Towards F-theory MSSMs

Martin Bies

University of Pennsylvania

String Math Conference, Warsaw – July 13, 2022

With M. Cvetič, R. Donagi, M. Liu, M. Ong - 2102.10115, 2104.08297, 2205.00008

Motivation

Go beyond chiral spectrum of String theory standard model constructions.
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.

Motivation

- Go beyond chiral spectrum of String theory standard model constructions.
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
 - \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Motivation

- Go beyond chiral spectrum of String theory standard model constructions.
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
 - \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ of F-theory QSMs.

(Sadly, $(\overline{1}, 2)_{-1/2}$ is currently too hard for our techniques. We hope to get there in the future.)

Motivation

- Go beyond chiral spectrum of String theory standard model constructions.
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
 - \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ of F-theory QSMs.

(Sadly, $(\overline{1}, 2)_{-1/2}$ is currently too hard for our techniques. We hope to get there in the future.)

Challenge

In global F-theory compactifications, vector-like spectra are non-topological.

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Motivation

- Go beyond chiral spectrum of String theory standard model constructions.
 ⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
 - \Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ of F-theory QSMs.

(Sadly, $(\overline{1}, 2)_{-1/2}$ is currently too hard for our techniques. We hope to get there in the future.)

Challenge

In global F-theory compactifications, vector-like spectra are non-topological.

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Tool

Root bundles (genearlizations of spin bundles) on nodal curves.

Review: SM constructions in String theory

Gauge group and chiral spectrum of SM from ST

- $E_8 \times E_8$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Bouchard Cvetič Donagi '06], [Anderson Gray He Lukas '10], ..., [Abel Constantin Harvey Lukas '22], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

Review: SM constructions in String theory

Gauge group and chiral spectrum of SM from ST

• $E_8 \times E_8$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi

'05], [Bouchard Cvetič Donagi '06], [Anderson Gray He Lukas '10], ..., [Abel Constantin Harvey Lukas '22], ...

- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

Gauge group, chiral and vector-like spectrum of SM from ST

- Why vector-like spectra? Higgs fields matter & characteristic feature of QFTs
- Heterotic $E_8 \times E_8$:

[Bouchard Donagi '05], [Bouchard Cvetič Donagi '06], [Anderson Gray Lukas Palti '10 & '11], ..., [Abel Constantin Harvey Lukas '22], ...

F-theory: [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18], [M.B. Cvetič Donagi Lin Liu Ruehle '20],
 [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

F-theory is cool! [Vafa '96]....See [Weigand '18] for a recent review.

O Description of strongly coupled (in g_S) IIB-string theory.

F-theory is cool! [Vafa 196]....See [Weigand '18] for a recent review.

- **(**) Description of strongly coupled (in g_S) IIB-string theory.
- **2** Geometrizes physics beautifully in singular elliptic 4-fold $\pi: Y_4 \twoheadrightarrow B_3$.
- \Rightarrow Rich dictionary between physics and geometry:
 - $\bullet\,$ Singularity types of elliptic fibre \leftrightarrow gauge groups,
 - Singularity loci in $B_3 \leftrightarrow$ (intersections of) 7-brane loci,
 - $\bullet~$ Consistent geometry \leftrightarrow global consistency checks for physics,

• . . .

F-theory is cool! [Vera '96].... See [Weigand '18] for a recent review.

- **(**) Description of strongly coupled (in g_S) IIB-string theory.
- 2 Geometrizes physics beautifully in singular elliptic 4-fold $\pi: Y_4 \twoheadrightarrow B_3$.
- \Rightarrow Rich dictionary between physics and geometry:
 - Singularity types of elliptic fibre \leftrightarrow gauge groups,
 - Singularity loci in $B_3 \leftrightarrow$ (intersections of) 7-brane loci,
 - $\bullet\,$ Consistent geometry \leftrightarrow global consistency checks for physics,
 - ...

S Backbone of many field theory constructions. ... [Heckman Morrison Vafa '14], [Del Zotto Heckman]

Tomasiello Vafa '15], [Heckman Morrison Rudelius Vafa '15], [Schäfer-Nameki Weigand '16], [Couzens Lawrie Martelli Schäfer-Nameki Wong

117], [Bhardwaj Morrison Tachikawa Tomasiello 118], [Apruzzi Lin Mayrhofer 118], [Apruzzi Lawrie Lin Schäfer-Nameki Wang 119], ...

F-theory is cool! [Vafa 196]....See [Weigand '18] for a recent review.

- **(**) Description of strongly coupled (in g_S) IIB-string theory.
- 2 Geometrizes physics beautifully in singular elliptic 4-fold $\pi: Y_4 \twoheadrightarrow B_3$.
- \Rightarrow Rich dictionary between physics and geometry:
 - Singularity types of elliptic fibre \leftrightarrow gauge groups,
 - Singularity loci in $B_3 \leftrightarrow$ (intersections of) 7-brane loci,
 - $\bullet\,$ Consistent geometry \leftrightarrow global consistency checks for physics,
 - . . .

S Backbone of many field theory constructions. ... [Heckman Morrison Vafa '14], [Del Zotto Heckman

Tomasiello Vafa '15], [Heckman Morrison Rudelius Vafa '15], [Schäfer-Nameki Weigand '16], [Couzens Lawrie Martelli Schäfer-Nameki Wong

17], [Bhardwaj Morrison Tachikawa Tomasiello '18], [Apruzzi Lin Mayrhofer '18], [Apruzzi Lawrie Lin Schäfer-Nameki Wang '19], ...

F-theory QSMs [Cvetič Halverson Lin Liu Tian '19]:

Largest currently-known class of string theory SM-constructions with:

Global consistency, gauge coupling unification, no chiral exotics.

F-theory is cool! [Vafa 196]....See [Weigand '18] for a recent review.

- **(**) Description of strongly coupled (in g_S) IIB-string theory.
- **2** Geometrizes physics beautifully in singular elliptic 4-fold $\pi: Y_4 \twoheadrightarrow B_3$.
- \Rightarrow Rich dictionary between physics and geometry:
 - Singularity types of elliptic fibre \leftrightarrow gauge groups,
 - Singularity loci in $B_3 \leftrightarrow$ (intersections of) 7-brane loci,
 - $\bullet\,$ Consistent geometry \leftrightarrow global consistency checks for physics,
 - . . .

S Backbone of many field theory constructions. ... [Heckman Morrison Vafa '14], [Del Zotto Heckman

Tomasiello Vafa '15], [Heckman Morrison Rudelius Vafa '15], [Schäfer-Nameki Weigand '16], [Couzens Lawrie Martelli Schäfer-Nameki Wong

17], [Bhardwaj Morrison Tachikawa Tomasiello '18], [Apruzzi Lin Mayrhofer '18], [Apruzzi Lawrie Lin Schäfer-Nameki Wang '19], ...

F-theory QSMs [Cvetič Halverson Lin Liu Tian '19]:

Largest currently-known class of string theory SM-constructions with:

Global consistency, gauge coupling unification, no chiral exotics.

In This talk . . .

Investigate vector-like spectra in F-theory QSMs.

Matter curve C _R	$n_{\mathbf{R}} = \#$ chiral fields in rep R	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \text{Chiral index} \\ \chi = \textit{n}_{\mathbf{R}} - \textit{n}_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			
$C_{(\bar{3},1)_{1/3}} = V(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5))$			
$C_{(1,1)_1} = V(s_1, s_5)$			
How to compute?			

Matter curve C _R	$n_{\mathbf{R}} = \#$ chiral fields in rep R	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = \\ V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			

Matter curve C _R	$\left \begin{array}{c} n_{\mathbf{R}}=\# ext{ chiral} \\ ext{ fields in rep } \mathbf{R} \end{array}\right $	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c c} & \text{Chiral index} \\ & \chi = \textit{n}_{\mathbf{R}} - \textit{n}_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5) ight)$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			$\chi = \int\limits_{S_{\mathbf{R}}} G_4$

Matter curve C _R	$n_{\mathbf{R}} = \#$ chiral fields in rep R	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \mbox{Chiral index} \\ \chi = n_{\rm R} - n_{\overline{\rm R}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = \\ V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			$\chi=\int\limits_{\mathcal{S}_{\mathbf{R}}}\mathcal{G}_{4}=3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{\mathbf{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \text{Chiral index} \\ \chi = \textit{n}_{\mathbf{R}} - \textit{n}_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4	1	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = \\ V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?			$\chi = \int \limits_{\mathcal{S}_{\mathbf{R}}} \mathcal{G}_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{\mathbf{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) ⊕	$1 \\ (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_{5},s_{9})$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?			$\chi = \int \limits_{\mathcal{S}_{\mathbf{R}}} \mathcal{G}_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{\mathbf{R}}=\#$ chiral fields in rep R	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) ∉	$1 \\ (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}} = V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(C_{\mathbf{R}}, P_{\mathbf{R}})$	$h^1(C_{\mathbf{R}}, P_{\mathbf{R}})$	$\chi = \int \limits_{\mathcal{S}_{R}} \mathcal{G}_{4} = {3}$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) 6	$1 \\ \oplus (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_{5},s_{9})$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(C_{\mathbf{R}},P_{\mathbf{R}})$ [M.B. Mayrhofer Pehle Weig	$h^1(\mathit{C}_{R}, \mathit{P}_{R})$ and '14], [M.B. Mayrhofer Weigand '17]	$\chi = \int\limits_{S_{R}} G_4 = 3$
	[M.B. '18]	and references therein	[Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0)	$1 \\ \oplus (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = \\ V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?		$h^1(C_{\sf R},P_{\sf R})$ and '14], [M.B. Mayrhofer Weigand '17]	$\begin{vmatrix} \chi = \deg\left(P_{R}\right) - g\left(C_{R}\right) + 1\\ \chi = \int\limits_{S_{R}} G_4 = 3 \end{vmatrix}$
	[M.B. '18]	and references therein	[Cvetič Halverson Lin Liu Tian '19]

• Finding $P_{\mathbf{R}}$ is hard [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18].

 \Rightarrow Try with *simple* necessary conditions:

Matter curve $C_{\mathbf{R}}$	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$\mid P^{\otimes 36}_{({f 3},{f 2})_{1/6}} = {\cal K}^{\otimes 24}_{{\cal C}_{({f 3},{f 2})_{1/6}}}$
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$P_{(1,2)_{-1/2}}^{\otimes 36} = K_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_1)$
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	$P_{(\bar{3},1)_{-2/3}}^{\otimes 30} = K_{C_{(\bar{3},1)_{-2/3}}}^{\otimes 24}$
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V\left(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5)\right)$	$P_{(\bar{3},1)_{1/3}}^{\otimes 36} = K_{C_{(\bar{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3)$
$C_{(1,1)_1}=V(s_1,s_5)$	$P_{(1,1)_1}^{\otimes 36} = K_{C_{(1,1)_1}}^{\otimes 24}$

Constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

• Finding $P_{\mathbf{R}}$ is hard [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18].

 \Rightarrow Try with *simple* necessary conditions:

Matter curve <i>C</i> _R	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$\left \begin{array}{c} P_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(3,2)_{1/6}}}^{\otimes 24} \end{array} ight.$
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$P_{(1,2)-1/2}^{\otimes 36} = K_{C_{(1,2)-1/2}}^{\otimes 22} \otimes \mathcal{O}_{C_{(1,2)-1/2}}(-30 \cdot Y_1)$
$C_{(\overline{3},1)_{-2/3}} = V(s_5,s_9)$	$P_{(\bar{3},1)}^{\otimes 30} = K_{C_{(\bar{2},1)}}^{\otimes 24}$
$C_{(\overline{3},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	$P_{(\bar{3},1)_{1/3}}^{\otimes 36} = K_{C_{(\bar{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3)$
$C_{(1,1)_1} = V(s_1, s_5)$	$P_{(1,1)_{1}}^{\otimes 36} = K_{C_{(1,1)_{1}}}^{\otimes 24}$

Constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

• Root bundle constraints highly non-trivial: Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.

- Finding $P_{\mathbf{R}}$ is hard [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18].
- \Rightarrow Try with *simple* necessary conditions:

Matter curve $C_{\mathbf{R}}$	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$\left \begin{array}{c} P^{\otimes 36}_{({f 3},{f 2})_{1/6}} = {\cal K}^{\otimes 24}_{{\cal C}_{({f 3},{f 2})_{1/6}}} \end{array} ight.$
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$P_{(1,2)_{-1/2}}^{\otimes 36} = K_{\mathcal{C}_{(1,2)_{-1/2}}}^{\otimes 22'} \otimes \mathcal{O}_{\mathcal{C}_{(1,2)_{-1/2}}}(-30 \cdot Y_1)$
$C_{(\overline{3},1)_{-2/3}}=V(s_{5},s_{9})$	$P_{(\bar{3},1)_{-2/3}}^{\otimes 30} = K_{C_{(\bar{3},1)_{-2/3}}}^{\otimes 24}$
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V\left(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5)\right)$	$P_{(\bar{3},1)_{1/3}}^{\otimes 36} = K_{C_{(\bar{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3)$
$C_{(1,1)_1} = V(s_1, s_5)$	$P_{(1,1)_1}^{\otimes 36} = K_{C_{(1,1)_1}}^{\otimes 24}$

Constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

- Root bundle constraints highly non-trivial: Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.
- Must not drop common exponents $(x^2 = 2^2 \neq x = 2)$.

- Finding $P_{\mathbf{R}}$ is hard [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18].
- \Rightarrow Try with *simple* necessary conditions:

Matter curve <i>C</i> _R	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$\left \begin{array}{c} P_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{\mathcal{C}_{(3,2)_{1/6}}}^{\otimes 24} \end{array} ight.$
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	$P_{(1,2)-1/2}^{\otimes 36} = K_{C_{(1,2)-1/2}}^{\otimes 22} \otimes \mathcal{O}_{C_{(1,2)-1/2}}(-30 \cdot Y_1)$
$C_{(\mathbf{\overline{3}},1)_{-2/3}} = V(s_5, s_9)$	$P_{(\bar{3}1)}^{\otimes 30} = K_{C_{(\bar{2}1)}}^{\otimes 24}$
$C_{(\overline{3},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	$P_{(\bar{3},1)_{1/3}}^{\otimes 36} = K_{C_{(\bar{3},1)_{1/3}}}^{\otimes (3,1)_{-2/3}} \otimes \mathcal{O}_{C_{(\bar{3},1)_{1/3}}}(-30 \cdot Y_3)$
$C_{(1,1)_1} = V(s_1, s_5)$	$P_{(1,1)_{1}}^{\otimes 36} = K_{C_{(1,1)_{1}}}^{\otimes 24}$

Constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

- Root bundle constraints highly non-trivial: Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.
- Must not drop common exponents $(x^2 = 2^2 \neq x = 2)$.
- $\Rightarrow\,$ Agenda: Vector-like spectra of the QSMs from studying root bundles.

• Natural to physics: Spin bundle S satisfies $S^2 = K_C$.

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $P \in Pic(C)$ with $P^r = T$.
 - Theory: Obtain all roots by twist one such P with r-torsion points of Jac(C).
 - Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly $r^{2\overline{g}}$ line bundles $P \in \operatorname{Pic}(C)$ with $P^r = T$.
 - Theory: Obtain all roots by twist one such P with r-torsion points of Jac(C).
 - Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g: [Jarves '98], [Caporaso Casagrande Cornalba '04] Fix $T^{\bullet} \in \operatorname{Pic}(C^{\bullet})$, $r \in \mathbb{Z}_{\geq 2}$ with $r |\operatorname{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions P^{\bullet} to $(P^{\bullet})^r = T^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Cornalba '04]
 - Practice: Combinatoric challenging often doable.

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $P \in Pic(C)$ with $P^r = T$.
 - Theory: Obtain all roots by twist one such P with r-torsion points of Jac(C).
 - Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g: [Jarves '98], [Caporaso Casagrande Cornalba '04] Fix $T^{\bullet} \in \text{Pic}(C^{\bullet})$, $r \in \mathbb{Z}_{>2}$ with $r | \text{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions P^{\bullet} to $(P^{\bullet})^r = T^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Cornalba '04]
 - Practice: Combinatoric challenging often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $P \in Pic(C)$ with $P^r = T$.
 - Theory: Obtain all roots by twist one such P with r-torsion points of Jac(C).
 - Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g: [Jarves '98], [Caporaso Casagrande Cornalba '04] Fix $T^{\bullet} \in \text{Pic}(C^{\bullet}), r \in \mathbb{Z}_{>2}$ with $r | \text{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions P^{\bullet} to $(P^{\bullet})^r = T^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Cornalba '04]
 - Practice: Combinatoric challenging often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.

I How does the combinatorics work?

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve C of genus g: [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly $r^{2\overline{g}}$ line bundles $P \in \operatorname{Pic}(C)$ with $P^r = T$.
 - Theory: Obtain all roots by twist one such P with r-torsion points of Jac(C).
 - Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g: [Jarves '98], [Caporaso Casagrande Cornalba '04] Fix $T^{\bullet} \in \text{Pic}(C^{\bullet}), r \in \mathbb{Z}_{>2}$ with $r | \text{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions P^{\bullet} to $(P^{\bullet})^r = T^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Cornalba '04]
 - Practice: Combinatoric challenging often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.

- I How does the combinatorics work?
- I How do we get nodal matter curves in the QSMs?

• Nodal curve: Two \mathbb{P}^1 s - C_1, C_2 - meeting in two nodal singularities.

• Nodal curve: Two \mathbb{P}^1 s - C_1, C_2 - meeting in two nodal singularities.

• Adjunction formula: $\deg(K_{C^{\bullet}}|_{C_i}) = -2 + (\# \text{nodes on } C_i) = 0.$

• Nodal curve: Two \mathbb{P}^1 s - C_1, C_2 - meeting in two nodal singularities.

• Adjunction formula: $\deg(K_{C^{\bullet}}|_{C_i}) = -2 + (\# \text{nodes on } C_i) = 0.$

• Nodal curve: Two \mathbb{P}^1 s – C_1, C_2 – meeting in two nodal singularities.

- Adjunction formula: $\deg(K_{C^{\bullet}}|_{C_i}) = -2 + (\# \text{nodes on } C_i) = 0.$
- Procedure:
 - **O** Pick $r \in \mathbb{Z}_{\geq 2}$ such that $r | \deg(K_{C^{\bullet}})$. For the following example: r = 2.
 - Ø Binary choice for each edge/nodal singularity: Blow it up or keep it.
 - 3 At each blown-up edge, place two weights $u, v \in \{1, 2, ..., r 1\}$.
 - Oheck certain conditions. (Details on the next slide.)
 - \Rightarrow Torsion-free, non locally-free sheaves P^{\bullet} with $(P^{\bullet})^{\otimes r} = K_{C^{\bullet}}$.

• Condition: Reduced degree divisible by r

• Condition: Reduced degree divisible by r – here rules out two setups.

- Condition: Reduced degree divisible by r here rules out two setups.
- Divide degrees by r and find h^0 (descent data/how sections glue across nodes)

- Condition: Reduced degree divisible by r here rules out two setups.
- Divide degrees by r and find h^0 (descent data/how sections glue across nodes)

Smooth $g = 1$ curve h^0 of spin bundle P		Nod Limit root <i>P</i>	al curve <i>h</i> ⁰	-
1 0	$\Big \leftarrow Deformation \rightarrow$	0 0) 1	
0 0	$\Big \leftarrow Deformation \rightarrow$		0	

Smooth $g = 1$ curve h^0 of spin bundle P		Nodal curve C• Limit root P• h ⁰ Multiplicit			
1 0	$\Big \leftarrow Deformation \rightarrow$	0	0	1	$\mu = r^{b_1} = 2$
0 0	$\Big \leftarrow Deformation \rightarrow$		-1	0	$\mu = r^{b_1} = 2$

Smooth $g = 1$ curve h^0 of spin bundle P	Nodal curve <i>C</i> • Limit root <i>P</i> • <i>h</i> ⁰ Multipl				
1 0	$\Big \leftarrow Deformation \rightarrow$	0	0	1	$\mu = r^{b_1} = 2$
0 0	$\Big \leftarrow Deformation \rightarrow$	-1	-1	0	$\mu = r^{b_1} = 2$

Upper semi-continuity

 $h^0(C^{ullet},P^{ullet}) \geq h^0(C,P)$

artin	

Martin Bies

11 / 18

Martin Bies

11 / 18

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

[Kreuzer Skarke '98], [Klevers Peña Oehlmann Piragua Reuter '14], [Cvetič Klevers Peña Oehlmann Reuter '15], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

Interlude: Computer algebra systems

- Triangulations in [M.B. Cvetič Donagi Ong '22] done with the modern computer algebra system OSCAR, which due to the use of the Julia programming language is expected to be very performant.
- For *fast* triangulations, also look at CY-Tools [Liam McAllister group], which hopefully can be available via OSCAR soon.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the r^{2g} limit roots P^{\bullet} with $(P^{\bullet})^{\otimes r} = T$ according to $h^0(C^{\bullet}, P^{\bullet})$:

$$r^{2g} = N_0 + N_1 + N_2 + \dots, \qquad (1)$$

where N_i is the number of limit roots with $h^0(C^{\bullet}, P^{\bullet}) = i$.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the r^{2g} limit roots P^{\bullet} with $(P^{\bullet})^{\otimes r} = T$ according to $h^0(C^{\bullet}, P^{\bullet})$:

$$r^{2g} = N_0 + N_1 + N_2 + \dots, \qquad (1)$$

where N_i is the number of limit roots with $h^0(C^{\bullet}, P^{\bullet}) = i$.

Current standing

- Systematic answer unknown (to my knowledge).
- For sufficiently simple setups can count N_i, **but**:
 - Ignorance: Currently, we can sometimes only compute a lower bound to h^0 .
 - Jumping circuits: h^0 can jump if nodes are specially aligned. [M.B. Cvetič Donagi Ong '22]
 - \Rightarrow Denote the number of these cases by $\widetilde{N}_{\geq i}$.

$$r^{2g} = \left(\widetilde{N}_0 + \widetilde{N}_{\geq 0}\right) + \left(\widetilde{N}_1 + \widetilde{N}_{\geq 1}\right) + \dots$$

(2)

Brill-Noether numbers of $(\overline{\mathbf{3}},\mathbf{2})_{1/6}$ in QSMs with $\overline{K}^3_{B_3}=6$

- First estimates computed in [M.B. Cvetič Liu '21]:
 - count "simple" root bundles with minimal h^0 ,
 - no estimate for $\widetilde{N}_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
 - count all root bundles,
 - discriminate via line bundle cohomology on rational tree-like nodal curves.

QSM-family (KS polytope)	# FRSTs	$\ h^0 = 3$	$h^0 \ge 3$	$ h^0 = 4$	$h^0 \ge 4$
Δ_8°	$egin{array}{l} \sim 10^{15} \ \sim 10^{11} \ \sim 10^{10} \ \sim 10^{11} \ \sim 10^{11} \end{array}$	57.3%	?	?	?
Δ_4°	$\sim 10^{11}$	53.6%	?	?	?
Δ°_{134}	$\sim 10^{10}$	48.7%	?	?	?
Δ_{128}° , Δ_{130}° , Δ_{136}° , Δ_{236}°	$\sim 10^{11}$	42.0%	?	?	?

Brill-Noether numbers of $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$ in QSMs with $\overline{K}_{B_3}^3 = 6$

- First estimates computed in [M.B. Cvetič Liu '21]:
 - count "simple" root bundles with minimal h^0 ,
 - no estimate for $N_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
 - count all root bundles,
 - discriminate via line bundle cohomology on rational tree-like nodal curves.

QSM-family (KS polytope)	$\# FRSTs \parallel$	$h^{0} = 3$	$h^0 \geq 3 \mid h^0 = 4$	$h^0 \ge 4$
$\begin{array}{c} \Delta_8^{\circ} \\ \Delta_4^{\circ} \\ \Delta_{134}^{\circ} \\ \Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ} \end{array}$	$egin{array}{c} \sim 10^{15} \ \sim 10^{11} \ \sim 10^{10} \ \sim 10^{11} \end{array} \end{array}$	76.4% 99.0% 99.8% 99.9%	23.6% 1.0% 0.2% 0.1%	

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

$$h^0 = 1$$
 $h^0 = 2$ $h^0 = 2$

- $h^0 = 3$ $h^{0} = 2$,
- Jumping circuit with $h^0 = 4$:

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

 $h^0 = 2$

• Jumping circuit with $h^0 = 4$:

Mistake in first preprint [M.B. Cvetič Donagi Ong '22]

- We wrongly computed h^0 for the jumping circuit. Correction on the ArXiV.
- \Rightarrow B₃(Δ_4°): 99.995% of solutions to **necessary** root bundle constraint have $h^0 = 3$.

 $h^0 = 2$

 $h^0 = 3$

 $h^0 = 3$

Brill-Noether numbers of $(\overline{\bf 3},{\bf 2})_{1/6}$ in QSMs with $\overline{K}^3_{B_3}=10$ [M.B. Cvetič Donagi Ong '22]

QSM-family (polytope)	$ h^0 = 3$	$h^0 \geq 3$	$h^{0} = 4$	$h^0 \ge 4$	$ h^0 = 5$	$h^0 \ge 5$	$h^0 = 6$	$h^0 \ge 6$
Δ°_{88}	74.9	22.1	2.5	0.5	0.0	0.0		
Δ°_{110}	82.4	14.1	3.1	0.4	0.0			
$\Delta^{\circ}_{272}, \Delta^{\circ}_{274}$	78.1	18.0	3.4	0.5	0.0	0.0		
Δ°_{387}	73.8	21.9	3.5	0.7	0.0	0.0		
$\Delta_{798}^\circ,\ \Delta_{808}^\circ,\ \Delta_{810}^\circ,\ \Delta_{812}^\circ$	77.0	17.9	4.4	0.7	0.0	0.0		
Δ°_{254}	95.9	0.5	3.5	0.0	0.0	0.0		
Δ°_{52}	95.3	0.7	3.9	0.0	0.0	0.0		
Δ°_{302}	95.9	0.5	3.5	0.0	0.0			
Δ°_{786}	94.8	0.3	4.8	0.0	0.0	0.0		
Δ°_{762}	94.8	0.3	4.9	0.0	0.0	0.0		
Δ°_{417}	94.8	0.3	4.8	0.0	0.0	0.0	0.0	
Δ°_{838}	94.7	0.3	5.0	0.0	0.0	0.0		
Δ°_{782}	94.6	0.3	5.0	0.0	0.0	0.0		
$\Delta^{\circ}_{377}, \Delta^{\circ}_{499}, \Delta^{\circ}_{503}$	93.4	0.2	6.2	0.0	0.1	0.0		
Δ°_{1348}	93.7	0.0	6.2	0.0	0.1		0.0	
Δ°_{882} , Δ°_{856}	93.4	0.3	6.2	0.0	0.1	0.0	0.0	
Δ°_{1340}	92.3	0.0	7.6	0.0	0.1		0.0	
Δ°_{1879}	92.3	0.0	7.5	0.0	0.1		0.0	
Δ°_{1384}	90.9	0.0	8.9	0.0	0.2		0.0	

• Statistical observation:

In QSMs, absence of vector-like exotics in $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ likely, but ...

- Sufficient condition for quantization of G₄-flux? [Jefferson Taylor Turner '21].
- F-theory gauge potential
 - may select (proper) subset of these root bundles,
 - lead to correlated choices on distinct matter curves.
- Vector-like spectra on $C_{\mathbf{R}}^{\bullet}$ "upper bound" to those on $C_{\mathbf{R}}$.
 - $\leftrightarrow \text{ Understand "drops" from Yukawa interactions?} \ {\tiny [Cvetič Lin Liu Zhang Zoccarato '19]}$
 - \rightarrow Towards the Higgs \ldots
- Brill-Noether numbers on Higgs curve currently computationally too challenging.
 - Need Brill-Noether theory for root bundles on nodal curves.
 Map from (dual) graphs (and a couple of integers) to Brill-Noether numbers.
 ↔ Arena for machine learning?
- \rightarrow Probability/statistics for F-theory setups to arise without vector-like exotics.

Thank you for your attention!

