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Root bundles (genearlizations of spin bundles) on nodal curves.
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Review: SM constructions in String theo

Gauge group and chiral spectrum of SM from ST

("] E8 X E8 [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi
'05], [Bouchard Cveti¢ Donagi '06], [Anderson Gray He Lukas ‘10], ..., [Abel Constantin Harvey Lukas '22], ...

o Type II [Berkooz Douglas Leigh ‘96], [Aldazabal Franco Ibanez Rabadan Uranga ‘00], [Ibanez Marchesano Rabadan ‘00], [Blumenhagen
Kors Lust Ott ‘'01], [Cveti¢ Shiu Uranga ‘01], ...

(] F-theory [Krause Mayrhofer Weigand ‘12], [Cveti¢ Klevers Pena Oehlmann Reuter ‘15], [Lin Weigand '16], [Cveti¢ Lin Liu Oehlmann

‘18], [Cveti¢ Halverson Lin Liu Tian ‘19], ...
v
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Gauge group, chiral and vector-like spectrum of SM from ST
@ Why vector-like spectra? Higgs fields matter & characteristic feature of QFTs
o Heterotic Eg x Eg:

[Bouchard Donagi '05], [Bouchard Cveti¢ Donagi '06], [Anderson Gray Lukas Palti '10 & '11], ..., [Abel Constantin Harvey Lukas '22],

o F—theory: [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18], [M.B. Cveti¢ Donagi Lin Liu Ruehle '20],

[M.B. Cveti¢ Donagi Liu Ong '21], [M.B. Cveti¢ Liu '21], [M.B. Cveti¢ Donagi Ong '22]
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o
(2]
=

Description of strongly coupled (in gs) IIB-string theory.
Geometrizes physics beautifully in singular elliptic 4-fold 7: Y3 — Bs.
Rich dictionary between physics and geometry:

e Singularity types of elliptic fibre <> gauge groups,

o Singularity loci in Bs +> (intersections of ) 7-brane loci,

o Consistent geometry <> global consistency checks for physics,
o ...

Backbone of many field theory constructions. . [Heckman Morrison Vafa '14], [Del Zotto Heckman
Tomasiello Vafa '15], [Heckman Morrison Rudelius Vafa '15], [Schafer-Nameki Weigand '16], [Couzens Lawrie Martelli Schifer-Nameki Wong
'17], [Bhardwaj Morrison Tachikawa Tomasiello '18], [Apruzzi Lin Mayrhofer '18], [Apruzzi Lawrie Lin Schifer-Nameki Wang '19], ...
F-theory QSMS [Cuetié Halverson Lin Liu Tian ‘19]
Largest currently-known class of string theory SM-constructions with:

Global consistency, gauge coupling unification, no chiral exotics.

Investigate vector-like spectra in F-theory QSMs.
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Chiral and desired vector-like spectra in the QSMs

nR = # chiral # ng = chiral Chiral index

Matter curve Cr fields in rep R fields in rep R X =NR — nNg

C3,2),/6 = V(s3,%) | |

Ca2),, =
V (s3, 5252 + s1(s150 — $556))

C(571)72/3 = V(S5,59) ‘ ‘

C(§»1)1/3 =
V (so, 5352 + s6(s156 — $255))

Capy, = V(s1,55) ‘ ‘

How to compute?
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Necessary condition for P: Root bundle constraints me. cuei bonag Liv ong 21)

(] F|nd|ng PR is hard [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. "18].

= Try with simple necessary conditions:

Matter curve Cg ‘ Necessary root bundle condition for Pg
C3.2),6 = V(53,%) g?zﬁ)l/ﬁ = Sf;l/s

Ca2)_y), = V (53,5258 + s1(s150 — $556)) P(%?;),l/g = K?(fi)im ©0¢uy ,,(=30-1)
C(§,1)72/3 = V/(ss5, 59) %’316)72/3 = ?éj)fz/s

C(§,1)1/3 =V (sg, 53552 + se(s156 — S255)) P%?lﬁ)m = Kggi)m ® Oc(§’1)1/3(—30 -Ys)
Can, = Vs ) Pty = Kemn,

Constraints for base 3-folds B3 with Kég = 18. See [M.B. Cveti¢ Donagi Liu Ong '21] for exponents of B3 with other Kg3.
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(] F|nd|ng PR is hard [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. "18].

= Try with simple necessary conditions:

Matter curve Cg ‘ Necessary root bundle condition for Pg
e B

a2, =Y (53,5258 + s1(5150 — 5556)) P(%)?;)fl/z - K?(izz)ﬂm ® OC(l,z)fl/Q(—30- Y1)
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o 70 P = 1,

Constraints for base 3-folds B3 with Kég = 18. See [M.B. Cveti¢ Donagi Liu Ong '21] for exponents of B3 with other Kg3.
@ Root bundle constraints highly non-trivial:
Infinitely many line bundles with x = 3 but only finitely many root bundles.
e Must not drop common exponents (x? = 22 % x = 2).
= Agenda: Vector-like spectra of the QSMs from studying root bundles.
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What is known about root bundles?

o Natural to physics: Spin bundle S satisfies S = K.
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o There are exactly r?& solutions P*® to (P*)" = T*.
e Theory: Explicit description from bi-weighted graphs. [caporaso Casagrande Cornalba '04]
e Practice: Combinatoric challenging — often doable.

Refined idea

Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.
© How does the combinatorics work?

@ How do we get nodal matter curves in the QSMs?
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Example: Spin bundles on simple nodal curve

e Nodal curve: Two Pls — C;,Co — meeting in two nodal singularities.
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Example: Spin bundles on simple nodal curve

e Nodal curve: Two Pls — C;,Co — meeting in two nodal singularities.

o Adjunction formula: deg(Kcs|¢,)) = —2 + (#nodes on C;) = 0.

@ Procedure:
@ Pick r € Z>, such that r|deg (Kce). For the following example: r = 2.
@ Binary choice for each edge/nodal singularity: Blow it up or keep it.
© At each blown-up edge, place two weights u,v € {1,2,...,r — 1}.
© Check certain conditions. (Details on the next slide.)
= Torsion-free, non locally-free sheaves P* with (P*)®" = K.
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Example: Spin bundles on simple nodal curve

Smooth g =1 curve Nodal curve C*®

h° of spin bundle P Limit root P* h®  Multiplicity
1 . b
0 + Deformation — @.0 1 pu=r1r=2
0 . b
0 < Deformation — @ @ 0 pu=rr=2

Upper semi-continuity
ho(C*, P*) > h°(C, P)
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Ph”OSOphy Local, bOttO m-u p . « « [M.B. Cveti¢ Donagi Liu Ong '21], [M.B. Cveti¢ Liu "21], [M.B. Cveti¢ Donagi Ong '22]

(1,2)_1/2 (3,1)-2/3
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Philosophy: Local, bottom-up and FRST invariant

[M.B. Cveti¢ Donagi Liu Ong '21], [M.B. Cveti¢ Liu '21], [M.B. Cveti¢ Donagi Ong '22]

Advantage: Triangulation invariant estimate of VL spectra for huge families of QSMs

N\ A— .
7 . \ fine regular star
__\ triangulations

N g

Family B3(A°)
of toric F-theory
base 3-folds

-

Same nodal
matter curve Cg
VXs € B3(A°)

[Kreuzer Skarke '98], [Klevers Pefia Oehlmann Piragua Reuter '14], [Cveti¢ Klevers Pefia Oehlmann Reuter '15], [Cveti¢ Lin Liu Oehlmann "18],

[Cveti¢ Halverson Lin Liu Tian '19], ..
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[M.B. Cveti¢ Donagi Liu Ong '21], [M.B. Cveti¢ Liu '21], [M.B. Cveti¢ Donagi Ong '22]

Advantage: Triangulation invariant estimate of VL spectra for huge families of QSMs

B Ao Family B3(A°) . Same nodal

. _— -—— o
/ .\\ PR of toric F-theory matter curve Cg
&7 \ © restiar base 3-folds VXs € B3(A°)
k triangulations

[Kreuzer Skarke '98], [Klevers Pefia Oehlmann Piragua Reuter '14], [Cveti¢ Klevers Pefia Oehlmann Reuter '15], [Cveti¢ Lin Liu Oehlmann '18],

[Cveti¢ Halverson Lin Liu Tian '19], ..

Interlude: Computer algebra systems

@ Triangulations in [M.B. Cveti¢ Donagi Ong '22| done with the modern computer
algebra system OSCAR, which — due to the use of the Julia programming
language — is expected to be very performant.

@ For fast triangulations, also look at CY-Tools [Liam McAllister group], which
hopefully can be available via 0SCAR soon.
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Towards “good” physical roots

(Naive) Brill-Noether theory for root bundles

Discriminate the r?& limit roots P* with (P*)®" = T according to h°(C®, P*):
r2g:N0+N1+N2+..., (1)

where N; is the number of limit roots with h°(C®, P®) = i.
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Towards “good” physical roots
(Naive) Brill-Noether theory for root bundles

Discriminate the r?8 limit roots P* with (P*)®" = T according to h°(C®, P*):
r2g:N0+N1+N2+..., (1)

where N; is the number of limit roots with h°(C®, P®) = i.

Current standing

@ Systematic answer unknown (to my knowledge).
e For sufficiently simple setups can count N;, but:

o Ignorance: Currently, we can sometimes only compute a lower bound to A°.
o Jumping circuits: h° can jump if nodes are specially aligned. [vB. cueti¢ Donagi Ong 22]
= Denote the number of these cases by N;.

I’2g: (K/o—{—ﬂ/zo) + (N1+KI21) + ..., (2)
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Brill-Noether numbers of (3, 2); /6 in QSMs with W3B3 =6

@ First estimates computed in [M.B. Cveti¢ Liu "21]:
e count “simple” root bundles with minimal o,
e no estimate for N>;.

QSM-family (KS polytope) # FRSTs H =3 >3m0 =4 R >4

A3 ~ 10 | 57.3% ? ? ?
A ~10" | 53.6% 2 ? ?
A3, ~ 1010 || 48.7% ? ? ?
Afyg Afsg, Afze Ad3e ~ 10 || 42.0% ? ? ?

Martin Bies 14 /18



Brill-Noether numbers of (3, 2); /6 in QSMs with W3B3 =6

o Refinements/extensions in [M.B. Cveti¢ Donagi Ong '22]:

e count all root bundles,
e discriminate via line bundle cohomology on rational tree-like nodal curves.

QSM-family (KS polytope) # FRSTs H =3 hn >3 ‘ =4 R >4

Ag ~101% | 76.4% 23.6%

A ~ 101 | 99.0% 1.0%
A3, ~ 101 |1 99.8% 0.2%

Alog, Alzg, Alzer D36 ~ 10! 99.9% 0.1%

Martin Bies 14 /18




Can we do better for B3(Ag)? The 1% contains . ..

@ Stationary circuits with h® = 3:
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Can we do better for B3(Ag)? The 1% contains . ..

@ Stationary circuits with h® = 3:

e Jumping circuit with h® = 4:

& g ®

Mistake in first preprint [M.B. Cveti¢ Donagi Ong '22]

o We wrongly computed h° for the jumping circuit. Correction on the ArXiV.
= B3(A3): 99.995% of solutions to necessary root bundle constraint have h° = 3.
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3
83 = ].0 [M.B. Cveti¢ Donagi Ong '22]

Brill-Noether numbers of (3, 2); /6 in QSMs with

QSM-family (polytope) | ® =3 h° >3 | K0 =4 M >4|H=5 P>5|HL=6 N=>6

A 749 221 | 25 05 | 00 00
NSy, 824 141 | 31 04 | 00
Dgrr N 781 180 | 34 05 | 00 00
Aggr 738 219 | 35 07 | 00 00
DSeg Doz, Ddior Ao | 770 179 | 44 07 | 00 00
ASss 959 05 | 35 00 | 00 00
A3, 953 07 | 39 00 | 00 00
Ay 959 05 | 35 00 | 00
Algs 948 03 | 48 00 | 00 00
A%, 948 03 | 49 00 | 00 00
N 948 03 | 48 00 | 00 00 | 00
A% 947 03 | 50 00 | 00 00
ASg 946 03 | 50 00 | 00 00
AYrr Diog, Dgs 934 02 | 62 00 | 01 0.0
A 937 00 | 62 00 | 01 0.0
Dggr Ags 934 03 | 62 00 | 01 00 | 00
AS340 923 00 | 76 00 | 01 0.0
Algro 923 00 | 75 00 | 01 0.0
Az 909 00 | 89 00 | 02 0.0
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Summary and outlook

o Statistical observation:
In QSMs, absence of vector-like exotics in (3,2)1/6, (3,1)_2/3, (1,1); likely,
but ...

o Sufficient condition for quantization of G-flux? [Jefferson Taylor Turner 21].
e F-theory gauge potential

@ may select (proper) subset of these root bundles,
o lead to correlated choices on distinct matter curves.

@ Vector-like spectra on Cg “upper bound” to those on Cg.
<> Understand “drops” from Yukawa interactions? [cueti Lin Liu Zhang Zoccarato '19]
— Towards the Higgs ...
@ Brill-Noether numbers on Higgs curve currently computationally too challenging.

o Need Brill-Noether theory for root bundles on nodal curves.
Map from (dual) graphs (and a couple of integers) to Brill-Noether numbers.
<> Arena for machine learning?

— Probability /statistics for F-theory setups to arise without vector-like exotics.
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Thank you for your attention!

L
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