundOnSections(Integers, d, g) (operation)
Returns: Integer
Based on degree d of a line bundle and the genus g of the curve, this method tries to identify the
number of sections of the line bundle.

2.2 Examples

On a genus g curve, a lower bound for the sections of a degree d bundle can be estimated as follows:

Example
gap> sections := LowerBoundOnSections(3, 2);
0

Chapter 3

Spectrum approximation from curve
splittings in dP3

3.1 Compute if a curve of given class is irreducible

3.1.1 IsIrreducible (for IsList, IsToricVariety)

> IsIrreducible(List) (operation)
Returns: True or false
This operation identifies if a curve class defines an irreducible curve or not.

3.1.2 DegreesOfComponents (for IsList, IsToricVariety)

> DegreesOfComponents(List) (operation)
Returns: A list of fail
This operation performs a primary decomposition of a hypersurface curve in dP3. If all compo-
nents are principal, it returns the degrees of the generators. Otherwise it returns fail.

3.2 Finding the CounterDirectory

3.2.1 FindCounterBinary

> FindCounterBinary (none) (operation)
Returns: the corresponding filename
This operation identifies the location of the counter binary when applied in dPs.

3.3 Determine descendant level

3.3.1 DescendantLevel (for IsList)

> DescendantLevel(List, c) (operation)
Returns: An integer
Estimates the maximal power to which a rigid divisor can be peeled-off in dP; with the given
curve.

HOApproximator 8

3.4 Approximate h(Q-spectrum

3.4.1 RoughApproximationWithSetups (for IsList, IsList)

> RoughApproximationWithSetups(Lists, c, 1) (operation)
Returns: A list
Given a curve class ¢ and a line bundle class | in dP3, this method approximates the hO-spectrum by
use of topological methods only. In particular, irreducibility of curves is not checked. Consequently,
this method performs faster than Fine Approximation, but produces less accurate results.

3.4.2 RoughApproximation (for IsList, IsList)

> RoughApproximation(Lists, c, 1) (operation)
Returns: A list
The same as RoughApproximationWithSetups, but returns only the spectrum estimate.

3.4.3 FineApproximationWithSetups (for IsList, IsList)

> FineApproximationWithSetups(Lists, ¢, 1) (operation)
Returns: A list
Given a curve class ¢ and a line bundle class 1 in dP3, this method approximates the hO-spectrum
by use of topological methods and checks irreducibility of curves. It performs slower than RoughAp-
proximation, but produces more accurate results.

3.4.4 FineApproximation (for IsList, IsList)

> FineApproximation(Lists, c, 1) (operation)
Returns: A list
The same as FineApproximationWithSetups, but returns only the spectrum estimate.

3.5 Examples

We can approximate the spectrum roughly, that is we do not take irreducibilty of curves into account.
Here is a simple example:
Example
gap> approxl := RoughApproximation([3,-1,-1,-1],[1,-1,-3,-1]);;
(*) Curve: [3, -1, -1, -11]
(%) Bundle: [1, -1, -3, -1 1]
(*) 79 rough approximations
(*) Rough spectrum estimate: [0, 1, 2, 3]

(x) h0 = 0: 22

(x) h0=1: 6
(x) hO = 2: 37
(x) hO = 3: 14

We can of course compute this also finer, i.e. by checking irreducibiltiy for each identified setup:
Example
gap> approx2 := FineApproximation([3,-1,-1,-1],[1,-1,-3,-1]);;
(¥) Curve: [3, -1, -1, -1 1]

HOApproximator

(*) Bundle: [1, -1, -3, -11]

(*) 79 rough approximations

(*) Rough spectrum estimate: [0, 1, 2, 3]
(x) h0 = 0: 22

(x) h0 =1: 6
(x) hO = 2: 37
(x) hO = 3: 14

(*) Checking irreducibility of curves...
(*) 23 fine approximations
(*) Fine spectrum estimate: [0, 2, 3]
(x) h0 = 0: 11
(x) h0 = 2: 11
(x) ho 3: 1

Here is a more involved example:
Example

gap> approx2 := RoughApproximation([5,-1,-1,-2],[1,1,-4,1]);;
(x*) Curve: [5, -1, -1, -2 1]
(*) Bundle: [1, 1, -4, 1]
(*) 332 rough approximations
(*) Rough spectrum estimate: [O, 1, 2, 3, 4, 5, 6, 7 1]
(x) hO = 0: 20

(x) hO = 1: 18
(x) hO = 2: 9
(x) hO = 3: 37
(x) hO = 4: 30
(x) h0O = 5: 31
(x) hO = 6: 148
(x) h0 = 7: 39

Another involved example:
Example

gap> approx3 := FineApproximation([3,-1,-1,-1],[1,-1,-3,-1]);;
(x) Curve: [3, -1, -1, -1]

(*) Bundle: [1, -1, -3, -1]

(*) 79 rough approximations

(*) Rough spectrum estimate: [0, 1, 2, 3]

(x) hO = 0: 22
(x) hO = 1: 6

(x) hO = 2: 37
(x) hO = 3: 14

(*) Checking irreducibility of curves...
(*) 23 fine approximations
(*) Fine spectrum estimate: [0, 2, 3]
(x) h0 = 0: 11
(x) ho 2: 11
(x) ho = 3: 1

Chapter 4

Spectrum approximation from maximal
curve splittings in dP3

4.1 Install elementary topological functions

4.1.1 IntersectionNumber (for IsList, IsList)

> IntersectionNumber(Lists, d1, d2) (operation)
Returns: Integer
Compute the topological intersection number between two divisor classes d1, d2 in dP3

4.1.2 Genus (for IsList)

> Genus(List, c) (operation)
Returns: Integer
Compute the genus of a curve of class ¢ in dP3

4.1.3 LineBundleDegree (for IsList, IsList)

> LineBundleDegree(Lists, 1, ¢) (operation)
Returns: Integer
Computes the degree of a pullback line bundle of class 1 on a curve of class c in dP3

4.2 Check if a curve class if a power of a rigid divisor

4.2.1 IsE1Power (for IsList)

> ISElPOWGI’(LiSt, c) (operation)
Returns: True or false
Checks if a curve class if a power of E1

4.2.2 IsE2Power (for IsList)

> IsE2Power(List, c¢) (operation)
Returns: True or false

10

HOApproximator 11

Checks if a curve class if a power of E2

4.2.3 IsE3Power (for IsList)

> IsE3Power(List, c¢) (operation)
Returns: True or false
Checks if a curve class if a power of E3

4.2.4 IsE4Power (for IsList)

> IsE4Power (List , c) (operation)
Returns: True or false
Checks if a curve class if a power of E4

4.2.5 IsE5Power (for IsList)

> IsEbPower(List, c¢) (operation)
Returns: True or false
Checks if a curve class if a power of ES

4.2.6 IsE6Power (for IsList)

> IsE6Power(List, c¢) (operation)
Returns: True or false
Checks if a curve class if a power of E6

4.2.7 IsRigidPower (for IsList)

> IsRigidPower(List, c) (operation)
Returns: True or false
Checks if a curve class in dP3 is a power of a rigid divisor.

4.3 Local section analyser

4.3.1 IntersectionMatrix (for IsList)

> IntersectionMatrix(List, of, curve, components) (operation)
Returns: A list of lists of integers
Identify the intersection matrix among all components of a curve in dPs.

4.3.2 IntersectionsAmongCurveComponents (for IsList)

> IntersectionsAmongCurveComponents(List, of, curve, components.) (operation)
Returns: A list of integers
Identify the intersection numbers among all components of a curve in dP3.

HOApproximator 12

4.3.3 EstimateGlobalSections (for IsList, IsList)

> EstimateGlobalSections(Lists, L1, L2) (operation)
Returns: An integer
This method estimates the number of global sections based on the list L1 of local sections and the
list L2 of intersection numbers among the split components of the curve in dPs.

4.3.4 IsSimpleSetup (for IsList, IsList)

> IsSimpleSetup(Lists, S, n) (operation)
Returns: An integer
This method checks whether the pair of curve in dP3 with components with intersection numbers
I and local section counts n allow to easily estimate the number of global sections.

4.3.5 AnalyzeBundleOnCurve (for IsList, IsList)

> AnalyzeBundleOnCurve(Lists, S, 1) (operation)
Returns: An integer
This method displays details on the analysis of the pullback line bundle of class 1 on a curve in
dP3 with components S.

4.3.6 AnalyzeBundleOnCurve (for IsList, IsList, IsInt)

> AnalyzeBundleOnCurve(argl, arg2, arg3) (operation)

4.4 Analyse bundle on maximally degenerate curves

4.4.1 MaximallyDegenerateCurves (for IsList)

> MaximallyDegenerateCurves(List, c) (operation)
Returns: A list
This method identifies the maximal degenerations of a curve of class c in dPs.

4.4.2 EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurves (for IsList,
IsList)

> EstimateGlobalSections0fBundleOnMaximallyDegenerateCurves(Lists, ¢, 1) (opera-
tion)

Returns: A list

This method analysis the local and global sections of a pullback line bundle of class 1 on the
maximally degenerate curves of class c in dPs.

4.4.3 EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurves (for IsList,
IsList, IsInt)

> EstimateGlobalSections0fBundleOnMaximallyDegenerateCurves(argl, arg2, arg3)

(operation)

HOApproximator 13

4.5 Examples

We can consider maximal degenerations of a given curve class in dP; and use these to estimate the
number of global sections for a line bundle on this curve. This estimate is derived from counts of the
local sections. Here is a simple example:

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurves (
> [3’_1,_1:_1 :l: [1’_1;_3:_1]),s

For convenience, we allow the user to specify the level of detail from a verbose-integer as third argu-
ment. For example

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurves (
> [3,-1,-1,-11, [1,-1,-3,-1], 1);;

Analyse bundle on 7 degenerate curves...
Estimated spectrum on 5 curves
Spectrum estimate: [2, 3]

The most details are provided for verbose level 2. Note that our counter assumes that neighbouring
curve components do not support non-trivial sections simultaneously. This simplifies the estimate,
but is a restrictive assumption at the same time. For example, in the following example, we cannot
estimate a global section value at all from the maximal curve splits:

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurves (
> [4,-1,-2,-11, [3,-3,-1,-2 1, 1)33

Analyse bundle on 10 degenerate curves...
Estimated spectrum on O curves
Spectrum estimate: []

However, in other cases, we can estimate the number of global sections for all maximally degenerate
curves:

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurves (
> [5,-2,-2,-11, [2, -2, -4, -2]);

[0, 1,2, 3,4]

Chapter 5

Spectrum approximation from curve
splittings in H2

5.1 Compute if a curve of given class is irreducible

5.1.1 IsIrreducibleOnH2 (for IsList, IsToricVariety)

> IsIrreducibleOnH2(List) (operation)
Returns: True or false
This operation identifies if a curve class defines an irreducible curve or not in Hs.

5.1.2 DegreesOfComponentsOnH2 (for IsList, IsToricVariety)

> DegreesOfComponentsOnH2 (List) (operation)
Returns: A list of fail
This operation performs a primary decomposition of a hypersurface curve in H,. If all components
are principal, it returns the degrees of the generators. Otherwise it returns fail.

5.2 Finding the CounterDirectory

5.2.1 FindCounterBinaryOnH2

> FindCounterBinaryOnH2(none) (operation)
Returns: the corresponding filename
This operation identifies the location of the counter binary when applied in Hj.

5.3 Determine descendant level

5.3.1 DescendantLevelOnH2 (for IsList)

> DescendantLevelOnH2(List, c) (operation)
Returns: An integer
Estimates the maximal power to which a rigid divisor can be peeled-off the given curve in Hj.

14

HOApproximator 15

5.4 Approximate hQ-spectrum

54.1 RoughApproximationWithSetupsOnH2 (for IsList, IsList)

> RoughApproximationWithSetupsOnH2(Lists, ¢, 1) (operation)
Returns: A list
Given a curve class ¢ and a line bundle class | in H;, this method approximates the hO-spectrum by
use of topological methods only. In particular, irreducibility of curves is not checked. Consequently,
this method performs faster than Fine Approximation, but produces less accurate results.

5.4.2 RoughApproximationOnH2 (for IsList, IsList)

> RoughApproximationOnH2(Lists, ¢, 1) (operation)
Returns: A list
The same as RoughApproximationWithSetups, but returns only the spectrum estimate.

5.4.3 FineApproximationWithSetupsOnH2 (for IsList, IsList)

> FineApproximationWithSetupsOnH2(Lists, c, 1) (operation)
Returns: A list
Given a curve class ¢ and a line bundle class 1 in H, this method approximates the hO-spectrum
by use of topological methods and checks irreducibility of curves. It performs slower than RoughAp-
proximation, but produces more accurate results.

5.4.4 FineApproximationOnH2 (for IsList, IsList)

> FineApproximationOnH2(Lists, ¢, 1) (operation)
Returns: A list
The same as FineApproximationWithSetups, but returns only the spectrum estimate.

5.5 Examples

We can approximate the spectrum roughly, that is we do not take irreducibilty of curves into account.
Here is a simple example:
Example
gap> approxl := RoughApproximationOnH2([3,1],[1,1]);;
(*) Curve: [3, 1]
(*) Bundle: [1, 1]
(*) 4 rough approximations
(*) Rough spectrum estimate: [3]

(x) hO = 3: 4

We can of course compute this also finer, i.e. by checking irreducibiltiy for each identified setup:
Example
gap> approx2 := FineApproximationOnH2([3,1],[1,1]);;
(*) Curve: [3, 1]

(*) Bundle: [1, 1]

(*) 4 rough approximations

(*) Rough spectrum estimate: [3]

HOApproximator

(x) h0 = 3: 4
(*) Checking irreducibility of curves...
(*) 2 fine approximations
(*) Fine spectrum estimate: [3]

(x) h0 = 3: 2

Here is a more involved example:
Example

gap> approx2 := RoughApproximationOnH2([5,2],[1,4]);;
(*) Curve: [5, 2]
(*) Bundle: [1, 4 1]
(*) 9 rough approximations
(*) Rough spectrum estimate: [5, 6, 9, 11, 12, 15]
(x) h0 = 5: 3
(x) h0 = 6: 1
(x) h0 = 9: 1
(x) hO = 11: 1
(x) h0 = 12: 2
(x) ho = 15: 1

We can of course compute this also finer, i.e. by checking irreducibiltiy for each identified setup:
Example

gap> approx3 := FineApproximationOnH2([5,2],[1,4]);;
(*) Curve: [5, 2]
(*) Bundle: [1, 4]
(*) 9 rough approximations
(*) Rough spectrum estimate: [5, 6, 9, 11, 12, 15]
(x) hO = 5: 3
(x) ho = 6: 1
(x) h0 = 9: 1
(x) h0 = 11: 1
(x) h0 = 12: 2
(x) h0 = 15: 1
(*¥) Checking irreducibility of curves...
(*) 7 fine approximations
(*) Fine spectrum estimate: [5, 6, 9, 11, 12]

(x) hO = 5: 2
(x) h0O = 6: 1
(x) hO = 9: 1
(x) hO = 11: 1

(x) hO = 12: 2

Chapter 6

Spectrum approximation from maximal
curve splittings in H2

6.1 Install elementary topological functions

6.1.1 IntersectionNumberOnH2 (for IsList, IsList)

> IntersectionNumberOnH2(Lists, di1, d2) (operation)
Returns: Integer
Compute the topological intersection number between two divisor classes d1, d2 in Hj

6.1.2 GenusOnH2 (for IsList)

> GenusOnH2(List, c¢) (operation)
Returns: Integer
Compute the genus of a curve of class ¢ in Hp

6.1.3 LineBundleDegreeOnH2 (for IsList, IsList)

> LineBundleDegreeOnH2(Lists, 1, c) (operation)
Returns: Integer
Computes the degree of a pullback line bundle of class 1 on a curve of class c in Hp

6.2 Check if a curve class if a power of a toric divisor

6.2.1 IsD1Power (for IsList)

> ISDlPOWGI’(LiSt, c) (operation)
Returns: True or false
Checks if a curve class if a power of D1

6.2.2 IsD2Power (for IsList)

> IsD2Power(List, c) (operation)
Returns: True or false

17

HOApproximator 18

Checks if a curve class if a power of D2

6.2.3 IsD3Power (for IsList)

> IsD3Power(List, c¢) (operation)
Returns: True or false
Checks if a curve class if a power of D3

6.2.4 IsD4Power (for IsList)

> IsD4Power (List , c) (operation)
Returns: True or false
Checks if a curve class if a power of D4

6.2.5 IsDiPowerOnH2 (for IsList)

> IsDiPowerOnH2(List, c) (operation)
Returns: True or false
Checks if a curve class if a power of a toric divisor in Hj.

6.3 Local section analyser

6.3.1 IntersectionMatrixOnH2 (for IsList)

> IntersectionMatrixOnH2(List, of, curve, components) (operation)
Returns: A list of lists of integers
Identify the intersection matrix among all components of a curve in H.

6.3.2 IntersectionsAmongCurveComponentsOnH2 (for IsList)

> IntersectionsAmongCurveComponentsOnH2(List, of, curve, components.) (operation)
Returns: A list of integers
Identify the intersection numbers among all components of a curve in Hj.

6.3.3 IsSimpleSetupOnH2 (for IsList, IsList)

> IsSimpleSetupOnH2(Lists, S, n) (operation)
Returns: An integer
This method checks whether the pair of curves in H, with components with intersection numbers
I and local section counts n allow to easily estimate the number of global sections.

6.3.4 AnalyzeBundleOnCurveOnH2 (for IsList, IsList)

> AnalyzeBundleOnCurveOnH2(Lists, S, 1) (operation)
Returns: An integer
This method displays details on the analysis of the pullback line bundle of class 1 on a curve in Hp
with components S.

HOApproximator 19

6.3.5 AnalyzeBundleOnCurveOnH2 (for IsList, IsList, IsInt)

> AnalyzeBundleOnCurveOnH2(argl, arg2, arg3) (operation)

6.4 Analyse bundle on maximally degenerate curves

6.4.1 MaximallyDegenerateCurvesOnH2 (for IsList)

> MaximallyDegenerateCurvesOnH2(List, c¢) (operation)
Returns: A list
This method identifies the maximal degenerations of a curve of class c in Hj.

6.4.2 EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurvesOnH2 (for Is-
List, IsList)

> EstimateGlobalSections0fBundleOnMaximallyDegenerateCurvesOnH2(Lists, c, 1)
(operation)
Returns: A list
This method analysis the local and global sections of a pullback line bundle of class 1 on the
maximally degenerate curves of class ¢ in Hj.

6.4.3 EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurvesOnH2 (for Is-
List, IsList, IsInt)

> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurvesOnH2(argl, arg2,
arg3) (operation)

6.5 Examples

We can consider maximal degenerations of a given curve class in Hy and use these to estimate the
number of global sections for a line bundle on this curve. This estimate is derived from counts of the
local sections. Here is a simple example:

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurvesOnH2(
> (3,171, [1, 11);;

For convenience, we allow the user to specify the level of detail from a verbose-integer as third argu-
ment. For example

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurvesOnH2(
> (3,171, [1, 1], 1);3;

Analyse bundle on 10 degenerate curves...
Estimated spectrum on 10 curves
Spectrum estimate: [3, 5]

HOApproximator 20

The most details are provided for verbose level 2. Note that our counter assumes that neighbouring
curve components do not support non-trivial sections simultaneously. This simplifies the estimate,
but is a restrictive assumption at the same time. For example, in the following example, we cannot
estimate a global section value at all from the maximal curve splits:

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurvesOnH2(
> (5,21, [1,41,1);;

Analyse bundle on 24 degenerate curves...
Estimated spectrum on 24 curves
Spectrum estimate: [15, 21, 27]

However, in other cases, we can estimate the number of global sections for all maximally degenerate
curves:

Example
gap> EstimateGlobalSectionsOfBundleOnMaximallyDegenerateCurvesOnH2(
> (6,271, [1,41]1);

[15, 21, 27]

Index

AnalyzeBundleOnCurve
for IsList, IsList, 12
for IsList, IsList, IsInt, 12
AnalyzeBundleOnCurve(OnH2
for IsList, IsList, 18
for IsList, IsList, IsInt, 19

Degrees0OfComponents

for IsList, IsToricVariety, 7
DegreesOfComponentsOnH2

for IsList, IsToricVariety, 14
DescendantLevel

for IsList, 7
DescendantLevelOnH2

for IsList, 14

EstimateGlobalSections
for IsList, IsList, 12
EstimateGlobalSectionsOfBundleOn-
MaximallyDegenerateCurves
for IsList, IsList, 12
for IsList, IsList, IsInt, 12
EstimateGlobalSections0fBundleOn-
MaximallyDegenerateCurvesOnH2
for IsList, IsList, 19
for IsList, IsList, IsInt, 19

FindCounterBinary, 7
FindCounterBinary0OnH2, 14
FineApproximation

for IsList, IsList, 8
FineApproximationOnH2

for IsList, IsList, 15
FineApproximationWithSetups

for IsList, IsList, 8
FineApproximationWithSetupsOnH2

for IsList, IsList, 15

Genus
for IsList, 10

21

GenusOnH2
for IsList, 17

IntersectionMatrix

for IsList, 11
IntersectionMatrix0OnH2

for IsList, 18
IntersectionNumber

for IsList, IsList, 10
IntersectionNumberOnH2

for IsList, IsList, 17
IntersectionsAmongCurveComponents

for IsList, 11
IntersectionsAmongCurveComponentsOnH2

for IsList, 18
IsD1Power

for IsList, 17
IsD2Power

for IsList, 17
IsD3Power

for IsList, 18
IsD4Power

for IsList, 18
IsDiPower(OnH2

for IsList, 18
IsEl1Power

for IsList, 10
IsE2Power

for IsList, 10
IsE3Power

for IsList, 11
IsE4Power

for IsList, 11
IsE5Power

for IsList, 11
IsE6Power

for IsList, 11
IsIrreducible

for IsList, IsToricVariety, 7

HOApproximator

IsIrreducibleOnH2

for IsList, IsToricVariety, 14
IsRigidPower

for IsList, 11
IsSimpleSetup

for IsList, IsList, 12
IsSimpleSetupOnH2

for IsList, IsList, 18

LineBundleDegree
for IsList, IsList, 10
LineBundleDegreeOnH2
for IsList, IsList, 17
LowerBoundOnSections
for IsInt, IsInt, 6

MaximallyDegenerateCurves
for IsList, 12
MaximallyDegenerateCurvesOnH2
for IsList, 19

RoughApproximation

for IsList, IsList, 8
RoughApproximationOnH2

for IsList, IsList, 15
RoughApproximationWithSetups

for IsList, IsList, 8
RoughApproximationWithSetupsOnH2

for IsList, IsList, 15

22

	Introduction
	Acknowledgements
	What is the goal of the H0Approximator package?
	Conventions

	Common functions applied generically to all toric surfaces
	Topological section counter
	Examples

	Spectrum approximation from curve splittings in dP3
	Compute if a curve of given class is irreducible
	Finding the CounterDirectory
	Determine descendant level
	Approximate h0-spectrum
	Examples

	Spectrum approximation from maximal curve splittings in dP3
	Install elementary topological functions
	Check if a curve class if a power of a rigid divisor
	Local section analyser
	Analyse bundle on maximally degenerate curves
	Examples

	Spectrum approximation from curve splittings in H2
	Compute if a curve of given class is irreducible
	Finding the CounterDirectory
	Determine descendant level
	Approximate h0-spectrum
	Examples

	Spectrum approximation from maximal curve splittings in H2
	Install elementary topological functions
	Check if a curve class if a power of a toric divisor
	Local section analyser
	Analyse bundle on maximally degenerate curves
	Examples

	Index

