Root Bundles and Towards Exact Matter Spectra of F-theory MSSMs

Martin Bies

University of Pennsylvania

Summer Series On String Phenomenology - September 21, 2021

Work with M. Cvetič, R. Donagi, M. Liu, M. Ong - 2102.10115, 2104.08297

Motivation

Obtain (MS)SM from String theory construction

- $E_8 \times E_8$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01],
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

... including vector-like spectra

- Why vector-like spectra? Higgs fields matter & characteristic feature of QFTs
- $E_8 imes E_8$: [Bouchard Donagi '05], [Bouchard Cvetič Donagi '06], [Anderson Gray Lukas Palti '10 & '11], \ldots
- F-theory: [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18], [M.B. Cvetič Donagi Lin Liu Ruehle '20], [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21]

Outline

In this talk

- Focus on Quadrillion F-theory Standard Models (QSMs) [Cvetič Halverson Lin Liu Tian '19] globally-consistent, gauge coupling unification, no chiral exotics
- Spectra counted by cohomologies of special line bundles, namely root bundles.
 - Are there roots with cohomologies of an MSSM vector-like spectrum?

Outline

- The appearance of root bundles in the QSMs.
- Proving existence.
- Statistical study.

Vector-like spectra in 4d $\mathcal{N}=1$ F-theory vacua

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Defined by elliptic 4-fold $Y_4 \twoheadrightarrow B_3$ and flux $G_4 \in H^{(2,2)}_{\mathbb{Z}}(\widehat{Y}_4)$:
 - Gauge degrees **localized** on 7-branes $S \subset \mathcal{B}_3$.
 - Zero modes **localized** on matter curves $C_R \subset S$ and encoded by **matter surface** S_R .
- G_4 and S_R define line bundle L_R on C_R (details on next slide).
- Massless vector-like spectra:

massless chiral supermultiplets in rep. R $\leftrightarrow h^0(C_R, L_R)$,

massless chiral supermultiplets in rep. $\overline{\mathsf{R}} \leftrightarrow h^1(C_{\mathsf{R}}, L_{\mathsf{R}})$,

chiral index $\leftrightarrow h^0(C_{\mathsf{R}}, L_{\mathsf{R}}) - h^1(C_{\mathsf{R}}, L_{\mathsf{R}})$.

- Typically, $h^i(C_R, L_R)$ non-topological and thus hard to determine.
 - Often, L_R not pullback from \mathcal{B}_3 (Pic(C_R) typically continuous).
 - Deformation ${\it C}_{\rm R}
 ightarrow {\it C}_{\rm R}'$ can lead to jumps [M.B. Cvetič Donagi Lin Liu Ruehle '20]

 $h^{i}(C_{\mathsf{R}}, L_{\mathsf{R}}) = (h^{0}, h^{1}) \rightarrow h^{i}(C'_{\mathsf{R}}, L'_{\mathsf{R}}) = (h^{0} + a, h^{1} + a).$

Motivation The appearance of root bundles in the QSMs Root bundles Summary and Outlook

How to compute L_R from G₄, S_R? [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

0

• Lift
$$G_4 \in H^{(2,2)}_{\mathbb{Z}}(\widehat{Y}_4)$$
 to a "gauge field" $A \in H^4_D(\widehat{Y}_4,\mathbb{Z}(2))$ or $\mathcal{A} \in \mathrm{CH}^2(\widehat{Y}_4,\mathbb{Z})$:

Always exists, but it is in general not unique since $J^2(\widehat{Y}_4) \neq 0$. • For $S_{\mathsf{R}} \in \mathrm{CH}^2(\widehat{Y}_4, \mathbb{Z})$ define $\iota_{S_{\mathsf{R}}} \colon S_{\mathsf{R}} \hookrightarrow \widehat{Y}_4$, $\pi_{S_{\mathsf{P}}} \colon S_{\mathsf{R}} \twoheadrightarrow C_{\mathsf{R}}$. Then

$$L_{\mathsf{R}}\left(\mathcal{A}\right) = \mathcal{O}_{C_{\mathsf{R}}}\left[\pi_{S_{\mathsf{R}}*}\left(\iota_{S_{\mathsf{R}}}^{*}\left(\mathcal{A}\right)\right) + D_{\mathsf{spin},\mathsf{R}}\right] \in \operatorname{Pic}\left(C_{\mathsf{R}}\right)\,.$$

The appearance of root bundles in the QSMs Proving existence Statistical study

Lifting G_4 in the QSMs: Rational prefactor

- QSMs: $\mathcal{O}(10^{15})$ elliptic 4-folds \widehat{Y}_4 with choice of G_4 [Cvetič Halverson Lin Liu Tian '19]
 - Elliptic 4-folds $\widehat{Y}_4 \twoheadrightarrow B_3$:
 - Obtained from toric geometry.
 - Constraints: no chiral exotics, massless U(1)-gauge boson, cancel D_3 -tadpole.
 - $\Rightarrow~B_3$ from triangulations of 708 3-dim reflexive polytopes Kreuzer Skarke '98

$$\overline{K}_{B_{\boldsymbol{3}}}\cdot\overline{K}_{B_{\boldsymbol{3}}}\cdot\overline{K}_{B_{\boldsymbol{3}}}\in\{6,10,18,30\}\ .$$

• G_4 -flux candidate (\leftrightarrow satisfies necessary conditions to be integral):

$$G_4 = rac{-3}{\overline{\mathcal{K}}_{B_3}^3} \cdot (5[e_1] \wedge [e_4] + \dots) \in H^{(2,2)}_{\mathsf{alg}}(\widehat{Y}_4).$$

• Naive lift
$$\mathcal{A} = \frac{-3}{\overline{\kappa}_{B_3}^3} \cdot (5V(e_1, e_4) + \dots) \notin \mathrm{CH}^2(\widehat{Y}_4, \mathbb{Z})$$
 since $\frac{-3 \cdot 5}{\overline{\kappa}_{B_3}^3} \notin \mathbb{Z}$.

Lifting G_4 in the QSMs: An easier multiple

- Lack of computational control over $J^2(\widehat{Y}_4)$. \rightarrow Cannot directly write-down lift G_4 to $\mathcal{A} \in \mathrm{CH}^2(\widehat{Y}_4, \mathbb{Z})$.
- Circumvent this ignorance as follows:

3 Consider $G'_4 = \overline{K}^3_{B_3} \cdot G_4$ instead of

$$G_4 = rac{-3}{\overline{K}_{B_3}^3} \cdot (5[e_1] \wedge [e_4] + \dots) \; .$$

② Lift G'_4 to $\mathcal{A}' = -3 \cdot (5V(e_1, e_4) + \dots) \in \mathrm{CH}^2(\widehat{Y}_4, \mathbb{Z})$ and find

$$D_{\mathsf{R}}(\mathcal{A}') = \pi_{\mathcal{S}_{\mathsf{R}}*} \left(\iota_{\mathcal{S}_{\mathsf{R}}}^{*}(\mathcal{A}') \right) \in \operatorname{Pic}(\mathcal{C}_{\mathsf{R}}) .$$

 $\Rightarrow \text{ Root bundle constraint in } \operatorname{Pic}\left(\mathit{C}_{\mathsf{R}}\right): \ \overline{\mathit{K}}_{\mathit{B}_{\textbf{3}}}^{3} \cdot \mathit{D}_{\mathsf{R}}\left(\mathcal{A}\right) \sim \mathit{D}_{\mathsf{R}}\left(\mathcal{A}'\right).$

Motivation The appearance of root bundles in the QSMs Root bundles Summary and Outlook

Summary of root bundle constraints in QSMs

curve	constraint
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	${\cal P}_{(3,2)_{1/6}}^{\otimes 2\overline{K}_{B_3}{}^3} = {\cal K}_{(3,2)_{1/6}}^{\otimes \left(6+\overline{K}_{B_3}{}^3 ight)}$
$C_{(1,2)_{-1/2}} = V(s_3, P_H)$	$P_{(1,2)-1/2}^{\otimes 2\overline{K}_{B_3}^{3}} = K_{(1,2)-1/2}^{\otimes \left(4+\overline{K}_{B_3}^{3}\right)} \otimes \mathcal{O}_{C_{(1,2)-1/2}} \left(-30 \cdot Y_1\right)$
$C_{(\overline{3},1)_{-2/3}} = V(s_5, s_9)$	$P_{(\overline{3},1)_{-2/3}}^{\otimes 2\overline{K}_{B_{3}}^{3}} = K_{(\overline{3},1)_{-2/3}}^{\otimes (6+\overline{K}_{B_{3}}^{3})}$
$C_{(\overline{3},1)_{1/3}} = V(s_9, P_R)$	$P_{(\bar{3},1)_{1/3}}^{\otimes 2\overline{K}_{B_{3}}^{3}} = K_{(\bar{3},1)_{1/3}}^{\otimes (4+\overline{K}_{B_{3}}^{3})} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}} (-30 \cdot Y_{3})$
$C_{(1,1)_1} = V(s_1, s_5)$	$P_{(1,1)_1}^{\otimes 2\overline{K}_{B_3}{}^3} = K_{(1,1)_1}^{\otimes \left(6 + \overline{K}_{B_3}{}^3\right)}$

 $(P_H, P_R \text{ are complicated polynomials}, Y_1, Y_3 \text{ are Yukawa points.})$

		_
- N /	ortin	Riec
	ai ui i	DICS

Local bottom-up analysis

• Which root bundles are physical, i.e. induced from $A \in H^4_D(\widehat{Y}_4, \mathbb{Z}(2))$? (If $g > h^{21}(\widehat{Y}_4)$, then not all are physical.)

 \rightarrow Interesting, but also very challenging question for future work.

• Necessary condition for existence of F-theory MSSMs within QSM:

Existence of root bundles on $C_{\rm R}$ with MSSM-suitable cohomologies. Perform local bottom-up analysis:

Solution For a 3-fold B_3 with $\overline{K}_{B_3}^{3} = 18$ (from triangulation of Δ_{40}°), I will prove that the following has a solution:

$$P_{(3,2)_{1/6}}^{\otimes 2\overline{K}_{B_3}^{3}} = K_{(3,2)_{1/6}}^{\otimes (6+\overline{K}_{B_3}^{3})} \text{ and } h^0(C_R, P_R) = 3.$$

Since $\overline{K}_{B_3}^{3} = 18$, it is sufficient to construct a solution to

$$P^{\otimes 3}_{(3,2)_{1/6}} = K^{\otimes 2}_{(3,2)_{1/6}} \quad \text{and} \quad h^0(C_{\mathsf{R}}, P_{\mathsf{R}}) = 3 \,.$$

Extend to statistical study across all QSM bases.

Vector-like spectrum from deformation theory and limit root bundles

- Smooth, irreducible C_R with g > 1: Very hard to explicitly construct root bundles.
- Nodal curves C_{R}^{\bullet} : well understood. [Jarvis '98], [Jarvis '99], [Caporaso Casagrande Cornalba '07]
- \Rightarrow Our approach is summarized as follows:

(To model all roots, must also consider partial blow-ups. This makes the section counting hard. Hence, we currently ignore this.)

The appearance of root bundles in the QSMs Proving existence Statistical study

Limit root bundle construction: Step 1 – dual graph of $C^{\bullet}_{(3,2)_{1/6}}$.

- Red bullet: g = 0 cpnt.
- Green bullet: g = 1 cpnt.
- Line: node
- Number:
 - $2\cdot \deg({\mathcal K}^{\bullet}_{C_{(3,2)_{1/6}}})$
- Task: Find 3rd roots with $h^0 = 3!$

(Here fortunate case, as we can divide the local degrees by 3. This is not always true for QSM setups.)

Limit root bundle construction: Step 2 – shift degrees to blow-ups $E_i \cong \mathbb{P}^1$.

Rules for *k*-th roots: (here k = 3):

- $w_i \in \{1, \dots, k-1\}$,
- $w_1 + w_2 = k$,
- On each component, the resulting degree is divisible by *k*.
- \Rightarrow Many possibilities!

The appearance of root bundles in the QSMs Proving existence Statistical study

Counting h^0 of limit root bundle.

Observation:

- $h^0(E_j \cong \mathbb{P}^1, \mathcal{O}_{E_j}) = 2$
- \Rightarrow Uniquely fixed by boundary conditions.
- $\Rightarrow h^{0}(P_{\mathsf{R}}^{\bullet}) = \sum_{C_{i} \neq E_{j}} h^{0} \left(C_{i}, P_{\mathsf{R}}^{\bullet} |_{C_{i}} \right)$
 - $h^0(C_3) = 1, h^0(C_{11}) = 2$
 - *h*⁰(*C*₁) = 0 for at least 8 of 9 local roots.
- $\Rightarrow \exists P^{\bullet}_{\mathsf{R}} \text{ s.t. } h^{0}(C^{\bullet}_{\mathsf{R}}, P^{\bullet}_{\mathsf{R}}) = 3.$

Jumps on rational curves

Let $C^{\bullet} = \bigcup_{i \in I} C_i$ be a connected, **rational**, nodal curve and L^{\bullet} a line bundle of $\deg(L) \ge 0$ on C^{\bullet} . (This means that I is a connected tree-like graph and $C_i \cong \mathbb{P}^1$.) Let $k \in \mathbb{N}_{\ge 2}$ with $k | \deg(L)$ and P° a k-th limit root bundle on the full blow-up curve $C^{\circ} = \bigcup_{i \in I} C_i \cup \bigcup_{j \in J} E_j$.

Then, as we deform C° to a smooth rational curve C, the following are equivalent:

$$\begin{split} \sum_{i \in I} h^0 \left(C_i, \left. P^\circ \right|_{C_i} \right) = h^0 (C^\circ, P^\circ) > h^0 (C, P) \\ \Leftrightarrow \quad \exists i_1 \neq i_2 : \ h^0 \left(C_{i_1}, \left. P^\circ \right|_{C_{i_1}} \right) \cdot h^1 \left(C_{i_2}, \left. P^\circ \right|_{C_{i_2}} \right) \neq 0 \,. \end{split}$$

Attempt of a physics interpretation: mass term from Yukawa interaction

Motivation The appearance of root bundles in the QSMs Root bundles Proving existence Summary and Outlook Statistical study

Towards promising F-theory base spaces

- Assume that C_{R}^{\bullet} consists only of g = 0 and g = 1 components. Then automate:
 - Given the dual graph of C_{R}^{\bullet} , find all allowed weight assignments.
 - For the encoded limit root line bundles compute $h^0(C_{\rm R}^{\bullet}, P_{\rm R}^{\bullet})$.
 - \rightarrow Implemented in GAP-4 package $\mathit{QSMExplorer}$

 $\tt https://github.com/homalg-project/ToricVarieties_project/tree/master/QSMExplorer$

- Scan over selected QSM geometries:
 - **1** $h^{(2,1)}(\widehat{Y}_4) \ge g(C_{(3,2)_{1/6}}).$

Necessary condition for many roots on $C_{(3,2)_{1/6}}$ to be physical.

2 Components of $C_{(3,2)_{1/6}}$ must have at most g = 1.

 \Rightarrow Base 3-folds B_3 obtained from triangulations of 33 3-dim. reflexive polytopes:

• All
$$\overline{K}_{B_3}^3 = 6$$
 bases (7 polytopes),

• Some
$$\overline{K}_{B_3}^{3} = 10$$
 bases (26 polytopes).

Crucial observations

- The number of limit root bundles on C_{R}° with $h^0 = 3$ is independent of the triangulation! [Batyrev '93] [Cox Katz '99] [Kreuzer '06]
- 2 Remove all tree-like subgraphs
- ⇒ Dual graph simplifies, number of limit root bundles and cohomologies unchanged! Example: Δ_{52}° ($\overline{K}_{B_3}^{3} = 10$):

The appearance of root bundles in the QSMs Proving existence Statistical study

Results for bases with $\overline{K}_{B_3}^{3} = 6$

- $N_P = 12^8 = \left(2\overline{K}_{B_3}\right)^{2g}$: total number of root bundles on $C_{(3,2)_{1/6}}$
- $\check{N}^{(3)}_P$: number of limit roots on $C^\circ_{(3,2)_{1/6}}$ with $h^0=3$
- Computer scan finds:

	$\check{N}_{P}^{(3)}$	$N_P/\check{N}_P^{(3)}$		$\check{N}_{P}^{(3)}$	$N_P/\check{N}_P^{(3)}$
Δ_8°	142560	$3.0\cdot 10^3$	Δ°_{130}	8910	$4.8\cdot 10^4$
Δ_4°	11110	$3.8\cdot10^4$	Δ°_{136}	8910	$4.8\cdot 10^4$
Δ°_{134}	10100	$4.3\cdot10^4$	Δ°_{236}	8910	$4.8\cdot 10^4$
Δ°_{128}	8910	$4.8\cdot10^4$			

- Note:
 - Our scan is limited to subset of all roots on $C^{\bullet}_{(3,2)_{1/6}}$.

• $\check{N}_{P}^{(3)}(C_{(3,2)_{1/6}}) \geq \check{N}_{P}^{(3)}(C_{(3,2)_{1/6}}^{\bullet})$ due to jumps along $C_{(3,2)_{1/6}}^{\bullet} \rightarrow C_{(3,2)_{1/6}}$. \Rightarrow Current techniques: $B_{3}(\Delta_{8}^{\circ})$ most promising bases for F-theory MSSMs.

Martin Bies

Summary

- Root bundles arise naturally in the QSMs. [Cvetič Halverson Lin Liu Tian '19]
- On smooth, irreducible $C_{\rm R}$ hard, but easy for nodal $C_{\rm R}^{\bullet}$:

[Jarvis '98], [Jarvis '99], [Caporaso Casagrande Cornalba '07]

- Find roots on $C_{(3,2)_{1/6}}$, $C_{(\overline{3},1)_{-2/3}}$, $C_{(\overline{3},1)_{1/3}}$, $C_{(1,1)_1}$ without vector-like exotics.
- Extend systematically to all $\mathcal{O}(10^{15})$ QSM spaces.
- With current techniques: Absence of vector-like exotics on $C_{(3,2)_{1/6}}$ most likely for base 3-folds from triangulations of Δ_8° .

Martin Bies

Outlook

- Goal: F-theory MSSM construction
- \Rightarrow Identify roots on Higgs curve with $h^i = (4, 1)$, i.e. exactly one Higgs pair.
 - Technical extensions:
 - Perform limit root counting on Higgs curve.

Currently, this is combinatorially too challenging for our algorithms.

- Extend limit root counting beyond limit roots on full-blowup curve C_{R}° .
- Conceptional questions/obstructions:
 - Does the topology of the dual graph encode the root bundle distribution?
 - What conditions prevent/detect jumps in vector-like spectrum along $C_{\mathsf{R}}^{\bullet} \to C_{\mathsf{R}}$?
 - More ambitious: What is the defect, i.e. by how much does h^0 jump?
 - Which root bundles are realized top-down, i.e. from an F-theory gauge potential?

Thank you for your attention!

