Towards F-theory MSSMs

Martin Bies
University of Pennsylvania
String Math Conference, Warsaw - July 13, 2022

With M. Cvetič, R. Donagi, M. Liu, M. Ong - 2102.10115, 2104.08297, 2205.00008

Overview of this talk: Goal, Challenge and Tool
Motivation

- Go beyond chiral spectrum of String theory standard model constructions. \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.

Motivation

- Go beyond chiral spectrum of String theory standard model constructions. \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Halverson Lin Liu Tian '19]

Overview of this talk: Goal, Challenge and Tool

Motivation

- Go beyond chiral spectrum of String theory standard model constructions. \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Halverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ of F-theory QSMs. (Sadly, ($\overline{\mathbf{1}}, \mathbf{2})_{-1 / 2}$ is currently too hard for our techniques. We hope to get there in the future.)

Overview of this talk: Goal, Challenge and Tool

Motivation

- Go beyond chiral spectrum of String theory standard model constructions. \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Haverson Lin Liu Tian '19]

Goal of this talk:

Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ of F-theory QSMs. (Sadly, $(\overline{\mathbf{1}}, \mathbf{2})_{-1 / 2}$ is currently too hard for our techniques. We hope to get there in the future.)

Challenge

In global F-theory compactifications, vector-like spectra are non-topological.
[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Overview of this talk: Goal, Challenge and Tool

Motivation

- Go beyond chiral spectrum of String theory standard model constructions. \Rightarrow For MSSM, need one massless vector-like pair to accommodate the Higgs.
- F-theory is cool. [Review in two slides.]
\Rightarrow Quadrillion F-theory standard models (QSMs). [Cvetić Haverson Lin Liu Tian '19]
Goal of this talk:
Compute vector-like spectra in reps. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ of F-theory QSMs.
(Sadly, ($\overline{\mathbf{1}}, \mathbf{2})_{-1 / 2}$ is currently too hard for our techniques. We hope to get there in the future.)
Challenge
In global F-theory compactifications, vector-like spectra are non-topological.
[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. Mayrhofer Weigand '18]

Tool

Root bundles (genearlizations of spin bundles) on nodal curves.

Review: SM constructions in String theory

Gauge group and chiral spectrum of SM from ST

 '05], [Bouchard Cvetič Donagi '06], [Anderson Gray He Lukas '10], ... [[Abel Constantin Harvey Lukas '22],
 Kors Lust Ott '01], [Cvetič Shiu Uranga '01],

- F-theory [Krause Mayhhofer Weigand '12], [Cveicic Klevers Pena Oelmmann Reuter' '15], LLin Weigand 16], [Cveicic Lin Liu Oeflmann '18], [Cvetič Halverson Lin Liu Tian '19],

Review: SM constructions in String theory

Gauge group and chiral spectrum of SM from ST

- $E_{8} \times E_{8}$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Bouchard Cvetič Donagi '06], [Anderson Gray He Lukas '10], [Abel Constantin Harvey Lukas '22],
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga 'o0], [Ibanez Marchesano Rabadan 'o0], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01],
- F-theory [Krause Mayhhofer Weigand ' 12], [Cvetić Klevers Pena Oehlmann Reuter '15], [Lin Weigand ' 16$]$], [Cvetić Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19],

Gauge group, chiral and vector-like spectrum of SM from ST

- Why vector-like spectra? Higgs fields matter \& characteristic feature of QFTs
- Heterotic $E_{8} \times E_{8}$:
[Bouchard Donagi '05], [Bouchard Cvetič Donagi '06], [Anderson Gray Lukas Palti '10 \& '11], ..., [Abel Constantin Harvey Lukas '22],
- F-theory: [M.B. Mayhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18], [M.B. Cvetić Donagi Lin Liu Ruehle '20], [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

F-theory is cool!

(1) Description of strongly coupled (in g_{S}) IIB-string theory.
(1) Description of strongly coupled (in g_{S}) IIB-string theory.
(3) Geometrizes physics beautifully in singular elliptic 4-fold π : $Y_{4} \rightarrow B_{3}$.
\Rightarrow Rich dictionary between physics and geometry:

- Singularity types of elliptic fibre \leftrightarrow gauge groups,
- Singularity loci in $B_{3} \leftrightarrow$ (intersections of) 7-brane loci,
- Consistent geometry \leftrightarrow global consistency checks for physics,

F-theory is cool!

(1) Description of strongly coupled (in g_{S}) IIB-string theory.
(0) Geometrizes physics beautifully in singular elliptic 4-fold $\pi: Y_{4} \rightarrow B_{3}$.
\Rightarrow Rich dictionary between physics and geometry:

- Singularity types of elliptic fibre \leftrightarrow gauge groups,
- Singularity loci in $B_{3} \leftrightarrow$ (intersections of) 7-brane loci,
- Consistent geometry \leftrightarrow global consistency checks for physics,
- ...
(3) Backbone of many field theory constructions. ... [Heckman Morrison Vafa ' 14], [Del Zotto Heckman

Tomasiello Vafa '15], [Heckman Morrison Rudelius Vafa '15], [Schäfer-Nameki Weigand '16], [Couzens Lawrie Martelli Schäfer-Nameki Wong
'17], [Bhardwaj Morrison Tachikawa Tomasiello '18], [Apruzzi Lin Mayrhofer '18], [Apruzzi Lawrie Lin Schäfer-Nameki Wang '19],

F-theory is cool!

(1) Description of strongly coupled (in g_{S}) IIB-string theory.
(3) Geometrizes physics beautifully in singular elliptic 4-fold $\pi: Y_{4} \rightarrow B_{3}$.
\Rightarrow Rich dictionary between physics and geometry:

- Singularity types of elliptic fibre \leftrightarrow gauge groups,
- Singularity loci in $B_{3} \leftrightarrow$ (intersections of) 7-brane loci,
- Consistent geometry \leftrightarrow global consistency checks for physics,
- ...
(3) Backbone of many field theory constructions. ...[Heckman Morrison Vafa '14], [Del Zotto Heckman

Tomasiello Vafa '15], [Heckman Morrison Rudelius Vafa '15], [Schäfer-Nameki Weigand '16], [Couzens Lawrie Martelli Schäfer-Nameki Wong
'17], [Bhardwaj Morrison Tachikawa Tomasiello '18], [Apruzzi Lin Mayrhofer '18], [Apruzzi Lawrie Lin Schäfer-Nameki Wang '19],
(c) F-theory QSMs [Cvetic Halverson Lin Liu Tian '19]:

Largest currently-known class of string theory SM-constructions with:
Global consistency, gauge coupling unification, no chiral exotics.

F-theory is cool!

(1) Description of strongly coupled (in g_{S}) IIB-string theory.
(3) Geometrizes physics beautifully in singular elliptic 4-fold $\pi: Y_{4} \rightarrow B_{3}$.
\Rightarrow Rich dictionary between physics and geometry:

- Singularity types of elliptic fibre \leftrightarrow gauge groups,
- Singularity loci in $B_{3} \leftrightarrow$ (intersections of) 7-brane loci,
- Consistent geometry \leftrightarrow global consistency checks for physics,
- ...
(3) Backbone of many field theory constructions. ...[Heckman Morrison Vafa '14], [Del Zotto Heckman

Tomasiello Vafa '15], [Heckman Morrison Rudelius Vafa '15], [Schäfer-Nameki Weigand '16], [Couzens Lawrie Martelli Schäfer-Nameki Wong
'17], [Bhardwaj Morrison Tachikawa Tomasiello '18], [Apruzzi Lin Mayrhofer '18], [Apruzzi Lawrie Lin Schäfer-Nameki Wang '19],
(c) F-theory QSMs [Cvetic Halverson Lin Liu Tian '19]:

Largest currently-known class of string theory SM-constructions with: Global consistency, gauge coupling unification, no chiral exotics.

In This talk

Investigate vector-like spectra in F-theory QSMs.

Chiral and desired vector-like spectra in the QSMs

Matter curve $C_{\mathbf{R}}$	$n_{\mathbf{R}}=$ \# chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathbf{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$			
$C_{(1,2)-1 / 2}=$			
$V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$			
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$			
$C_{(\overline{3}, 1)_{1 / 3}}=$			
$V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$			
$C_{(1,1)_{1}=}=V\left(s_{1}, s_{5}\right)$			

Chiral and desired vector-like spectra in the QSMs

Matter curve $C_{\mathbf{R}}$	$n_{\mathbf{R}}=$ \# chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathbf{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$		Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(1,2)-1 / 2}=$ $V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$		3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$		3
$C_{(\overline{3}, 1)_{1 / 3}}=$ $V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	3	
$C_{(1,1)_{1}=}=V\left(s_{1}, s_{5}\right)$		3

Chiral and desired vector-like spectra in the QSMs

Matter curve $C_{\text {R }}$	$n_{R}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$			3
$\begin{gathered} C_{(1,2)-1 / 2}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$			3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$			3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$			3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$			3
How to compute?			$\chi=\int_{S_{\mathrm{R}}} G_{4}$

Chiral and desired vector-like spectra in the QSMs

Matter curve $C_{\text {R }}$	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\bar{R}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$			3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$			3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$			3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$			3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$			3
How to compute?			$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	4	1	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?			$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	4 $(4,1)=(3,$	$\begin{gathered} 1 \\ 1 \text { 1) }=\text { leptons }+ \text { Higgs } \end{gathered}$	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} \hline C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \\ \hline \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?			$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	$\begin{aligned} & 4 \\ & (4,1)=(3,0 \end{aligned}$	$\begin{gathered} 1 \\ 1)=\text { leptons }+ \text { Higgs } \end{gathered}$	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?	$h^{0}\left(C_{\mathbf{R}}, P_{\mathrm{R}}\right)$	$h^{1}\left(C_{\mathbf{R}}, P_{\mathrm{R}}\right)$	$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathrm{R}}=\#$ chiral fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	4 $(4,1)=(3,$	$\begin{gathered} 1 \\ \text { 1) }=\text { leptons }+ \text { Higgs } \end{gathered}$	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?	$h^{0}\left(C_{\mathbf{R}}, P_{\mathbf{R}}\right)$ [M.B. Mayrhofer Pehle W [M.B. '	$h^{1}\left(C_{\mathbf{R}}, P_{\mathbf{R}}\right)$ 4], [M.B. Mayrhofer Weigand '17] ferences therein	$\chi=\int_{S_{R}} G_{4}=3$

Chiral and desired vector-like spectra in the QSMs

Matter curve C_{R}	$n_{\mathbf{R}}=\# \text { chiral }$ fields in rep \mathbf{R}	$\# n_{\overline{\mathrm{R}}}=$ chiral fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	4 $(4,1)=(3,0)$	$\begin{gathered} 1 \\ \text { 1) }=\text { leptons }+ \text { Higss } \end{gathered}$	3
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	3	0	3
$\begin{gathered} C_{(\overline{3}, 1)_{1 / 3}}= \\ V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right) \end{gathered}$	3	0	3
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	3	0	3
How to compute?	$\overline{h^{0}\left(C_{\mathbf{R}}, P_{\mathbf{R}}\right)}$ [M.B. Mayrhofer Pehle We	$h^{1}\left(C_{\mathbf{R}}, P_{\mathbf{R}}\right)$ 4], [M.B. Mayrhofer Weigand '17] ferences therein	$\begin{gathered} \chi=\operatorname{deg}\left(P_{\mathbf{R}}\right)-g\left(C_{\mathbf{R}}\right)+1 \\ \chi=\int_{S_{\mathbf{R}}} G_{4}=3 \end{gathered}$ [Cvetič Halverson Lin Liu Tian '19]

- Finding $P_{\mathbf{R}}$ is hard [M.B. Mayhtofer Pehle Weigand '14], [M.B. Mayhhofer Weigand ' '7], [M.B. '18].
\Rightarrow Try with simple necessary conditions:

Matter curve C_{R}	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$P_{(3,2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\otimes 24}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$P_{(\mathbf{1 , 2})_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)_{-1 / 2}}^{\otimes 22}}^{\otimes 2 \mathcal{O}_{C_{(1,2)}-1 / 2}}{ }^{\left(-30 \cdot Y_{1}\right)}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$P_{(\mathbf{3}, \mathbf{1})_{-2 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, 1)_{-2 / 3}}^{\otimes 24}}^{\otimes 24 / 2}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	$P_{(\overline{\mathbf{3}},)_{1 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, 1)_{1 / 3}}^{\otimes 22}}^{\otimes} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	$P_{(\mathbf{1}, \mathbf{1})_{1}}^{\otimes 36}=K_{C_{(1,1)_{1}}}^{\otimes 24}$

Constraints for base 3-folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$

Necessary condition for P : Root bundle constraints [M.. Cuetiè Donagi Liu Ong 21]

- Finding $P_{\mathbf{R}}$ is hard [M.B. Mayhofor Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18].
\Rightarrow Try with simple necessary conditions:

Matter curve $C_{\text {R }}$	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$P_{(\mathbf{3}, 2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\otimes 2}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$P_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)_{-1 / 2}}^{\otimes 22}}^{2_{2}} \otimes \mathcal{O}_{C_{(1,2)-1 / 2}}\left(-30 \cdot Y_{1}\right)$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$P_{(\mathbf{3}, \mathbf{1})_{-2 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}^{\otimes 24}}^{\otimes 21 / 2}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	$P_{(\overline{3}, 1)_{1 / 3}}^{\otimes 36}=K_{C_{(\overline{3}, 1)_{1 / 3}}^{\otimes 22}}^{\otimes} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	$P_{(\mathbf{1}, \mathbf{1})_{1}}^{\otimes \otimes 36}=K_{C_{(1,1)_{1}}}^{\otimes 24}$

Constraints for base 3-folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$

- Root bundle constraints highly non-trivial: Infinitely many line bundles with $\chi=3$ but only finitely many root bundles.

Necessary condition for P : Root bundle constraints [M.. Cvetiè Donagi Liu Ong 21]

- Finding $P_{\mathbf{R}}$ is hard [M.B. Mayhoforer Pehle Weigand '14], [M.B. Mayhhofer Weigand '17], [M.B. '18].
\Rightarrow Try with simple necessary conditions:

Matter curve $C_{\text {R }}$	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$P_{(\mathbf{3}, 2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\otimes 2}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$P_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)_{-1 / 2}}^{\otimes 22}}^{2_{2}} \otimes \mathcal{O}_{C_{(1,2)-1 / 2}}\left(-30 \cdot Y_{1}\right)$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$P_{(\mathbf{3}, \mathbf{1})_{-2 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}^{\otimes 24}}^{\otimes 21 / 2}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	$P_{(\overline{3}, 1)_{1 / 3}}^{\otimes 36}=K_{C_{(\overline{3}, 1)_{1 / 3}}^{\otimes 22}}^{\otimes} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	$P_{(\mathbf{1}, \mathbf{1})_{1}}^{\otimes \otimes 36}=K_{C_{(1,1)_{1}}}^{\otimes 24}$

Constraints for base 3-folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$

- Root bundle constraints highly non-trivial: Infinitely many line bundles with $\chi=3$ but only finitely many root bundles.
- Must not drop common exponents $\left(x^{2}=2^{2} \nRightarrow x=2\right)$.

Necessary condition for P : Root bundle constraints [M.. Cvetiè Donagis Liu Ong 21]

- Finding $P_{\mathbf{R}}$ is hard [M.B. Mayhoforer Pehle Weigand '14], [M.B. Mayhhofer Weigand '17], [M.B. '18].
\Rightarrow Try with simple necessary conditions:

Matter curve $C_{\text {R }}$	Necessary root bundle condition for $P_{\mathbf{R}}$
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	$P_{(3,2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\otimes 24}$
$C_{(1,2)_{-1 / 2}}=V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right)$	$P_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)_{-1 / 2}}^{\otimes 22}}^{\left.\otimes 2 / \mathcal{O}_{C_{(1,2)-1 / 2}}\left(-30 \cdot Y_{1}\right), ~\right)}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$	$P_{(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, \mathbf{1}-2 / 3}^{\otimes 24}}^{\otimes 24}$
$C_{(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}}=V\left(s_{9}, s_{3} s_{5}^{2}+s_{6}\left(s_{1} s_{6}-s_{2} s_{5}\right)\right)$	$P_{(\overline{3}, 1)_{1 / 3}}^{\otimes 36}=K_{C_{(\overline{\mathbf{3}}, 1)_{1 / 3}}^{\otimes 22}}^{\otimes} \otimes \mathcal{O}_{C_{(\overline{3}, 1)_{1 / 3}}}\left(-30 \cdot Y_{3}\right)$
$C_{(1,1)_{1}}=V\left(s_{1}, s_{5}\right)$	$P_{(\mathbf{1}, 1)_{1}}^{\otimes 36}=K_{C_{(1,1)_{1}}}^{\otimes 24}$

Constraints for base 3-folds B_{3} with $K_{B_{3}}^{3}=18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_{3} with other $K_{B_{3}}^{3}$

- Root bundle constraints highly non-trivial: Infinitely many line bundles with $\chi=3$ but only finitely many root bundles.
- Must not drop common exponents $\left(x^{2}=2^{2} \nRightarrow x=2\right)$.
\Rightarrow Agenda: Vector-like spectra of the QSMs from studying root bundles.

What is known about root bundles?

- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.

What is known about root bundles?

- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Grifiths Harris "Principles of algebraic geometry" '94] Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:
- There are exactly $r^{2 g}$ line bundles $P \in \operatorname{Pic}(C)$ with $P^{r}=T$.
- Theory: Obtain all roots by twist one such P with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).

What is known about root bundles?

- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Girfifiths Haris "Principles of algebraic geometr"" 94] Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:
- There are exactly $r^{2 g}$ line bundles $P \in \operatorname{Pic}(C)$ with $P^{r}=T$.
- Theory: Obtain all roots by twist one such P with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g : [Jarves '98], [Caporaso Casagrande Corralba '04] Fix $T^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}\left(T^{\bullet}\right)$:
- There are exactly $r^{2 g}$ solutions P^{\bullet} to $\left(P^{\bullet}\right)^{r}=T^{\bullet}$.
- Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Corralba '04]
- Practice: Combinatoric challenging - often doable.

What is known about root bundles?

- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Girfifiths Haris "Principles of algebraic geometr"" 94]

Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:

- There are exactly $r^{2 \bar{g}}$ line bundles $P \in \operatorname{Pic}(C)$ with $P^{r}=T$.
- Theory: Obtain all roots by twist one such P with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g : [Jarves '98], [Caporaso Cassgrande Cornalba '04] Fix $T^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}\left(T^{\bullet}\right)$:
- There are exactly $r^{2 g}$ solutions P^{\bullet} to $\left(P^{\bullet}\right)^{r}=T^{\bullet}$.
- Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Corralba '04]
- Practice: Combinatoric challenging - often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.

What is known about root bundles?

- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Girfifiths Haris "Principles of algebraic geometr"" 94]

Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:

- There are exactly $r^{2 \bar{g}}$ line bundles $P \in \operatorname{Pic}(C)$ with $P^{r}=T$.
- Theory: Obtain all roots by twist one such P with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g : [Jarves '98], [Caporaso Casagrande Corralba '04]

Fix $T^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}\left(T^{\bullet}\right)$:

- There are exactly $r^{2 g}$ solutions P^{\bullet} to $\left(P^{\bullet}\right)^{r}=T^{\bullet}$.
- Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Corralba '04]
- Practice: Combinatoric challenging - often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.
(1) How does the combinatorics work?

What is known about root bundles?

- Natural to physics: Spin bundle S satisfies $S^{2}=K_{C}$.
- Smooth irreducible curve C of genus g : [Girfifiths Haris "Principles of algebraic geometr"" 94]

Fix $T \in \operatorname{Pic}(C), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}(T)$:

- There are exactly $r^{2 \bar{g}}$ line bundles $P \in \operatorname{Pic}(C)$ with $P^{r}=T$.
- Theory: Obtain all roots by twist one such P with r-torsion points of $\operatorname{Jac}(C)$.
- Practice: Tough. (Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).
- Nodal curve C^{\bullet} of genus g : [Jarves '98], [Caporaso Cassgrande Cornalba '04]

Fix $T^{\bullet} \in \operatorname{Pic}\left(C^{\bullet}\right), r \in \mathbb{Z}_{\geq 2}$ with $r \mid \operatorname{deg}\left(T^{\bullet}\right)$:

- There are exactly $r^{2 g}$ solutions P^{\bullet} to $\left(P^{\bullet}\right)^{r}=T^{\bullet}$.
- Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Corralba '04]
- Practice: Combinatoric challenging - often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.
(1) How does the combinatorics work?
(2) How do we get nodal matter curves in the QSMs?

Example: Spin bundles on simple nodal curve [caposse Casegnde Comala and

- Nodal curve: Two $\mathbb{P}^{1} s-C_{1}, C_{2}$ - meeting in two nodal singularities.

- Nodal curve: Two $\mathbb{P}^{1} \mathrm{~s}-C_{1}, C_{2}$ - meeting in two nodal singularities.

- Adjunction formula: $\left.\operatorname{deg}\left(\left.K_{C} \bullet\right|_{C_{i}}\right)\right)=-2+\left(\#\right.$ nodes on $\left.C_{i}\right)=0$.
- Nodal curve: Two $\mathbb{P}^{1} \mathrm{~s}-C_{1}, C_{2}$ - meeting in two nodal singularities.

- Adjunction formula: $\left.\operatorname{deg}\left(\left.K_{C} \bullet\right|_{C_{i}}\right)\right)=-2+\left(\#\right.$ nodes on $\left.C_{i}\right)=0$.
- Nodal curve: Two $\mathbb{P}^{1} s-C_{1}, C_{2}$ - meeting in two nodal singularities.

- Adjunction formula: $\left.\operatorname{deg}\left(\left.K_{C} \bullet\right|_{C_{i}}\right)\right)=-2+\left(\#\right.$ nodes on $\left.C_{i}\right)=0$.
- Procedure:
(1) Pick $r \in \mathbb{Z}_{\geq 2}$ such that $r \mid \operatorname{deg}\left(K_{C} \bullet\right)$. For the following example: $r=2$.
(2) Binary choice for each edge/nodal singularity: Blow it up or keep it.
(3) At each blown-up edge, place two weights $u, v \in\{1,2, \ldots, r-1\}$.
(9) Check certain conditions. (Details on the next slide.)
\Rightarrow Torsion-free, non locally-free sheaves P^{\bullet} with $\left(P^{\bullet}\right)^{\otimes r}=K_{C}$ •

Example: Spin bundles on simple nodal curve [caposse Casegnde Comala and

Dashed: Blown-up nodal singularity.

Example: Spin bundles on simple nodal curve [crposse Casegnde Comala and

Dashed: Blown-up nodal singularity.

Example: Spin bundles on simple nodal curve [caposse Casegnde Comala

Example: Spin bundles on simple nodal curve [caposse Casegnde Comala

Dashed: Blown-up nodal singularity.

Example: Spin bundles on simple nodal curve [crporso Cassgende Comalla 'o4]

Dashed: Blown-up nodal singularity.

- Condition: Reduced degree divisible by r

Dashed: Blown-up nodal singularity.

- Condition: Reduced degree divisible by r - here rules out two setups.

Dashed: Blown-up nodal singularity.

- Condition: Reduced degree divisible by r - here rules out two setups.
- Divide degrees by r and find h^{0} (descent data/how sections glue across nodes)

Dashed: Blown-up nodal singularity.

- Condition: Reduced degree divisible by r - here rules out two setups.
- Divide degrees by r and find h^{0} (descent data/how section glue across nodes)

Smooth $g=1$ curve h^{0} of spin bundle P		Nodal curve C^{\bullet}		
1	\leftarrow Deformation \rightarrow	0	0	1
0		Limit root P^{\bullet}	h^{0}	Multiplicity
0	\leftarrow Deformation \rightarrow	-1	-1	0

Smooth $g=1$ curve h^{0} of spin bundle P		Nodal curve C^{\bullet}			
1	\leftarrow Deformation \rightarrow	0	0	1	$\mu=r^{b_{1}}=2$
0	Limit root P^{\bullet}	h^{0}	Multiplicity		
0	\leftarrow Deformation \rightarrow	-1	-1	0	$\mu=r^{b_{1}}=2$
0					

Smooth $g=1$ curve h^{0} of spin bundle P		Nodal curve C^{\bullet}			
1	\leftarrow Deformation \rightarrow	0	Limit root P^{\bullet}	h^{0}	Multiplicity
0		1	$\mu=r^{b_{1}}=2$		
0	\leftarrow Deformation \rightarrow	-1	-1	0	$\mu=r^{b_{1}}=2$
0					

Upper semi-continuity

$h^{0}\left(C^{\bullet}, P^{\bullet}\right) \geq h^{0}(C, P)$

Advantage: Triangulation invariant estimate of VL spectra for huge families of QSMs

[Kreuzer Skarke '98], [Klevers Peña Oehlmann Piragua Reuter '14], [Cvetič Klevers Peña Oehlmann Reuter '15], [Cvetič Lin Liu Oehlmann '18],
[Cvetič Halverson Lin Liu Tian '19],

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]
Advantage: Triangulation invariant estimate of VL spectra for huge families of QSMs

$$
\Delta^{\circ} \xrightarrow[\substack{\text { fine regular star } \\ \text { triangulations }}]{ }
$$

Family $B_{3}\left(\Delta^{\circ}\right)$ of toric F-theory base 3-folds	--Same nodal matter curve C_{R}^{\bullet} $\forall X_{\Sigma} \in B_{3}\left(\Delta^{\circ}\right)$

[Kreuzer Skarke '98], [Klevers Peña Oehlmann Piragua Reuter '14], [Cvetič Klevers Peña Oehlmann Reuter '15], [Cvetič Lin Liu Oehlmann '18],
[Cvetič Halverson Lin Liu Tian '19],
Interlude: Computer algebra systems

- Triangulations in [M.B. Cvetič Donagi Ong '22] done with the modern computer algebra system OSCAR, which - due to the use of the Julia programming language - is expected to be very performant.
- For fast triangulations, also look at CY-Tools [Liam McAllister group], which hopefully can be available via OSCAR soon.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the $r^{2 g}$ limit roots P^{\bullet} with $\left(P^{\bullet}\right)^{\otimes r}=T$ according to $h^{0}\left(C^{\bullet}, P^{\bullet}\right)$:

$$
\begin{equation*}
r^{2 g}=N_{0}+N_{1}+N_{2}+\ldots, \tag{1}
\end{equation*}
$$

where N_{i} is the number of limit roots with $h^{0}\left(C^{\bullet}, P^{\bullet}\right)=i$.

Towards "good" physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the $r^{2 g}$ limit roots P^{\bullet} with $\left(P^{\bullet}\right)^{\otimes r}=T$ according to $h^{0}\left(C^{\bullet}, P^{\bullet}\right)$:

$$
\begin{equation*}
r^{2 g}=N_{0}+N_{1}+N_{2}+\ldots, \tag{1}
\end{equation*}
$$

where N_{i} is the number of limit roots with $h^{0}\left(C^{\bullet}, P^{\bullet}\right)=i$.

Current standing

- Systematic answer unknown (to my knowledge).
- For sufficiently simple setups can count N_{i}, but:
- Ignorance: Currently, we can sometimes only compute a lower bound to h^{0}.
- Jumping circuits: h^{0} can jump if nodes are specially aligned. [M.B. Cvetic Donagi Ong '22]
\Rightarrow Denote the number of these cases by $\widetilde{N}_{\geq i}$.

$$
\begin{equation*}
r^{2 g}=\left(\widetilde{N}_{0}+\widetilde{N}_{\geq 0}\right)+\left(\widetilde{N}_{1}+\widetilde{N}_{\geq 1}\right)+\ldots \tag{2}
\end{equation*}
$$

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs with $\bar{K}_{B_{3}}^{3}=6$

- First estimates computed in [M.B. Cvetič Liu '21]:
- count "simple" root bundles with minimal h^{0},
- no estimate for $\widetilde{N}_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
- count all root bundles,
- discriminate via line bundle cohomology on rational tree-like nodal curves.

QSM-family (KS polytope)	\# FRSTs $\\| h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	
Δ_{8}°	$\sim 10^{15}$	57.3%	$?$	$?$	$?$
Δ_{4}°	$\sim 10^{11}$	53.6%	$?$	$?$	$?$
Δ_{134}°	$\sim 10^{10}$	48.7%	$?$	$?$	$?$
$\Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ}$	$\sim 10^{11}$	42.0%	$?$	$?$	$?$

- First estimates computed in [M.B. Cvetič Liu '21]:
- count "simple" root bundles with minimal h^{0},
- no estimate for $N_{>}$
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
- count all root bundles,
- discriminate via line bundle cohomology on rational tree-like nodal curves.

QSM-family (KS polytope)	\# FRSTs $\\| h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	
Δ_{8}°	$\sim 10^{15}$	76.4%	23.6%		
Δ_{4}°	$\sim 10^{11}$	99.0%	1.0%		
Δ_{134}°	$\sim 10^{10}$	99.8%	0.2%		
$\Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ}$	$\sim 10^{11}$	99.9%	0.1%		

Can we do better for $B_{3}\left(\Delta_{4}^{\circ}\right)$? The 1% contains ...

- Stationary circuits with $h^{0}=3$:

Can we do better for $B_{3}\left(\triangle_{4}^{\circ}\right)$? The 1% contains ...

- Stationary circuits with $h^{0}=3$:

- Jumping circuit with $h^{0}=4$:

Can we do better for $B_{3}\left(\Delta_{4}^{\circ}\right)$? The 1% contains

- Stationary circuits with $h^{0}=3$:

- Jumping circuit with $h^{0}=4$:

Mistake in first preprint [M.B. Cvetič Donagi Ong '22]

- We wrongly computed h^{0} for the jumping circuit. Correction on the ArXiV. $\Rightarrow B_{3}\left(\Delta_{4}^{\circ}\right): 99.995 \%$ of solutions to necessary root bundle constraint have $h^{0}=3$.

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs with $\bar{K}_{B_{3}}^{3}=10$ [m... Cvetit Donasi Ong'22]

QSM-family (polytope)	$h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	$h^{0}=5$	$h^{0} \geq 5$	$h^{0}=6$	$h^{0} \geq 6$
Δ_{88}°	74.9	22.1	2.5	0.5	0.0	0.0		
Δ_{110}°	82.4	14.1	3.1	0.4	0.0			
$\Delta_{272}^{\circ}, \Delta_{274}^{\circ}$	78.1	18.0	3.4	0.5	0.0	0.0		
Δ_{387}°	73.8	21.9	3.5	0.7	0.0	0.0		
$\Delta_{798}^{\circ}, \Delta_{808}^{\circ}, \Delta_{810}^{\circ}, \Delta_{812}^{\circ}$	77.0	17.9	4.4	0.7	0.0	0.0		
Δ_{254}°	95.9	0.5	3.5	0.0	0.0	0.0		
Δ_{52}°	95.3	0.7	3.9	0.0	0.0	0.0		
Δ_{302}°	95.9	0.5	3.5	0.0	0.0			
Δ_{786}°	94.8	0.3	4.8	0.0	0.0	0.0		
Δ_{762}°	94.8	0.3	4.9	0.0	0.0	0.0		
Δ_{417}°	94.8	0.3	4.8	0.0	0.0	0.0	0.0	
Δ_{838}°	94.7	0.3	5.0	0.0	0.0	0.0		
Δ_{782}°	94.6	0.3	5.0	0.0	0.0	0.0		
$\Delta_{377}^{\circ}, \Delta_{499}^{\circ}, \Delta_{503}^{\circ}$	93.4	0.2	6.2	0.0	0.1	0.0		0.0
Δ_{1348}°	93.7	0.0	6.2	0.0	0.1		0	
$\Delta_{882}^{\circ}, \Delta_{856}^{\circ}$	93.4	0.3	6.2	0.0	0.1	0.0	0.0	
Δ_{1340}°	92.3	0.0	7.6	0.0	0.1		0.0	
Δ_{1879}°	92.3	0.0	7.5	0.0	0.1		0.0	
Δ_{1384}°	90.9	0.0	8.9	0.0	0.2		0.0	

- Statistical observation:

In QSMs, absence of vector-like exotics in $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6},(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3},(\mathbf{1}, \mathbf{1})_{1}$ likely, but ...

- Sufficient condition for quantization of G_{4}-flux? [Jefferson Taylor Turner '21].
- F-theory gauge potential
- may select (proper) subset of these root bundles,
- lead to correlated choices on distinct matter curves.
- Vector-like spectra on $C_{\mathbf{R}}^{\bullet}$ "upper bound" to those on $C_{\mathbf{R}}$. \leftrightarrow Understand "drops" from Yukawa interactions? [Cvetič Lin Liu Zhang Zoccarato '19] \rightarrow Towards the Higgs
- Brill-Noether numbers on Higgs curve currently computationally too challenging.
- Need Brill-Noether theory for root bundles on nodal curves. Map from (dual) graphs (and a couple of integers) to Brill-Noether numbers. \leftrightarrow Arena for machine learning?
\rightarrow Probability/statistics for F-theory setups to arise without vector-like exotics.
部

