Root Bundles and Towards Exact Matter Spectra of F-theory MSSMs

Martin Bies

University of Pennsylvania
Summer Series On String Phenomenology - September 21, 2021

Work with M. Cvetič, R. Donagi, M. Liu, M. Ong - 2102.10115, 2104.08297

Motivation

Obtain (MS)SM from String theory construction ...

- $E_{8} \times E_{8}$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01],
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

. . . including vector-like spectra

- Why vector-like spectra? Higgs fields matter \& characteristic feature of QFTs
- $E_{8} \times E_{8}$: [Bouchard Donagi '05], [Bouchard Cvetič Donagi '06], [Anderson Gray Lukas Palti '10 \& '11], ...
- F-theory: [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18], [M.B. Cvetič Donagi Lin Liu Ruehle '20], [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21]

Outline

In this talk

- Focus on Quadrillion F-theory Standard Models (QSMs) [Cvetic Halverson Lin Liu Tian '19] globally-consistent, gauge coupling unification, no chiral exotics
- Spectra counted by cohomologies of special line bundles, namely root bundles. Are there roots with cohomologies of an MSSM vector-like spectrum?

Outline

(1) The appearance of root bundles in the QSMs.
(2) Proving existence.
(3) Statistical study.

Vector-like spectra in 4d $\mathcal{N}=1$ F-theory vacua

- Defined by elliptic 4-fold $Y_{4} \rightarrow B_{3}$ and flux $G_{4} \in H_{\mathbb{Z}}^{(2,2)}\left(\widehat{Y}_{4}\right)$:
- Gauge degrees localized on 7-branes $S \subset \mathcal{B}_{3}$.
- Zero modes localized on matter curves $C_{R} \subset S$ and encoded by matter surface S_{R}.
- G_{4} and S_{R} define line bundle L_{R} on C_{R} (details on next slide).
- Massless vector-like spectra:
massless chiral supermultiplets in rep. $\mathrm{R} \leftrightarrow h^{0}\left(C_{\mathrm{R}}, L_{\mathrm{R}}\right)$, massless chiral supermultiplets in rep. $\overline{\mathrm{R}} \leftrightarrow h^{1}\left(C_{\mathrm{R}}, L_{\mathrm{R}}\right)$,

$$
\text { chiral index } \leftrightarrow h^{0}\left(C_{R}, L_{R}\right)-h^{1}\left(C_{R}, L_{R}\right)
$$

- Typically, $h^{i}\left(C_{R}, L_{R}\right)$ non-topological and thus hard to determine.
- Often, L_{R} not pullback from $\mathcal{B}_{3}\left(\operatorname{Pic}\left(C_{R}\right)\right.$ typically continuous).
- Deformation $C_{R} \rightarrow C_{R}^{\prime}$ can lead to jumps [m.B. Cvetićc Donagi Lin Liu Ruehle '20]

$$
h^{i}\left(C_{\mathrm{R}}, L_{\mathrm{R}}\right)=\left(h^{0}, h^{1}\right) \rightarrow h^{i}\left(C_{\mathrm{R}}^{\prime}, L_{\mathrm{R}}^{\prime}\right)=\left(h^{0}+a, h^{1}+a\right)
$$

How to compute L_{R} from G_{4}, S_{R} ? [M.... Maythofer Pehle Weigand '14], [M.B. Mayhofer Weigand '17]. [M.B. '18]

- Lift $G_{4} \in H_{\mathbb{Z}}^{(2,2)}\left(\widehat{Y}_{4}\right)$ to a "gauge field" $A \in H_{D}^{4}\left(\widehat{Y}_{4}, \mathbb{Z}(2)\right)$ or $\mathcal{A} \in \mathrm{CH}^{2}\left(\widehat{Y}_{4}, \mathbb{Z}\right)$:

Always exists, but it is in general not unique since $J^{2}\left(\widehat{Y}_{4}\right) \neq 0$.

- For $S_{R} \in \operatorname{CH}^{2}\left(\widehat{Y}_{4}, \mathbb{Z}\right)$ define $\iota S_{R}: S_{R} \hookrightarrow \widehat{Y}_{4}, \pi_{S_{R}}: S_{R} \rightarrow C_{R}$. Then

$$
L_{R}(\mathcal{A})=\mathcal{O}_{C_{R}}\left[\pi_{S_{R} *}\left(\iota_{S_{R}}^{*}(\mathcal{A})\right)+D_{\text {spin }, \mathrm{R}}\right] \in \operatorname{Pic}\left(C_{R}\right) .
$$

Lifting G_{4} in the QSMs: Rational prefactor

- QSMs: $\mathcal{O}\left(10^{15}\right)$ elliptic 4-folds \widehat{Y}_{4} with choice of G_{4} [cvetiè Halverson Lin Liu Tian '19]
- Elliptic 4-folds $\widehat{Y}_{4} \rightarrow B_{3}$:
- Obtained from toric geometry.
- Constraints: no chiral exotics, massless $U(1)$-gauge boson, cancel D_{3}-tadpole.
$\Rightarrow B_{3}$ from triangulations of 708 3-dim reflexive polytopes Kreuzer Skarke '98

$$
\bar{K}_{B_{3}} \cdot \bar{K}_{B_{3}} \cdot \bar{K}_{B_{3}} \in\{6,10,18,30\} .
$$

- G_{4}-flux candidate (\leftrightarrow satisfies necessary conditions to be integral):

$$
G_{4}=\frac{-3}{\bar{K}_{B_{3}}^{3}} \cdot\left(5\left[e_{1}\right] \wedge\left[e_{4}\right]+\ldots\right) \in H_{\mathrm{alg}}^{(2,2)}\left(\widehat{Y}_{4}\right) .
$$

- Naive lift $\mathcal{A}=\frac{-3}{\bar{K}_{B_{3}}^{3}} \cdot\left(5 V\left(e_{1}, e_{4}\right)+\ldots\right) \notin \mathrm{CH}^{2}\left(\widehat{Y}_{4}, \mathbb{Z}\right)$ since $\frac{-3 \cdot 5}{\widehat{K}_{B_{3}}^{3}} \notin \mathbb{Z}$.

Lifting G_{4} in the QSMs: An easier multiple

- Lack of computational control over $J^{2}\left(\widehat{Y}_{4}\right)$. \rightarrow Cannot directly write-down lift G_{4} to $\mathcal{A} \in \mathrm{CH}^{2}\left(\widehat{Y}_{4}, \mathbb{Z}\right)$.
- Circumvent this ignorance as follows:
(1) Consider $G_{4}^{\prime}=\bar{K}_{B_{3}}^{3} \cdot G_{4}$ instead of

$$
G_{4}=\frac{-3}{\bar{K}_{B_{3}}^{3}} \cdot\left(5\left[e_{1}\right] \wedge\left[e_{4}\right]+\ldots\right) .
$$

(2) Lift G_{4}^{\prime} to $\mathcal{A}^{\prime}=-3 \cdot\left(5 V\left(e_{1}, e_{4}\right)+\ldots\right) \in \mathrm{CH}^{2}\left(\hat{Y}_{4}, \mathbb{Z}\right)$ and find

$$
D_{\mathrm{R}}\left(\mathcal{A}^{\prime}\right)=\pi_{S_{R^{*}}}\left(\iota_{\mathrm{S}_{\mathrm{R}}^{*}}^{*}\left(\mathcal{A}^{\prime}\right)\right) \in \operatorname{Pic}\left(\mathcal{C}_{\mathrm{R}}\right) .
$$

\Rightarrow Root bundle constraint in $\operatorname{Pic}\left(\mathcal{C}_{\mathrm{R}}\right): \bar{K}_{B_{3}}^{3} \cdot D_{\mathrm{R}}(\mathcal{A}) \sim D_{\mathrm{R}}\left(\mathcal{A}^{\prime}\right)$.

Summary of root bundle constraints in QSMs

curve	constraint
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$P_{(3,2)_{1 / 6}}^{\otimes 2 \bar{K}_{B_{3}}{ }^{3}}=K_{(3,2)_{1 / 6}}^{\otimes\left(6+\bar{K}_{B_{3}}{ }^{3}\right)}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, P_{H}\right)$	$P_{(1,2)_{-1 / 2}}^{\otimes 2 \bar{K}_{B_{3}}{ }^{3}}=K_{\left.(1,2)_{-1 / 2}{ }^{3}{ }^{\text {a }} \text { (4+ }{ }^{3}{ }^{3}\right)}^{\otimes \mathcal{O}_{(1,2)-1 / 2}}{ }_{\left(-30 \cdot Y_{1}\right)}$
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$P_{(\overline{3}, 1)_{-2 / 3}}^{\otimes 2 K_{B_{3}}}=K_{(\overline{3}, 1)_{-2 / 3}}^{\otimes\left(6+\bar{K}_{B_{3}}{ }^{3}\right)}$
$C_{(\overline{3}, 1)_{1 / 3}}=V\left(s_{9}, P_{R}\right)$	$P_{(\overline{3}, 1)_{1 / 3}}^{\otimes 2 \bar{K}_{3}{ }^{3}}=K_{(\overline{3},)_{1 / 3}}^{\otimes\left(4+\bar{K}_{B_{3}}{ }^{3}\right)} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	$P_{(1,1)_{1}}^{\otimes 2 \bar{K}_{B_{3}}{ }^{3}}=K_{(1,1)_{1}}^{\otimes\left(6+\bar{K}_{B_{3}}{ }^{3}\right)}$

(P_{H}, P_{R} are complicated polynomials, Y_{1}, Y_{3} are Yukawa points.)

Local bottom-up analysis

- Which root bundles are physical, i.e. induced from $A \in H_{D}^{4}\left(\widehat{Y}_{4}, \mathbb{Z}(2)\right)$?
(ff $g>h^{22}\left(\hat{Y}_{4}\right)$, then not all are physical.)
\rightarrow Interesting, but also very challenging question for future work.
- Necessary condition for existence of F-theory MSSMs within QSM:

Existence of root bundles on C_{R} with MSSM-suitable cohomologies.
Perform local bottom-up analysis:
(1) For a 3-fold B_{3} with $\bar{K}_{B_{3}}{ }^{3}=18$ (from triangulation of Δ_{40}°), I will prove that the following has a solution:

$$
P_{(3,2)_{1 / 6}}^{\otimes 2 \bar{K}_{B_{3}}{ }^{3}}=K_{(3,2)_{1 / 6}}^{\otimes\left(6+\bar{K}_{B_{3}}{ }^{3}\right) \quad \text { and } \quad h^{0}\left(C_{\mathrm{R}}, P_{\mathrm{R}}\right)=3}
$$

Since $\bar{K}_{B_{3}}{ }^{3}=18$, it is sufficient to construct a solution to

$$
P_{(3,2)_{1 / 6}}^{\otimes 3}=K_{(3,2)_{1 / 6}}^{\otimes 2} \quad \text { and } \quad h^{0}\left(C_{R}, P_{R}\right)=3
$$

(2) Extend to statistical study across all QSM bases.

Vector-like spectrum from deformation theory and limit root bundles

- Smooth, irreducible C_{R} with $g>1$: Very hard to explicitly construct root bundles.
- Nodal curves C_{R}^{\bullet} : well understood. [Jarvis '98], [Jarvis '99], [Caporaso Casagrande Cornalba '07]
\Rightarrow Our approach is summarized as follows:

Matter curve C_{R}

Nodal curve C_{R}^{\bullet}

[^0]
Limit root bundle construction: Step 1 - dual graph of $C_{(3,2)_{1 / 6}}^{\circ}$.

- Red bullet: $g=0$ cpnt.
- Green bullet: $g=1$ cpnt.
- Line: node
- Number:
$2 \cdot \operatorname{deg}\left(K_{C_{(3,2)_{1 / 6}}}\right)$
- Task: Find 3rd roots with $h^{0}=3$!
(Here fortunate case, as we can divide the local degrees by 3. This is not always true for QSM setups.)

Limit root bundle construction: Step 2 - shift degrees to blow-ups $E_{j} \cong \mathbb{P}^{1}$.

Rules for k-th roots: (here $k=3$):

- $w_{i} \in\{1, \ldots, k-1\}$,
- $w_{1}+w_{2}=k$,
- On each component, the resulting degree is divisible by k.
\Rightarrow Many possibilities!

Limit root bundle construction: Step 3 - divide by $k=3$.

Motivation

The appearance of root bundles in the QSMs Proving existence
Statistical study

Limit root bundle construction: $P_{(3,2)_{1 / 6}}^{\bullet}$ with $\left(P_{(3,2)_{1 / 6}}^{\bullet}\right)^{\otimes 3}=\left(K_{(3,2)_{1 / 6}}^{\circ}\right)^{\otimes 2}$

Counting h^{0} of limit root bundle.

Observation:

- $h^{0}\left(E_{j} \cong \mathbb{P}^{1}, \mathcal{O}_{E_{j}}\right)=2$
\Rightarrow Uniquely fixed by boundary conditions.
$\Rightarrow h^{0}\left(P_{\mathrm{R}}^{\bullet}\right)=$
$\sum_{C_{i} \neq E_{j}} h^{0}\left(C_{i},\left.P_{\mathrm{R}}^{\bullet}\right|_{C_{i}}\right)$
- $h^{0}\left(C_{3}\right)=1, h^{0}\left(C_{11}\right)=2$
- $h^{0}\left(C_{1}\right)=0$ for at least 8 of 9 local roots.
$\Rightarrow \exists P_{\mathrm{R}}^{\bullet}$ s.t. $h^{0}\left(C_{\mathrm{R}}^{\bullet}, P_{\mathrm{R}}^{\bullet}\right)=3$.

Jumps on rational curves

Let $C^{\bullet}=\bigcup_{i \in I} C_{i}$ be a connected, rational, nodal curve and L^{\bullet} a line bundle of $\operatorname{deg}(L) \geq 0$ on C^{\bullet}. (This means that I is a connected tree-like graph and $C_{i} \cong \mathbb{P}^{1}$.) Let $k \in \mathbb{N}_{\geq 2}$ with $k \mid \operatorname{deg}(L)$ and P° a k-th limit root bundle on the full blow-up curve $C^{\circ}=\bigcup_{i \in I} C_{i} \cup \bigcup_{j \in J} E_{j}$.
Then, as we deform C° to a smooth rational curve C, the following are equivalent:

$$
\begin{aligned}
\sum_{i \in I} h^{0}\left(C_{i},\left.P^{\circ}\right|_{c_{i}}\right) & =h^{0}\left(C^{\circ}, P^{\circ}\right)>h^{0}(C, P) \\
\Leftrightarrow & \exists i_{1} \neq i_{2}: h^{0}\left(C_{i_{1}},\left.P^{\circ}\right|_{c_{1}}\right) \cdot h^{1}\left(C_{i_{2}},\left.P^{\circ}\right|_{c_{i_{2}}}\right) \neq 0
\end{aligned}
$$

Attempt of a physics interpretation: mass term from Yukawa interaction

$$
S U(2)_{a} \longrightarrow
$$

Bifundamental $\alpha:\left(\overline{2}_{a}, 2_{b}\right) \sigma$

$$
S U(2)_{b}
$$

Attempt of a physics interpretation: mass term from Yukawa interaction

Attempt of a physics interpretation: mass term from Yukawa interaction

Towards promising F-theory base spaces

- Assume that C_{R}^{\bullet} consists only of $g=0$ and $g=1$ components. Then automate:
- Given the dual graph of C_{R}^{\bullet}, find all allowed weight assignments.
- For the encoded limit root line bundles compute $h^{0}\left(C_{\mathrm{R}}^{\bullet}, P_{\mathrm{R}}^{\bullet}\right)$.
\rightarrow Implemented in GAP-4 package QSMExplorer
- Scan over selected QSM geometries:
(1) $h^{(2,1)}\left(\widehat{Y}_{4}\right) \geq g\left(C_{(3,2)_{1 / 6}}\right)$.

Necessary condition for many roots on $C_{(3,2)_{1 / 6}}$ to be physical.
(2) Components of $C_{(3,2)_{1 / 6}}$ must have at most $g=1$.
\Rightarrow Base 3-folds B_{3} obtained from triangulations of 33 3-dim. reflexive polytopes:

- All $\bar{K}_{B_{3}}{ }^{3}=6$ bases (7 polytopes),
- Some $\bar{K}_{B_{3}}{ }^{3}=10$ bases (26 polytopes).

Crucial observations

(1) The number of limit root bundles on C_{R}° with $h^{0}=3$ is independent of the triangulation! [Batyrev '93] [Cox Katz '99] [Kreuzer '06]
(2) Remove all tree-like subgraphs
\Rightarrow Dual graph simplifies, number of limit root bundles and cohomologies unchanged! Example: $\Delta_{52}^{\circ}\left(\bar{K}_{B_{3}}{ }^{3}=10\right)$:

Results for bases with $\bar{K}_{B_{3}}{ }^{3}=6$

- $N_{P}=12^{8}=\left(2 \bar{K}_{B_{3}}\right)^{2 g}$: total number of root bundles on $C_{(3,2)_{1 / 6}}$
- $\check{N}_{P}^{(3)}$: number of limit roots on $C_{(3,2)_{1 / 6}}^{\circ}$ with $h^{0}=3$
- Computer scan finds:

	$\check{N}_{P}^{(3)}$	$N_{P} / \check{N}_{P}^{(3)}$		$\check{N}_{P}^{(3)}$
$\Lambda_{P} / \check{N}_{P}^{(3)}$				
Δ_{8}°	142560	$3.0 \cdot 10^{3}$	Δ_{130}°	8910
Δ_{4}°	11110	$3.8 \cdot 10^{4} \cdot 10^{4}$		
Δ_{134}°	10100	$4.3 \cdot 10^{4}$	Δ_{136}	8910
Δ_{236}°	8910	$4.8 \cdot 10^{4}$		
Δ_{128}	8910	$4.8 \cdot 10^{4}$		

- Note:
- Our scan is limited to subset of all roots on $C_{(3,2)_{1 / 6}}$.
- $\check{N}_{P}^{(3)}\left(C_{(3,2)_{1 / 6}}\right) \geq \check{N}_{P}^{(3)}\left(C_{(3,2)_{1 / 6}}^{\bullet}\right)$ due to jumps along $C_{(3,2)_{1 / 6}}^{\bullet} \rightarrow C_{(3,2)_{1 / 6}}$.
\Rightarrow Current techniques: $B_{3}\left(\Delta_{8}^{\circ}\right)$ most promising bases for F-theory MSSMs.

Summary

- Root bundles arise naturally in the QSMs. [Cvetic Halverson Lin Liu Tian '19]
- On smooth, irreducible C_{R} hard, but easy for nodal C_{R}^{\bullet} : [Jarvis '98], [Jarvis '99], [Caporaso Casagrande Cornalba '07]

Matter curve $C_{R} \quad$ Nodal curve $C_{R}^{\bullet} \quad$ Blow-up curve C_{R}°

$\xrightarrow[h^{0} \text { remains 3 }]{\substack{\text { Upper SC }}}$

- Find roots on $C_{(3,2)_{1 / 6}}, C_{(\overline{3}, 1)_{-2 / 3}}, C_{(\overline{3}, 1)_{1 / 3}}, C_{(1,1)_{1}}$ without vector-like exotics.
- Extend systematically to all $\mathcal{O}\left(10^{15}\right)$ QSM spaces.
- With current techniques: Absence of vector-like exotics on $C_{(3,2)_{1 / 6}}$ most likely for base 3-folds from triangulations of Δ_{8}°.

Outlook

- Goal: F-theory MSSM construction
\Rightarrow Identify roots on Higgs curve with $h^{i}=(4,1)$, i.e. exactly one Higgs pair.
- Technical extensions:
- Perform limit root counting on Higgs curve.

> Currently, this is combinatorially too challenging for our algorithms.

- Extend limit root counting beyond limit roots on full-blowup curve C_{R}°.
- Conceptional questions/obstructions:
- Does the topology of the dual graph encode the root bundle distribution?
- What conditions prevent/detect jumps in vector-like spectrum along $C_{R}^{\bullet} \rightarrow C_{R}$?
- More ambitious: What is the defect, i.e. by how much does h^{0} jump?
- Which root bundles are realized top-down, i.e. from an F-theory gauge potential?

Motivation
Root bundles
Summary and Outlook
Thank you for your attention!

[^0]: (To model all roots, must also consider partial blow-ups. This makes the section counting hard. Hence, we currently ignore this.)

