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Motivation, goal, challenge and tool
Motivation

Go beyond chiral spectrum of SM constructions. [Talk by W. Taylor and K. Li]

⇒ For MSSM, need one massless vector-like pair to accommodate the Higgs.

F-theory is cool. [Talk by W. Taylor]

⇒ Quadrillion F-theory standard models (QSMs). [Cvetič Halverson Lin Liu Tian ’19]

Goal of this talk:
Compute vector-like spectra in reps. (3, 2)1/6, (3, 1)−2/3, (1, 1)1 of F-theory QSMs.

Challenge
In global F-theory compactifications, vector-like spectra are non-topological.
[M.B. Mayrhofer Pehle Weigand ’14], [M.B. Mayrhofer Weigand ’17], [M.B. Mayrhofer Weigand ’18]

Tool
Root bundles (genearlizations of spin bundles) on nodal curves.
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Chiral and desired vector-like spectra in the QSMs

Matter curve CR
nR = # chiral # nR = chiral Chiral index
fields in rep R fields in rep R χ = nR − nR

C(3,2)1/6 = V (s3, s9)

3 0 3

C(1,2)−1/2 =

4 1 3

V
(
s3, s2s2

5 + s1(s1s9 − s5s6)
)

(4, 1) = (3, 0) ⊕ (1, 1) = leptons + Higgs

C(3,1)−2/3
= V (s5, s9)

3 0 3

C(3,1)1/3
=

3 0 3

V
(
s9, s3s2

5 + s6(s1s6 − s2s5)
)

C(1,1)1 = V (s1, s5)

3 0 3

How to compute?

h0(CR, LR) h1(CR, LR) χ = deg (LR) − g (CR) + 1
[M.B. Mayrhofer Pehle Weigand ’14], [M.B. Mayrhofer Weigand ’17] χ =

∫
SR

G4 = 3

[M.B. ’18] and references therein [Cvetič Halverson Lin Liu Tian ’19]
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Necessary condition for L: Root bundle constraints [M.B. Cvetič Donagi Liu Ong ’21]

Matter curve CR Necessary root bundle condition for LR

C(3,2)1/6 = V (s3, s9) L⊗36
(3,2)1/6

= K⊗24
C(3,2)1/6

C(1,2)−1/2 = V
(
s3, s2s2

5 + s1(s1s9 − s5s6)
)

L⊗36
(1,2)−1/2

= K⊗22
C(1,2)−1/2

⊗ OC(1,2)−1/2
(−30 · Y1)

C(3,1)−2/3
= V (s5, s9) L⊗36

(3,1)−2/3
= K⊗24

C(3,1)−2/3

C(3,1)1/3
= V

(
s9, s3s2

5 + s6(s1s6 − s2s5)
)

L⊗36
(3,1)1/3

= K⊗22
C(3,1)1/3

⊗ OC(3,1)1/3
(−30 · Y3)

C(1,1)1 = V (s1, s5) L⊗36
(1,1)1

= K⊗24
C(1,1)1

Exponents of root bundle constraints for base 3-folds B3 with K3
B3

= 18. See [M.B. Cvetič Donagi Liu Ong ’21] for exponents of B3 with other K3
B3

.

Constraints highly non-trivial:
Infinitely many line bundles with χ = 3 but only finitely many root bundles.
Must not drop common exponents (x2 = 22 ̸⇒ x = 2).

⇒ Agenda: Vector-like spectra of the QSMs from studying root bundles.
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What is known about root bundles?

Natural to physics: Spin bundle S satisfies S2 = KC .

Smooth irreducible curve C of genus g : [Griffiths Harris “Principles of algebraic geometry” ’94]

Fix T ∈ Pic(C), r ∈ Z≥2 with r |deg(T ):
There are exactly r2g line bundles L ∈ Pic(C) with Lr = T .
Theory: Obtain all roots by twist one such L with r -torsion points of Jac(C).
Practice: Tough. Related: Discrete logarithm in Picard group of elliptic curve used for elliptic-curve cryptography).

Nodal curve C• of genus g : [Jarves ’98], [Caporaso Casagrande Cornalba ’04]

Fix T • ∈ Pic(C•), r ∈ Z≥2 with r |deg(T •):
There are exactly r2g solutions to L• ∈ Pic(C•) with (L•)r = T •.
Theory: Explicit description from bi-weighted graphs. [Caporaso Casagrande Cornalba ’04]

Practice: Combinatoric challenging – often doable.

Refined idea
Learn about the vector-like spectra of the QSMs from root bundles on nodal curves.
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Example: Bi-weighted graph encoding limit root
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Philosophy: Local, bottom-up . . . [M.B. Cvetič Donagi Liu Ong ’21], [M.B. Cvetič Liu ’21], [M.B. Cvetič Donagi Ong ’22]

Y1 Y2 Y3

Y4

Y5

Y6

(1, 2)−1/2

(3, 2)1/6

(1, 1)1

(3, 1)1/3

(3, 1)−2/3

Matter curve CR

PR Deformation

Nodal curve C•
R

P•
R

Limit roots

Blow-up curve C◦
R

P◦
R

Pushforward

h0(P◦) = h0(P•)

Upper SC

h0 remains 3
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Philosophy: Local, bottom-up and FRST invariant
[M.B. Cvetič Donagi Liu Ong ’21], [M.B. Cvetič Liu ’21], [M.B. Cvetič Donagi Ong ’22]

Advantage: Triangulation invariant estimate of VL spectra for huge families of QSMs

∆◦

fine regular star
triangulations

Family B3(∆◦)
of toric F-theory

base 3-folds

Same nodal
matter curve C•

R
∀XΣ ∈ B3(∆◦)

[Klevers Peña Oehlmann Piragua Reuter ’14], [Cvetič Klevers Peña Oehlmann Reuter ’15], [Cvetič Lin Liu Oehlmann ’18], [Cvetič Halverson Lin Liu

Tian ’19], . . .

Interlude: Computer algebra systems
Triangulations in [M.B. Cvetič Donagi Ong ’22] done with the modern computer
algebra system OSCAR, which – due to the use of the Julia programming
language – is expected to be very performant.
For fast triangulations, also look at CY-Tools [Liam McAllister group], which
hopefully can be available via OSCAR soon.

Martin Bies 8 / 14
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Towards “good” physical roots
(Naive) Brill-Noether theory for root bundles
Discriminate the r2g line bundles L ∈ Pic(C) with Lr = T according to h0(C , L):

r2g = N0 + N1 + N2 + . . . , (1)

where Ni is the number of those root bundles L with h0(C , L) = i .

Current standing
Systematic answer unknown (to my knowledge).
For sufficiently simple setups can count Ni , but:

Ignorance: Currently, we can sometimes only compute a lower bound to h0.
Jumping circuits: h0 can jump if nodes are specially aligned. [M.B. Cvetič Donagi Ong ’22]

⇒ Denote the number of these cases by Ñ≥i .

r2g =
(
Ñ0 + Ñ≥0

)
+

(
Ñ1 + Ñ≥1

)
+ . . . . (2)
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Brill-Noether numbers of (3, 2)1/6 in QSMs

First estimates computed in [M.B. Cvetič Liu ’21]:
count “simple” root bundles with minimal h0,
no estimate for Ñ≥i .

Refinements/extensions in [M.B. Cvetič Donagi Ong ’22]:
count all root bundles,
discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family (KS polytope) # FRSTs h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4

∆◦
8 ∼ 1015 57.3% ? ? ?

∆◦
4 ∼ 1011 53.6% ? ? ?

∆◦
134 ∼ 1010 48.7% ? ? ?

∆◦
128, ∆◦

130, ∆◦
136, ∆◦

236 ∼ 1011 42.0% ? ? ?
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count all root bundles,
discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family (KS polytope) # FRSTs h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4

∆◦
8 ∼ 1015 76.4% 23.6%

∆◦
4 ∼ 1011 99.0% 1.0%

∆◦
134 ∼ 1010 99.8% 0.2%

∆◦
128, ∆◦

130, ∆◦
136, ∆◦

236 ∼ 1011 99.9% 0.1%
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Can we do better for B3(∆◦
4)? The 1% contains . . .

Stationary circuits with h0 = 3:

h0 = 1 h0 = 2 h0 = 2 h0 = 2 h0 = 3

h0 = 1

h0 = 1

, , . . .

Jumping circuit with h0 = 4:

h0 = 2

h0 = 3

h0 = 3

h0 = 2

Mistake in first preprint [M.B. Cvetič Donagi Ong ’22]
We wrongly computed h0 for the jumping circuit. Correction on the ArXiV.

⇒ B3(∆◦
4): 99.995% of solutions to necessary root bundle constraint have h0 = 3.
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Brill-Noether numbers of (3, 2)1/6 in QSMs [M.B. Cvetič Donagi Ong ’22]

QSM-family (polytope) h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4 h0 = 5 h0 ≥ 5 h0 = 6 h0 ≥ 6

∆◦
88 74.9 22.1 2.5 0.5 0.0 0.0

∆◦
110 82.4 14.1 3.1 0.4 0.0

∆◦
272, ∆◦

274 78.1 18.0 3.4 0.5 0.0 0.0
∆◦

387 73.8 21.9 3.5 0.7 0.0 0.0
∆◦

798, ∆◦
808, ∆◦

810, ∆◦
812 77.0 17.9 4.4 0.7 0.0 0.0

∆◦
254 95.9 0.5 3.5 0.0 0.0 0.0

∆◦
52 95.3 0.7 3.9 0.0 0.0 0.0

∆◦
302 95.9 0.5 3.5 0.0 0.0

∆◦
786 94.8 0.3 4.8 0.0 0.0 0.0

∆◦
762 94.8 0.3 4.9 0.0 0.0 0.0

∆◦
417 94.8 0.3 4.8 0.0 0.0 0.0 0.0

∆◦
838 94.7 0.3 5.0 0.0 0.0 0.0

∆◦
782 94.6 0.3 5.0 0.0 0.0 0.0

∆◦
377, ∆◦

499, ∆◦
503 93.4 0.2 6.2 0.0 0.1 0.0

∆◦
1348 93.7 0.0 6.2 0.0 0.1 0.0

∆◦
882, ∆◦

856 93.4 0.3 6.2 0.0 0.1 0.0 0.0
∆◦

1340 92.3 0.0 7.6 0.0 0.1 0.0
∆◦

1879 92.3 0.0 7.5 0.0 0.1 0.0
∆◦

1384 90.9 0.0 8.9 0.0 0.2 0.0
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Summary and outlook

Statistical observation (cf. [talk by W. Taylor]):
In QSMs, absence of vector-like exotics in (3, 2)1/6, (3, 1)−2/3, (1, 1)1 likely,

but . . .
Sufficient condition for quantization of G4-flux? [Jefferson Taylor Turner ’21].
F-theory gauge potential

may select (proper) subset of these root bundles,
lead to correlated choices on distinct matter curves.

Vector-like spectra on C•
R “upper bound” to those on CR.

↔ Understand “drops” from Yukawa interactions? [Cvetič Lin Liu Zhang Zoccarato ’19]

→ Towards the Higgs . . .
Computationally, Higgs curve currently too challenging.

Need Brill-Noether theory for root bundles on nodal curves.
Map from (dual) graphs (and a couple of integers) to Brill-Noether numbers.
↔ Arena for machine learning? [W.i.p. with R. Hochwert]

Probability/statistics for F-theory setups to arise without vector-like exotics.

Martin Bies 13 / 14



Thank you for your attention!
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