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Cohomologies Of Holomorphic Pullback Line Bundles In Smooth And
Compact Normal Toric Varieties
Both in type IIB orientifold compactifications with D3- and D7-branes as well as in
F-theory model building the need to compute the spectrum of localised zero modes
arises. This task can be formulated as the computation of cohomologies of holomor-
phic pullback line bundles. In this thesis we present the Koszul spectral sequence and
establish it as the optimal way to compute these cohomology groups. In particular we
present a Mathematica notebook that computes a first approximation of the Koszul
spectral sequence. Extending this notebook to compute the entire spectral sequence,
to improve the used algorithms and to apply it to model building is reserved for
future work.

Kohomologien Holomorpher Rückzugsgeradenbündel In Glatten Und
Kompakten Normalen Torischen Varietäten
Sowohl in Type IIB-Orientifold Kompaktifizierungen mit D3- und D7-Branen als auch
im F-Theory Modelbau besteht die Notwendigkeit das Spektrum der lokalisierten
Nullmoden zu berechnen. Diese Aufgabe kann formuliert werden als die Berechnung
der Kohomologiegruppen von holomorphen Rückzugsgeradenbündeln. In dieser Ar-
beit präsentieren wir die Koszul’sche Spektralsequenz und etablieren diese als den op-
timalen Zugang zur Berechnung dieser Kohomologiegruppen. Insbesondere stellen wir
ein Mathematica Notebook vor, welches eine erste Approximation der Koszul’schen
Spektralsequenz berechnet. Die Erweiterung dieser Notebooks zur Bestimmung der
gesammten Spektralsequenz, die Verbesserung der verwendeten Algorithm und die
Anwendung des Notebooks im Modelbau sind für zukünftige Arbeiten vorgesehen.
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A Motivation From Physics
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1. Why Cohomologies Of Pullback
Line Bundles?

1.1. From String Theory To F-Theory
Superstring theory is one of the most promising candidates for a unified description
of the standard model and gravity [1, 2, 3, 4]. In taking superstring theory seriously,
one approach to obtain the standard model from perturbative string theory is to con-
sider heterotic string theory models [5]. Another well understood perturbative string
theory corner is the perturbative type IIA string theory. There one can consider the
setup of intersecting D6-branes in type IIA superstring theory [6, 7, 8, 9]. In these
constructions the standard model gauge group SU (3)×SU (2)×U (1) can be imple-
mented very easily and in the past years many such models have been constructed
[10, 11, 12]. However, to date we are still missing the perfect model describing our
universe from such a construction.
Yet another well understood perturbative string theory corner is type IIB string the-
ory. The latter is very similar to the case of intersecting D6-branes in type IIA in
that the standard model gauge group can be easily implemented in constructions
with D3 and D7 branes on the internal Calabi-Yau space X3 [8, 9, 13]. We denote
the associated orientifold by B3, so that B3 is not a Calabi-Yau manifold in general.
Whilst the gauge group picture is very similar in the type IIA and type IIB con-
struction, there is also a crucial difference - the perturbative description generically
breaks down in the type IIB situation [14]. Consequently one has to turn to non-
perturbative techniques to describe such models. F-theory provides such a means in
that the varying axio-dilaton from the type IIB picture is identified with the complex
structure modulus of an elliptic curve [15, 16, 17, 18]. This elliptic curve is then
fibred over the three complex dimensional internal space B3. Thereby the internal
space X3 is replaced by the elliptically fibred 4-fold Y4 in F-theory.
In conclusion, turning to type IIB for model buidling naturally leads to the study of
elliptic fibrations. A general feature of such fibrations is that they become singular
whenever the fibred elliptic curve degenerates. On a first glance these singularities
might look worrying and one might be tempted to restrict to F-theory models without
singularities to begin with. Surprisingly, the picture is precisely opposite. The singu-
larities of the elliptically fibred internal 4-fold Y4 encode the gauge degrees of freedom
[14]. So focusing on non-singular F-theory models is not an option for model building.
In addition, the singularity structures allow to implement more general gauge groups
than available in type IIB constructions [19, 20, 21, 22]. For example E8 gauge the-
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CHAPTER 1. WHY COHOMOLOGIES OF PULLBACK LINE BUNDLES?

ories can be achieved in this way.
F-theory thus allows to handle non-perturbative type IIB string dynamics and ex-
tends the accessible gauge groups. In particular one can therefore use F-theory for
GUT model building [21, 19, 20, 22, 23]. Thereby one makes use of the fact that
the singularities of the elliptically fibred 4-fold Y4 are in one-to-one correspondance
with the gauge groups along the 7-branes in the type IIB setup, the localised matter
fields at the 7-brane intersection curves as well as the Yukawa interactions between
these localised modes [24, 25, 21, 19, 20]. This makes F-theory an interesting setup
for GUT model building.
In most of the F-theory model building, the ellitpically fibred 4-fold Y4

π→ B3 is re-
quired to admit at least one global section in order to ensure that we can identify B3
with a suitable subset of Y4

1. This restricts the elliptic fibration to be of Weierstrass
form up to birational equivalence [27, 28]. Hence the elliptic fibre can be described
as hypersurface in CP231 parametrised by two complex parameters f, g

C (f, g) ∶= {[x, y, z] ∈ CP2,3,1 , y2 − x3 − fxz4 − gz6 = 0} (1.1)

Therefore f and g describe the shape of the elliptic curve. They are related to the
complex strucutre modulus of C (f, g) via a special modular function, termed the
j-invariant [28, 29]

j (τ) = 4 ⋅ (24f)3

∆ (f, g)
(1.2)

In the elliptic fibration, f and g are promoted to global sections of K
⊗4
B3 and K

⊗6
B3 ,

so that they become functions of the coordinates ui of the base space B3. The
singularities of the elliptic fibration are then found to lie over the following set

∆ ∶= {u ∈ B3 , 27g2 (u) + 4f 3 (u) = 0} ⊂ B3 (1.3)

To analyse this singular locus further one has to resolve it. For this reason we require
that a smooth resolution Ŷ4 exists in which the singular fibres are replaced by suitable
chains of CP1s. Over the irreducible components ∆i of ∆, the intersection structure
of the CP1s correspond to an affine Dynkin diagram of an affine Lie algebra gi. Vector
multiplets propagating on ∆i and transforming in the adjoint representation of the
associated Lie group Gi finally encode the gauge and matter degrees of freedom
[14, 30].
Recall that we required B3 to be non-Calabi-Yau. The reason behind this can be
seen as follows. First of all it can be shown that for an elliptic fibration Y4

π→ B3 it
holds [31]

c1 (TY4) ≅ π∗ [c1 (TB3) −∑
i

δi

12
[Γi]] (1.4)

In this expression the Poincaré dual of the irreducible components ∆i of the singu-
larity locus are denoted by [Γi] and the vanishing order of ∆ along ∆i is denoted by

1In [26] F-theory on elliptically fibred 4-folds without such a section is discussed.
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CHAPTER 1. WHY COHOMOLOGIES OF PULLBACK LINE BUNDLES?

δi. Consequently Y4 is a Calabi-Yau manifold precisely if

∑
i

δi [Γi] = 12c1 (TB3) (1.5)

This strongly resembles Tadpole cancellation conditions in type IIB-theory. This
relation can be made more precise [14] and leads to the conclusion that the tad-
pole cancellation conditions from the type IIB picture are reflected in a well-defined
geometry in F-theory. In particular note that if B3 was a Calabi-Yau manifold, i.e.
c1 (TB3) = 0, we would find from Y4 being a Calabi-Yau manifold as well, that ∆ must
not vanish to any order on any irreducible component of B3. This in turn would lead
only to trivial gauge dynamics as mentioned above. As the latter is not of interest
for model building, the case that B3 is a Calabi-Yau manifold is to be excluded.
In addition to these gauge symmetries we can enforce additional U (1) gauge symme-
tries. To achieve this let us recall that the elliptic fibration Y4

π→ B3 is required to have
one global section, so that we can identify B3 with a suitable subset of Y4. Suppose
now that we specialise the Weierstrass form of the elliptic fibre further, such as to
ensure the existence of a second global section. Then this additional section gives rise
to a new divisor class of the elliptic fibration. Poincaré duality relates this class to a
(1, 1)-form w. The duality between F - and M -theory [30] finally allows to expand the
3-form potential C3 according to C3 = A∧w+ . . . . In this expression A is identified as
the gauge potential of the new U (1) gauge symmetry [17, 18, 32]. Such constructions
have been studied extensively in F-theory model building [33, 34, 35, 36].
The interest in such constructions is based on the study of the G4-flux associated to
the M-theory 3-form potential C3. This G4-flux should be treated at the same footing
as the field strength in gauge theories. The field strength however does not provide all
data about the gauge theory, rather the gauge field does so. Consequently the ’gauge
field’ for the G4-flux in the F-theory construction is what one should look for. As
proposed in [37] this object should be identified with an algebraic cycle A ∈ Z2 (Y4).
An interesting long term objective is to investigate the validity of this proposal by
applying it to the F-theory model building. To this end the ability to compute
cohomologies of pullback line bundles is needed as we will point out momentarily.

1.2. Gauge Data In Type IIB Orientifold
Compactifications

Before we explain this reasoning further, let us first recall how gauge data is specified
in type IIB orientifold compactifications with stacks of D7-branes. We denote the
holomorphic 4-cycles in X3 that are wrapped by the D7-branes by Di. As pointed
out in [38], the gauge data for such a setup is specified by a family {Fi} of derived
and bounded coherent sheaves on the holomorphic 4-cycles Di. Note also that the
existence of charged open string zero modes with non-zero vacuum expectation value
between the stacks on Di and Dj is reflected in non-trivial sheaf homomorphisms
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CHAPTER 1. WHY COHOMOLOGIES OF PULLBACK LINE BUNDLES?

αij ∶Fi → Fj. To make contact with the Abelian U (1) gauge symmetries described
above, let us simplify this setup by making the following three assumptions.

• αij ≡ 0. This means that all charged open string zero modes between the
D7-branes are massless.

• We restrict to Abelian gauge data.

Given these simplifications one would think that the gauge data is now specified by
holomorphic line bundles Li on the holomorphic 4-cycles. However in [39] it was
shown that this data is incomplete. To illustrate this let us for a moment consider
two D7-brane stacks D1, D2 and holomorphic line bundles L1, L2 on the respective
holomorphic 4-cycles. We assume that D1 and D2 intersect. Then on D1∩D2 we can
consider the holomorphic line bundles L1∣D1∩D2

and L2∣D1∩D2
. The enhanced gauge

theory on the intersection locus would naively be described by L∨1 ∣D1∩D2
⊗ L2∣D1∩D2

.
This however is non-generic and to be more general one would specify how the two
line bundles glue along the intersection D1 ∩D2. This data is provided by a gluing
morphism which is a meromorphic map between L1∣D1∩D2

and L2∣D1∩D2
. Here we

prefer to avoid this subtlety. For this reason we assume that all gluing morphisms
vanish and consequently the above-presented naive picture does apply. For setups
with non-trivial gluing morphisms the interested reader is refered to [40, 41].
In summary, given the above simplifications, the gauge data in a type IIB orientifold
compactification with stacks of D7-branes along holomorphic 4-cycles Di in the com-
pactification space X3 is given by a family {Li} of holomorphic line bundles on the
4-cycles Di. Had we worked with coherent sheaves instead, the localised zero modes
at the intersections Cab =Da ∩Db would be described in the language of Ext groups
[42]. Still the above assumptions pay off a second time, in that this description sim-
plifies to that of cohomology classes of line bundles. By setting Lab = L∨a ∣Cab

⊗ Lb∣Cab

we thus find that massless open strings stretched between Da and Db are counted by

H i (Cab, Lab ⊗
√

KCab
) i = 0, 1 (1.6)

We require Cab to be a compact and connected Riemann surface. As proven in [43]
the spin structures on a compact complex manifold correspond bijectively to the
isomorphism classes of holomorphic line bundles S with S⊗2 ≅ KCab

with KCab
the

canonical bundle of Cab. By use of this non-trivial statement, we can shematically
state that

√
KCab

is a spin bundle on Cab. Unfortunately however, it was also proven
in [43] that on a compact and connected Riemann surface of genus g there are 22g

inequivalent spin structures. This we exemplify in section C.4 where we describe the
4 different spin structures on C1,τ .
In conclusion we have to choose a spin bundle S on Cab. A canonical choice is made
by use of the embedding of Cab ↪ Da [19, pp. 58]. By means of the adjunction
formula [44] it holds

KCab
= KDa ∣Cab

⊗NCab/Da (1.7)
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In addition we have since X3 is a Calabi-Yau manifold

KDa ∣Cab
= (KX3 ⊗OX3 (Da))∣Cab

= OX3 (Da)∣Cab
NCab/Da = OX3 (Db)∣Cab

(1.8)

The Freed-Witten-quantisation condition now ensure that the bundle

L̃ab = O∨X3
(Da)⊗OX3 (Db)⊗OX3 (

1
2
[Da +Db]) (1.9)

is well defined. In conclusion, massless strings between Da and Db are counted by
H i (Cab, L̃ab∣Cab

), i.e. the cohomology classes of a pullback line bundle.
In the mathematics literature there are many very elegant theorems describing coho-
mologies of holomorphic line bundles. For a holomorphic line bundle L on a compact
and connected Riemann surface Mg of genus g, it holds [44]

h0 (Mg,L) − h1 (Mg,L) = deg (L) − 1 + g = ∫
Mg

c1 (L) (1.10)

The first equality is known as the theorem of Riemann and Roch. Apart from
Koidaira vanishing and Serré duality [44] [45] the above result is the most impor-
tant result and can be used to constrain the chiral index of L. This result also shows
that the chiral index is only sensitive to the first Chern class of L. In particular
note that the chiral index cannot tells us the dimension of the individual cohomology
groups H i (L) but only their difference, as we see from the second equality in Equa-
tion 1.10. Still these dimensions count the massless zero modes between the stacks
Da and Db and are what the model builder is really looking for. We conclude that
index theorems are not enough to determine the spectrum at the intersection locus
Cab. Rather additional techniques need to be used.

1.3. Gauge Data In Global Tate-Models In
F-theory

We mentioned already that the singularity structure of Y4
π→ B3 encodes the gauge

data in an F-theory model. Therefore one is interested in studying this singularity
structure in detail. Such an analysis starts locally. Let us be more precise here an
state that this means that for a point p ∈ B3 there exists an open neighbourhood
p ∈ U ⊂ B3 such that for every p̃ ∈ U application of the Tate algorithm allows to
express the Weierstrass polynomial at p̃ as the so-called Tate polynomial [24]

PW (x, y, z, p̃) = x3−y2+xyza1 (p̃)+x2z2a2 (p̃)+yz3a3 (p̃)+xz4a4 (p̃)+z6a6 (p̃) (1.11)

Note that in this expression ai ∈ K
⊗i

B3 (U). So over U the elliptically fibred 4-fold Y4
is obtained by fibering the elliptic curves

C (p̃) = {[x, y, z] ∈ CP231 , PW (x, y, z, p̃) = 0} (1.12)
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CHAPTER 1. WHY COHOMOLOGIES OF PULLBACK LINE BUNDLES?

over U . The advantage of the Tate polynomial is, that from it ∆ ∩ U can be easily
read off. A summary of the so-obtained local singularity classification can be found
in [24, Table 2].
A special class of F-theory models are the so-called global Tate-models. In those
models on describes the fibration Y4

π→ B3 not only locally, but globally by a Tate
polynomial. Then the local classification of singularities gives the global singularity
classification and one can easily read of the gauge degrees of freedom in the model.
Let us exemplify this construction on an SU (5)×U (1)X-model along the hypesurface

S = {p ∈ B3 , w (p) = 0} ⊂ B3 (1.13)

where w is a holomorphic function. To obtain such a model, which is also refered to
as a U (1)-restricted model, we now take the sections ai ∈K

⊗i

B3 to have the following
form [32, 46]

a2 = a2,1 ⋅w, a3 = a3,2 ⋅w, a4 = a4,3 ⋅w, a6 ≡ 0 (1.14)

and require that a2,1, a3,2 and a4,3 are not divisiable by w in the ring OB3 (B3). Given
this setup we consider the following curves.

• C10 ∶= {p ∈ B3 , w (p) = a1 (p) = 0}

• C5m ∶= {p ∈ B3 , w (p) = a3,2 (p) = 0}

• C5H ∶= {p ∈ B3 , w (p) = a4,3 (p) ⋅ a1 (p) − a3,2 (p)a2,1 (p) = 0}

Due to the gauge enhancement new matter transforming in the 10, 5 and 5 represen-
tation appear localised on the curves C10, C5m and C5H [14], which are at the same
time charged under the additional U (1)X symmetry. The above representations of
SU (5) can in turn be split into the following representations of SU (3) × SU (2)

• 10→ (3, 2) + (3, 1) + (1, 1)

• 5→ (3, 1) + (1, 2)

• 5→ (3, 1) + (1, 2)

Those of course quality for interpretation in terms of standard model particles. The
only exception to this statement is the exotic (3, 1). To rule this one out, suitable
fluxes have to be used [30]. We will not discuss this any further but rather focus on
the additional U (1)X symmetry.
This U (1)X-symmetry corresponds to an additional divisor in the elliptic fibration.
Poincaré duality relates this additional divisor to a (1, 1) form w, so that one can
expand the M-theory 3-form potential C3 according to C3 = A ∧ w + . . . . The A
in this expression is then identified as the gauge potential of the additional U (1)X-
symmetry [17, 18, 32]. This U (1)X symmetry can be described by a holomorphic
line bundle L on the GUT [37] and is oftentimes referred to as a G4-flux.
The particles on the C10-curve carry charge −1, those on the C5m-curve charge +3 and
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CHAPTER 1. WHY COHOMOLOGIES OF PULLBACK LINE BUNDLES?

the ones on the C5H-curve charge +2 under the U (1)X-symmetry [47]. Consequently
the cohomologies of L∨∣C10

⊗
√

KC10 count the number of matter states localised on
the C10-curve. Similarly the cohomologies of L⊗3∣C5m

⊗
√

KC5m
count the matter

states along C5m and the cohomologies of L⊗2∣C5H
⊗
√

KC5H
the states along C5H .

Consequently this brings us back to computing pullback cohomologies.
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2. Why Toric Varieties?
In [48] Witten introduced in the context of heterotic string theory a gauged linear
sigma model whose vacuum configurations form toric varieties. This is the most
prominent appearance of toric varieties in physics. For a nice exposition of this ma-
terial the interested reader is refered to [49].
Also type II superstring theories can make use of toric varieties once fluxes are intro-
duced. Then namely one wishes to stabilize the moduli of the theory. To this end
one has to use complex spaces with SU (3) structure, and toric varieties give a nice
means to construct such spaces as outlined in [50].
For our applications however the motivation stemms from the fact that for model
building a lot of computations need to be handled. For example intersection products
have to be computed. On toric varieties the intersection theory is so well-understood,
that it was even implemented in Sage [51] [52].
Before we mention yet another attractive feature about toric varieties let us recall
that an analytic subvariety of Cn is a subset of Cn that is locally cut out by the
vanishing of a finite number of polynomials. In particular the number of polynomials
that locally cut out the subvariety need not be constant. In case it is, one terms
such a variety a pure-dimensional variety. Note that analytic varieties are very gen-
eral and play a crucial role in the local theory of complex spaces, which naively can
be thought of as complex manifolds with singularites. In particular note that all
submanifolds of Cn are smooth analytic varieties. So handeling all submanifolds of
Cn requires the ability to handle all smooth analytic subvarieties, which for most
practial purposes is not the case.
Now let us look at CPn. We pick homogeneous polynomials Q1, . . . , Qn and then
define the associated algebraic variety as the set

C = {p ∈ CPn , Q1 (p) = ⋅ ⋅ ⋅ = Qn (p) = 0} (2.1)

Chow’s theorem now tells us that in fact any analytic subvariety of CPn is an algebraic
subvariety. This is a major simplification and should be contrasted to the case of Cn.
And this result even generalises to simplicial toric varieties, which includes smooth
and compact toric varieties, i.e. those toric varieties that we will focus on during the
major part of this thesis [52]. So we conclude the following.

Let XΣ a smooth and compact normal toric variety and C ⊂XΣ a manifold.
Then there exist a finite number of homogeneous polynomials Q1, . . . , Qn on
XΣ such that

C = {p ∈XΣ , Q1 (p) = ⋅ ⋅ ⋅ = Qn (p) = 0} (2.2)
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CHAPTER 2. WHY TORIC VARIETIES?

This major simplification means that we can even in pratice handle every submanifold
of XΣ

1.
Yet another simplification for the case of smooth and compact normal toric varieties
is that an isomorphism class of line bundles is uniquely specified by its first Chern
class. Physically speaking this means that a U (1) gauge theory on XΣ is uniquely
specified by its field strength. But recall that the first Chern class is only determined
up to C∞-isomorphisms [44]. This freedom allows us to trade C∞-line bundles for
holomorphic line bundles. The latter in turn are much easier to handle than their
smooth counterparts. This in essence follows from the observation that a holomorphic
function is much easier to handle than a smooth function. In particular this means
that the computation of cohomology classes simplies considerably. The latter has
been used to implement the computation of cohomology classes of holomorphic line
bundles on XΣ in the cohomCalg algorithm as well as applications thereof [53, 54, 55,
56].
The ability to handle submanifolds, intersection products and cohomology classes
of holomorphic line bundle are all imporant in the model building. As all of those
simplify enourmously on toric varieties, we focus on such spaces.

1More details on this statement are given in section 8.2.
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3. Outline Of This Thesis

3.1. The Content
In this thesis we expect that the reader is familiar with the notion of holomorphic
line bundles, the first Chern class of a holomorphic line bundle, sheaves and coho-
mology of sheaves. In addition basic knowledge about toric varieties is required. For
convience of the reader, we give a discussion of all this material in the appendix.
In Appendix A we discuss the notion of a holomorphic line bundle, its first Chern
class as well as its divisor. To exemplify these notions, we discuss holomorphic line
bundles on special manifolds - in Appendix B on compact and connected Riemann
surfaces and in Appendix C on complex tori Cn/Λ. For the latter we make use of
the Appell-Humbert theorem, which classifies holomorphic line bundles on complex
tori. The complex 2-torus C1,τ is a compact and connected Riemann surface which
is a special complex torus at the same time. Thus we can use the combined power
of both approaches to discuss holomorphic line bundles on C1,τ in a very detailed
fashion. Finally we introduce the topic of toric varieties in Appendix D.
In the actual thesis we then describe the techniques needed to compute the coho-
mologies of pullback line bundles. We restrict on the study of the situation that a
holomorphic line bundle L is given on a smooth and compact normal toric variety
XΣ and then pulled back onto an algebraic submanifold C ⊂XΣ. Note however that
the general techniques can be applied to far more general geometries.
We first discuss the notion of holomorphic line bundles on smooth and compact nor-
mal toric varieties in Part II. This discussion includes computing the cohomology
classes of such line bundles by two means - first we present the classical way of com-
puting line bundle cohomology on toric varieties via chamber counting in section 6.3
and subsequently the modern and fast cohomCalg algorithm in section 6.6.
After that we present the sheaf exact Koszul sequence, which gives us a means of
computing the cohomologies of L∣C from cohomologies of line bundles on XΣ and di-
rect sums thereof. In particular we discuss how this sequence is evaluated by means
of the exactness properties in Part III and point out that exactness is in general not
even enough to only determine the dimension of the cohomology classes of L∣C .
Whilst the evaluation of the Koszul spectral sequence by means of exactness prop-
erties has been implemented in the Koszul extension of cohomCalg [57] [54] and an
algorithm for the evaluation of the generic mappings in direct product of CPn has
been formulated in [58], a computer implementation that evaluates the Koszul spec-
tral sequence by use of the actual mappings and is applicable beyond direct products
of CPn is so-far missing. Here we aim to make one step towards closing this gap.
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CHAPTER 3. OUTLINE OF THIS THESIS

To this end we discuss the Koszul spectral sequence in detail in Part IV. The tech-
nologies presented in this chapter are then implemented in a Mathematica notebook
whose source code is displayed in Appendix E. Details on the implemented function-
ality is given in chapter 15.
We mention that this notebook is so far only able to compute the mappings in the
E1-sheet of the Koszul spectral sequence. Therefore this solves only those cases that
the spectral sequence converges on the E2-sheet. Hence we present a computer im-
plementation which solves the study of pullback cohomologies onto hypersurfaces
completely. Whilst in fortunate cases this analysis can be enough to study pullback
cohomologies onto higher codimension loci, there are cases in which this is not the
case. Thus for those cases a full computer implementation is still missing. Extending
the functionality of the notebook to cover also these cases fully is reserved for future
work.
Finally we put our notebook to a use in a model building teaser in chapter 16. Study-
ing more models by use of our notebook is also reserved to future work.

3.2. How To Read This Thesis
The core of this thesis is to investigate the following purely mathematical question.

Given a smooth and compact normal toric variety XΣ, L a holomorphic line
bundle on XΣ and an algebraic submanifold C ⊂XΣ defined as the common
zero locus of a finite number of polynomials Q1, . . . , Qn in the homogeneous
coordinates of XΣ, how does one compute the pullback cohomologies L∣C?

For this reason we aim at a rigorous mathematical investigation of this question.
Whilst such a rigorous exposition of the material is certainly in favour of a technical
reader, the non-technical reader might find it hard to work through this thesis in a
timely fashion. To bridge this gap we give summaries at the beginning of all parts
and chapters. These summaries give a brief and less-technical presentation of the
material covered in the respective parts and chapters. That said we point out that
there are essentially two ways to read this thesis.

1. The non-technical reader is advised to read the summaries.

2. The technically interested reader however should read everything.

The author hopes that this kind of exposition of the material allows many people to
profit from this thesis.

3.3. Convention
Our main source of reference for toric varieties is [52]. There Cl (XΣ) is used to
denote the divisor class group. We follow this notation whenever we deal with toric
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CHAPTER 3. OUTLINE OF THIS THESIS

varieties. However, when we present material about holomorphic line bundles on
Riemann surfaces and complex tori in the appendix we use Div (X) to denote the
divisor class group on these spaces. The latter is in agreement with the convention
in [44], which is one of our main sources of reference for general background on
holomorphic line bundles.
This convention can be confusing because Div (XΣ) is used for the Weil divisors on
a toric variety, whilst Div (X) is the divisor class group on X. To emphasise this
difference we reserve the symbol XΣ for the rest of this thesis to denote the normal
toric variety associated to the fan Σ. We hope that it will then always be clear from
the context, in what meaning we use these symbols.
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4. Summary
Let us recall that our goal is to answer the following question.

Given a holomorphic line bundle L on a smooth and compact normal toric
variety XΣ and an algebraic submanifold C ⊂ XΣ given as the common
zero locus of a finite number of polynomials Q1, . . . , Qn in the homogeneous
coordinates of XΣ, how does one compute the cohomology classes of L∣C?

This we will achieve by considering the so-called Koszul spectral sequence. This spec-
tral sequence we will present in chapter 12. For the time-being we suffice it to state
that it relates the cohomologies of certain holomorphic line bundles on XΣ with the
cohomologies of L∣C . Consequently our first step is to understand the cohomologies
of holomorphic line bundles on XΣ. This is what we do in this part of the thesis.
The task of understanding these cohomologies we divide into two tasks. First of
all we want to have a nice description for all holomorphic line bundles on XΣ. In
smooth normal toric varieties such a nice description is given by the divisor class
of a holomorphic line bundle. This statement we establish in chapter 5. Secondly,
given this description we want to study the cohomology classes of the corresponding
line bundle. It turns out that if we restrict XΣ to be compact also, the cohomology
classes are finite dimensional vector spaces whose bases can be expressed as certain
rationoms, that is quotients of suitable monomials in the homogeneous coordinates
of XΣ. The latter we describe in chapter 6.
Let us mention that our main source of reference for toric varieties is [52]. In partic-
ular most of the theorems, lemmas, . . . that we present on toric varieties are taken
from there. Whilst we omit the proofs of those statements here in order to give a
brief but precise exposition of the necessary material, the interested reader is refered
to [52] for the proofs and more details.

15/277



5. Divisors On Toric Varieties

5.1. Summary
In this chapter we discuss divisors and establish them as suitable description of
holomorphic line bundles. Therefore we first discuss divisors in section 5.2. A careful
treatment needs to differ prime, Weil and Cartier divisors. Let us first give the rough
picture of prime and Weil divisors.

• A prime divisor of a toric variety X is a special codimension one subvariety of
XΣ.

• Let D1, . . . , Dn prime divisors and a1, . . . , an ∈ Z, then D = ∑n
i=1 aiDi is a Weil

divisor. The set of all Weil divisors we denote by Div (XΣ).

On any toric variety one can consider the rational functions C (X). Given a prime
divisor D ⊂ XΣ one would now like to discuss the vanishing order of f ∈ C∗ (X)
along D. As it turns out this is not possible in just any toric variety, rather the toric
variety has to be well behaved. This well-behavedness is phrased mathematically as
the condition that the local coordinate ring of X is normal [52].
As we point out in Appendix D a normal toric variety X is biholomorphically equiv-
alent to the toric variety of a fan Σ. So to give an example of a non-normal toric
variety we have to consider a toric variety that does not stemm from a fan. A
standard example of a non-normal but irreducible toric variety is the cuspidal cubic
curve

C ∶= V (x3 − y2) = {(x, y) ∈ C2 , x3 − y2 = 0} (5.1)

It can be shown that a curve is non-singular precisely if its coordinate ring is normal.
As it turns out C is singular at the origin.
Whilst for curves singularity and normality are linked quantites, this is not true for
higher dimensional toric varieties. To shed more intuition on the term normal let us
cite from [59] that normality is equivalent to R1 + S2 where

• R1 means that the singular locus has at least codimension two.

• S2 is the so-called ’extension property’ stating, that every function defined on
an open set whose complement is of codimension at least two, extends to the
entire variety.

As special case, we obtain the above-mentioned statement for curves.
To cut things short, we want to avoid such subteties and hence focus on normal toric
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CHAPTER 5. DIVISORS ON TORIC VARIETIES

varieties XΣ. In particular this allows for the following additional divisor construc-
tions.

• Let f ∈ C (XΣ) a rational function on XΣ. Then the vanishing order of f along
prime divisors Di ⊂ XΣ can be discussed. It turns out that there are only
finitely many prime divisors along which the vanishing order ai of f is non-zero.
We then set div (f) = ∑i aiDi and denote the collection of these divisors by
Div0 (XΣ).

• A Weil divisor D = ∑i aiDi which is locally the divisor of a rational function is
a Cartier divisor. Those divisors form CDiv (XΣ).

From the above we find Div0 (XΣ) ⊂ CDiv (XΣ) ⊂ Div (XΣ). This allows to consider

• The class group Cl (XΣ) = Div (XΣ) /Div0 (XΣ). Oftentimes the class group is
refered to as the divisor class group.

• The Picard group Pic (XΣ) = CDiv (XΣ) /Div0 (XΣ). This group describes
holomorphic line bundles on XΣ [44].

So the task that we have set for is to find a map Cl (XΣ) → Pic (XΣ) which is
bijective. On a smooth and normal toric variety XΣ this can indeed be achieved by
the following mapping. Let D ∈ Div (XΣ). Then D gives rise to a divisor class and
also defines an element OXΣ (D) ∈ Pic (XΣ) given by

(OXΣ (D)) (U) ∶= {f ∈ C (XΣ)∗ , div (f)∣U +D ≥ 0} ∪ {0} (5.2)

Note that the above really defines a sheaf, so that for a complete understanding of
the above equation one has to know the sheaf theoretic picture of line bundles. This
construction we describe in Appendix A.
This finally reduces the task of finding a nice description of holomorphic line bundles
on a smooth and normal toric variety XΣ to finding a nice description of the class
group Cl (XΣ). This we explain in section 5.3. To formulate the central result let us
mention that given a fan Σ we can consider its ray generators Σ (1). Moreover note
that the proper definition of XΣ includes the definition of an action of an algebraic
torus T ≅ Ck onto XΣ. As it turns out there are canonical prime divisors associated
to the ray generators ρ ∈ Σ (1) which are torus invariant. These torus invariant Weil
divisors form the group

DivT (XΣ) = ⊕
ρ∈Σ(1)

ZDρ ⊂ Div (XΣ) (5.3)

Now the central result is that the following sequence is exact

0→ Zn α→ DivT (XΣ)→ Cl (XΣ)→ 0 (5.4)

In this expression n is the dimension of the fan Σ. Note that exactness implies

Cl (XΣ) ≅ coker (α) = DivT (XΣ) /im (α) (5.5)
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This gives us a way of computing the class group of XΣ and thereby, given that XΣ is
smooth, even the Picard group. The reader might find it instructive to see the above
in action. To this end we give a few examples at the end of section 5.3 including the
famous result

Z ≅ Cl (CPn) ≅ Pic (CPn) (5.6)

Finally we conclude this chapter by presenting for completeness in section 5.4 that
in analogy to Equation 5.3 there also exists an exact sequence involving the Picard
group. This sequence could therefore be used to compute the Picard group directly.
However, as we focus on smooth normal toric varieties in this thesis, we find it more
comfortable to use the sequence in Equation 5.3 for the computation of the class
group and then to use Cl (XΣ) ≅ Pic (XΣ).

5.2. Prime, Weil and Cartier Divisors

5.2.1. Prime Divisors
Definition 5.2.1 (Prime Divisor):
Let X an irreducible affine, projective or abstract variety. An irreducible subvariety
D ⊂X of codimension 1 is a prime divisor in X.

Remark:
Recall that any toric variety is by definition irreducible. Therefore the above gives
the notion of prime divisors on toric varieties.

Lemma 5.2.1:
Let X a toric variety with coordinate ring C [X]. Then there is the following one-to-
one correspondance.

prime divisors of X ⇔ prime ideals I ⊂ C [X] of codimension 1

Remark:
The notion of dimensionality of rings and ideals is given by the Krull dimension [60].

5.2.2. Weil Divisors
Definition 5.2.2 (Weil Divisor):
Let X a toric variety. Then we define the following.

• Div (X) is the Abelian group generated by the prime divisors on X over Z.

• The elements of Div (X) are termed Weil divisors.

Example 5.2.1:
Cn is a toric variety and we find prime divisors by

Di = V (Xi) = {p ∈ Cn , xi = 0} (5.7)
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since ⟨xi⟩ ⊂ C [x1, . . . , xn] is a prime ideal of codimension 1. Thus D ∶= ∑n
i=1 aiDi with

ai ∈ Z is a Weil divisor.
Definition 5.2.3 (Effective Weil Divisor):
Let X a toric variety and let

D =
n

∑
i=1

aiDi ∈ Div (X) (5.8)

a Weil divisor. Then D is effective precisely if ai ≥ 0 for all i. We denote an effective
divisor by D ≥ 0.
Definition 5.2.4 (Support Of A Weil Divisor):
Let X a toric variety and D = ∑n

i=1 aiDi ∈ Div (X) a Weil divisor. Then we define the
support of D as

Supp (D) ∶= ⋃
ai≠0

Di (5.9)

5.2.3. The divisor Of A Rational Function
Lemma 5.2.2:
Let XΣ a normal toric variety with field of rational functions C (XΣ) and D ⊂ XΣ a
prime divisor. Under these conditions the following holds true:

• There exists a discrete valuation
νD∶C (XΣ)∗ → Z , f ↦ vanishing degree of f along D (5.10)

• It holds νD (f) ≠ 0 only for finitely many prime divisors on XΣ.
Remark:
Note that in the above statement XΣ is required to be normal. Otherwise such a
discrete valuation need not exist. This is the reason why we restrict to normal toric
varieties.
Definition 5.2.5 (Principal Divisor):
Let XΣ a normal toric variety and f ∈ C (XΣ)∗. Then

• div (f) ∶= ∑ νD (f) ⋅D ∈ Div (XΣ) where the sum runs over all prime divisors
D of XΣ.

• Div0 (XΣ) ∶= {div (f) , f ∈ C (XΣ)∗} - this is the set of principal divisors on
XΣ.

• Let D, E ∈ Div (XΣ). Then we define a relation
D ∼ E ⇐⇒ ∃f ∈ C (XΣ)∗ , D = E + div (f) (5.11)

This we term linear equivalence.
Remark:

• Div0 (XΣ) ⊂ Div (XΣ) a subgroup.

• The relation D ∼ E is an equivalence relation.
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5.2.4. Cartier Divisors
Definition 5.2.6 (Cartier Divisor):
Let XΣ a normal toric variety and D ∈ Div (XΣ). D is a Cartier divisor precisely if
f is locally principal.

Remark:
This means that XΣ has an open cover U = {Ui}i∈I such that there exist functions
{fi ∈ C∗ (XΣ) (Ui)} with the property

D∣Ui
= div (fi)∣Ui

∀i ∈ I (5.12)

In particular we then term {Ui, fi}i∈I the local data of D.

Note:

• The Cartier divisors form an Abelian group CDiv (XΣ) which is a subgroup of
the Weil divisors.

• Every principal divisor is a Cartier divisor.

Consequence:
This implies Div0 (XΣ) ⊂ CDiv (XΣ) ⊂ Div (XΣ) where the inclusions mean subgroup
inclusions. Consequently we can make the following definition.

Definition 5.2.7 (Divisor Classes):
Let X a normal toric variety. Then we define

• Cl (XΣ) ∶= Div (XΣ) /Div0 (XΣ) - the class group.

• Pic (XΣ) ∶= CDiv (XΣ) /Div0 (XΣ) - the Picard group.

Consequence:
There is a canonical inclusion Pic (XΣ)↪ Cl (XΣ). Recall that Pic (XΣ) is the set of
all equivalence classes of holomorphic line bundles on XΣ. Therefore the canonical
inclusion Pic (XΣ) ↪ Cl (XΣ) states that one can always associate to a holomorphic
line bundle a divisor class. For our purposes however we want exactly the converse
- namely we want to associate to every divisor class a holomorphic line bundle. To
achieve this we need smoothness as the following lemma shows.

Lemma 5.2.3:
Let XΣ a smooth normal toric variety. Then every Weil divisor on XΣ is a Cartier
divisor.

Example 5.2.2:
Since CPn is smooth and normal, we thus find Pic (CPn) ≅ Cl (CPn).
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5.2.5. Computing Divisor Classes
Note:
Let XΣ a normal toric variety and U ⊂XΣ open and non-empty. Then

⋅∣U ∶Cl (XΣ)→ Cl (U) , [D]↦ [D∣U] (5.13)

is a well-defined mapping.

Theorem 5.2.1:
Let XΣ a normal toric variety, U ⊂XΣ open and non-empty. Moreover let D1, . . . , Ds

the irreducible components of XΣ −U . Note that those are prime divisors. Then the
following sequence is exact.

s

⊕
j=1

ZDj → Cl (XΣ)→ Cl (U)→ 0 (5.14)

Example 5.2.3:
Recall that CP1 ≅ C ∪ {∞}. With the topology of the Riemann sphere, the set
{∞} ⊂ CP1 is open and an irreducible subvariety of CP1. Consequently we have the
exact sequence

Z{∞} f→ Cl (CP1)→ Cl (Cn)→ 0 (5.15)
But Cl (Cn) = 0 since Cn is a UFD. Thus we have the exact sequence

Z{∞} f→ Cl (CP1)→ 0→ 0 (5.16)

So by exactness the map f is surjective. But note that f is explicitely given by

f (a{∞})↦ [a ⋅ {∞}] (5.17)

This shows that f is injective also. To see this let g ∈ C (CP1) with

a ⋅ {∞} = div (g)⇒ div (g)∣C = 0⇒ g is constant⇒ a = 0 (5.18)

where we used that g is continous. Consequently Cl (CP1) ≅ Z.

5.2.6. Sheaves Of OX-Modules On Toric Varieties
Remark:
Let XΣ a normal toric variety and U ⊂XΣ open. Then the sheaf OXΣ is defined by

OXΣ (U) = {f ∈ C (XΣ)∗ , div (f)∣U ≥ 0} ∪ {0} (5.19)

Remark (Generalisation):
Let XΣ a normal toric variety and D ∈ Div (XΣ). Then we can define a sheaf OXΣ (D)
by

(OXΣ (D)) (U) = {f ∈ C (XΣ)∗ , div (f)∣U +D ≥ 0} ∪ {0} (5.20)
for U ⊂X open.
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Note:
This definition coincides with the sheaf-theoretic notion of a holomorphic line bundle
associated to a divisor D that we give in section A.6 in more general setups.

Lemma 5.2.4:
Let XΣ a normal toric variety and D ∈ Div (XΣ) a Weil divisor. Then OXΣ (D) is a
coherent sheaf of OXΣ-modules. If in addition D ∈ CDiv (XΣ), then OXΣ (D) is even
invertible.

Lemma 5.2.5:
Let XΣ a normal toric variety and D, E ∈ Div (XΣ). Then OXΣ (D) ≅ OXΣ (E)
precisely if D ∼ E.

5.3. Computing The Class Group

5.3.1. The Divisor Of A Character
Remark:

• Recall that a toric variety X contains an algebraic torus (C∗)n as Zariski open
subset. We will denote this torus by T . In particular note that the self-action
of T extends to a T -action on X. This then also gives the notion of T -invariant
subsets of X.

• For normal toric varieties XΣ, there is the cone-orbit correspondance

k-dim cones σ ∈ Σ⇔ (n − k)-dimensional T -orbits in XΣ (5.21)

• Let ρ ∈ Σ (1) a ray of a fan Σ. Then by the above there exists a codimension
one orbit O (ρ) ⊂XΣ.

• More information no characters and 1-parameters is presented in subsection D.2.2.

Lemma 5.3.1:
Let XΣ a normal toric variety, ρ ∈ Σ (1) and O (ρ) the associated codimension one
orbit. Then O (ρ) is a T -invariant prime divisor on XΣ.

Lemma 5.3.2:
Let XΣ a normal toric variety with fan Σ in Rn and Dρ ∈ Div (XΣ) for ρ ∈ Σ (1). We
denote the primitive element of ρ by uρ ∈ Zn. Now let m ∈ Zn. Then it holds

νDρ (χm) = ⟨m, uρ⟩ (5.22)

Theorem 5.3.1:
The character χm is a rational function on a smooth and compact normal toric variety
XΣ and its divisor is given by

div (χm) = ∑
ρ∈Σ(1)

⟨m, uρ⟩ ⋅Dρ (5.23)
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5.3.2. Exact Sequences For the Class Group
Definition 5.3.1:
The set of torus invariant Weil divisors on XΣ forms a group given by

DivT (XΣ) = ⊕
ρ∈Σ(1)

ZDρ ⊂ Div (XΣ) (5.24)

Theorem 5.3.2:
Let XΣ the normal toric variety of the fan Σ in Rn. Then the following holds true.

• The following sequence is exact

Zn →DivT (XΣ)→ Cl (XΣ)→ 0
m↦div (χm)

∑
ρ∈Σ(1)

aρDρ ↦
⎡⎢⎢⎢⎢⎣
∑

ρ∈Σ(1)
aρDρ

⎤⎥⎥⎥⎥⎦

(5.25)

• If and only if {uρ , ρ ∈ Σ (1)} is a basis of Rn (i.e. precisely if XΣ has no torus
factors), then even the following sequence is exact

0→ Zn →DivT (XΣ)→ Cl (XΣ)→ 0
m↦div (χm)

∑
ρ∈Σ(1)

aρDρ ↦
⎡⎢⎢⎢⎢⎣
∑

ρ∈Σ(1)
aρDρ

⎤⎥⎥⎥⎥⎦

(5.26)

Consequence:

• Cl (XΣ) is a finitely generated Abelian group.

• As any smooth and compact normal toric variety XΣ has no torus factors, for
such toric varieties the second sequence is always exact.

5.3.3. Examples
Remark:

• The rays of Σ are listed as ρ1, . . . , ρr and the corresponding ray generators are
denoted by u1, . . . , ur ∈ Zn. In particular we have

ui = (⟨e1, ui⟩ , . . . , ⟨en, ui⟩)T (5.27)

• Consequently we can represent the map A∶Zn → DivT (XΣ) as

A∶Zn → Zr ,
⎛
⎜
⎝

x1
⋮

xn

⎞
⎟
⎠
↦
⎛
⎜
⎝

⟨e1, u1⟩ . . . ⟨en, u1⟩
⋮ ⋱ ⋮

⟨e1, ur⟩ . . . ⟨en, ur⟩

⎞
⎟
⎠
⋅
⎛
⎜
⎝

x1
⋮

xn

⎞
⎟
⎠

(5.28)
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Then by noting that all the maps in the above exact sequence can be considered
as vector space homomorphism, one easily deduces

Cl (XΣ) ≅ coker (A) = Zr/im (A) (5.29)

• Whenever we want to think in terms of divisors, we set Di to be the torus-
invariant prime divisor associated to ρi via the cone-orbit correspondance. 1

Example 5.3.1:
Consider the fan Σ in R2 of Bl0 (C2). This fan Σ has ray generators

u0 = e1 + e2, u1 = e1, u2 = e2 (5.30)

Then one easily finds

0 = [div (χe1)] = [D1] + [D0] , 0 = [div (χe2)] = [D2] + [D0] (5.31)

Thus Cl (XΣ) is generated by [D0] which gives us

Cl (XΣ) ≅ Z (5.32)

Alternatively one can evaluate the image of the map A∶Z2 → DivT (XΣ) ≅ Z3 which
in this case is given by the matrix

A =
⎛
⎜
⎝

1 0
0 1
1 1

⎞
⎟
⎠

(5.33)

Then it follows easily that im (A) ≅ Z2 and thus

Cl (XΣ) ≅ Z3/Z2 ≅ Z (5.34)

Example 5.3.2 (Complex Projective Space):
CPn has a fan Σ in Rn with ray generators

u0 = −e1 − ⋅ ⋅ ⋅ − en, u1 = e1, . . . , un = en (5.35)

Now we pursue the above mentioned two approaches.

1. The map A∶Zn → DivT (CPn) ≅ Zn+1 is given by the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1 −1 . . . −1
1 0 . . . 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(5.36)

Its image is easily found to be Zn, so that

Cl (CPn) ≅ Zn+1/Zn ≅ Z (5.37)
1By means of the homogenisation of the smooth and compact normal toric variety XΣ one can

identify those divisors Di with the sets {xi = 0} ⊂XΣ.

24/277



CHAPTER 5. DIVISORS ON TORIC VARIETIES

2. From 0 = [div (χei)] it can be found
D0 ∼Di ∀1 ≤ i ≤ n (5.38)

Thus Cl (CPn) is generated by [D0] which gives us the above result.

5.4. Computing The Picard Group
Note:
Every Cartier divisor D ∈ CDiv (XΣ) is a Weil divisor. Thus there exist ai ∈ Z such
that D ∼ ∑

ρ∈Σ(1)
aρ ⋅Dρ. Those coefficients ai might however be very special. This

motivates the following definition.
Definition 5.4.1:
Let XΣ the normal toric variety associated to the fan Σ in Rn. Then we denote by
CDivT (XΣ) ⊂ DivT (XΣ) the Abelian group of T -invariant Cartier divisors.
Remark:
div (χm) ∈ CDivT (XΣ) for all m ∈ Zn.
Theorem 5.4.1:
Let XΣ the normal toric variety associated to the fan Σ in Rn. Then the following
sequence is exact

Zn → CDivT (XΣ)→ Pic (XΣ)→ 0 (5.39)
where m ∈ Zn ↦ div (χm).
Given that XΣ has no torus factors, even the following sequence is exact

0→ Zn → CDivT (XΣ)→ Pic (XΣ)→ 0 (5.40)
Note:
In order to evalute the above sequence and thereby compute Pic (XΣ) one needs to
understand CDivT (XΣ) first. But recall that we will eventually focus on smooth
and compact normal toric varieties. Then the following lemma gives us a means to
compute the Picard group.
Lemma 5.4.1:
Let XΣ be the normal toric variety of a fan Σ. Then the following three statements
are equivalent.

• Every Weil divisor on XΣ is a Cartier divisor.

• Pic (XΣ) = Cl (XΣ).

• XΣ is smooth.
Consequence:
We computed the class group for CPn in the previous section to be isomorphic to Z.
Since CPn is smooth, we thus conclude

Pic (CPn) ≅ Z (5.41)
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6. Line Bundle Cohomology On
Toric Varieties

6.1. Summary
In this chapter we turn to computing cohomologies of holomorphic line bundles on
toric varieties. However before we do so, let us briefly recall the description that we
found for holomorphic line bundles in the previous chapter.
First of all recall that we learned that for ’well-behavedness’ we should restrict to
normal toric varieties XΣ. Consequently we can consider the ray generators Σ (1) of
the fan Σ. Via the so-called cone-orbit-correspondance [52] a ray generator ρ ∈ Σ (1)
is then one-to-one to a torus-invariant prime divisor Dρ ∈ Div (XΣ). Now let

D = ∑
ρ∈Σ(1)

aρDρinDivT (XΣ) (6.1)

Then this divisor induces a holomorphic line bundle OXΣ (D) which is defined sheaf-
theoretically as

(OXΣ (D)) (U) = {f ∈ C∗ (XΣ) , div (f) +D ≥ 0} ∪ {0} (6.2)

for U ⊂ XΣ open. Now assume that D̃ ∈ DivT (XΣ) is a divisor which differs from D
via and element in the image of

f ∶Zn → DivT (XΣ) (6.3)

Then by the result from the previous chapter OXΣ (D) ≅ OXΣ (D̃) and we should
consequently identify these two line bundles to form a unique element in Pic (XΣ).
Also we should identify D and D̃ and work with the associated divisor class [D] ∈
Cl (XΣ). Given that XΣ is smooth, we found that every holomorphic lien bundle
can be described as OXΣ (D) for a suitable divisor class [D] ∈ Cl (XΣ). This is the
notation that we will use for holomorphic line bundles.
That said we point out in section 6.2 that the global sections of the sheaf OXΣ (D)
are described by

Γ (XΣ,OXΣ (D)) = ⊕
div(χm)+D≥0

C ⋅ χm = ⊕
m∈Zn∩PD

C ⋅ χm (6.4)

In this expression χm is a so-called character - a special rational function on XΣ.
Details on these functions we give in Appendix D. PD is the so-called polyhedron of
the divisor D given by

PD = {m ∈ Rn , ⟨m, uρ⟩ ≥ −aρ , ∀ρ ∈ Σ (1)} (6.5)
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Note that by the second equality in Equation 6.4 we can compute the dimension of
Γ (XΣ,OXΣ (D)) by counting integral points in PD. It turns out that this polyhedron
is bounded given that XΣ is compact. This leads to the following crucial insight.

Let XΣ a compact normal toric variety and F a coherent sheaf on XΣ. Then
H i (XΣ,F) are finite dimensional vector spaces.

This observation leads on to the classical approach in computing line bundle coho-
mology on smooth and compact normal toric varieties XΣ, which goes by the name
chamber counting. We present this approach in section 6.3 and give examples on
how to apply this approach in examples on the del Pezzo surfaces dP1 and dP3 in
section 6.4 and section 6.5 respectively.
Whilst we will make use of this approach towards the end of this thesis, in what
follows first this approach is far less important than the cohomCalg algorithm. So in
a first reading, the non-technical reader might want to skip reading about chamber
counting completely. For this reason we decide to avoid giving more details on this
construction in this summary, but rather state the crucial result from the cohomCalg
algorithm which we present in section 6.6.
To state this result let us briefly remind us that a smooth and compact normal toric
variety XΣ can be expressed conveniently as

XΣ ≅ (Cr −Z) / (C∗)a (6.6)

which is termed the homogenisation of XΣ. We give details on this construction
in section D.5. This construction identifes equivalence classes of the coordinates of
Cr (minus the exceptional set Z) as the homogeneous coordinates of XΣ. Those we
will denote by x1, . . . , xr in the rest of this thesis. Given this setup, the cohomCalg
algorithm allows to find a basis of the cohomology classes for a given holomorphic
line bundle L on XΣ by quotients of monomials in the homogeneous coordinates of
XΣ [54].
Let us exemplify this statement on a del Pezzo 1 surface dP1. Note that dP1 is a
smooth and compact normal toric variety. We present the toric data of this variety
in subsection 6.4.1. In particular note that

dP1 = (C4 − ⟨x1x2, x3x4⟩) / (C∗)2 (6.7)

with the torus action described in Table 6.1. So in particular there are four homo-
geneous coordinates. To each of these homogeneous coordinates one can associate
a torus invariant prime divisor which we denote by Di. These divisors generate the
group DivT (XΣ) over Z. As we learned previously, to describe the Picard group, we
have to divide out this group by the image of the map

f ∶Z2 → DivT (XΣ) (6.8)

By these means we point out in subsection 6.4.2 that

Pic (dP1) ≅ Z [D1]⊕Z [D4] (6.9)
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This now estabilshes the notation for holomorphic line bundles on dP1. For example
we can consider

L = OdP1 (5 [D1] − 2 [D4]) ≡ OdP1 (5,−2) (6.10)

From the cohomCalg algorithm one can now compute the cohomology classes of this
line bundle. As we point out in section 6.6 these turn out to be as follows

• H0 (dP1,L) = {0}

• H1 (dP1,L) = {a1x6
1

x3x4
+ a2x5

1x2
x3x4

+ a3x4
1x2

2
x3x4

+ a4x3
1x3

2
x3x4

+ a5x2
1x4

2
x3x4

+ a6x1x5
2

x3x4
+ a7x6

2
x3x4

, ai ∈ C}

• H2 (dP1,L) = {0}

So bases of the cohomology classes are indeed quotients of monomials in the homo-
geneous coordinates of dP1 as mentioned before.
We conclude this chapter by pointing out that on smooth and compact normal toric
varieties, the elements of Pic (XΣ) can be described in yet another way. It turns out
that L ∈ Pic (XΣ) is uniquely described by its first Chern class. Physically specaking
this means that every U (1) gauge theory on a smooth and compact normal toric vari-
ety is uniquely specified by its field strength. We give the details on this observation
in section 6.7.

6.2. Global Sections Of The Sheaf Of A
Torus-Invariant Divisor

Remark:
Let XΣ a normal toric variety and D = ∑

ρ∈Σ(1)
aρDρ ∈ DivT (XΣ). Then D defines a

sheaf OXΣ (D) defined sheaf-theoretically via

(OXΣ (D)) (U) = {f ∈ C (XΣ)∗ , div (f)∣U +D ≥ 0} ∪ {0} (6.11)

for U ⊂XΣ open.

Lemma 6.2.1 (Global Sections I):
The global sections of the above sheaf OXΣ (D) are given by

Γ (XΣ,OXΣ (D)) = ⊕
div(χm)+D≥0

C ⋅ χm (6.12)

Note:
Let Σ a fan in Rn, D = ∑

ρ∈Σ(1)
aρDρ ∈ DivT (XΣ) and m ∈ Zn. Then it holds

div (χm) +D ≥ 0 ⇐⇒ ∑
ρ∈Σ(1)

⟨m, uρ⟩Dρ + ∑
ρ∈Σ(1)

aρDρ ≥ 0

⇐⇒ ⟨m, uρ⟩ ≥ −aρ ∀ρ ∈ Σ (1)
(6.13)
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Definition 6.2.1:
Let XΣ the toric variety of the fan Σ in Rn. Then consider D ∈ DivT (XΣ). For this
divisor we define

PD ∶= {m ∈ Rn , ⟨m, uρ⟩ ≥ −aρ for all ρ ∈ Σ (1)} (6.14)

We term PD the polyhedron of the divisor D.

Note:
PD need not be bounded. This we illustrate momentarily.

Consequence (Global Sections II):
Let XΣ the normal toric variety of the fan Σ in Rn and consider D ∈ DivT (XΣ).
Then it holds

Γ (XΣ,OXΣ (D)) = ⊕
m∈PD∩Zn

C ⋅ χm (6.15)

where PD ⊂ Rn is the polyhedron of the divisor D.

Example 6.2.1:
Consider Bl0 (C2) which is given by a fan Σ with ray generators

u0 = e1 + e2, u1 = e1, u2 = e2 (6.16)

We wish to consider D =D0 +D1 +D2 ∈ DivT (XΣ) and its associated sheaf. For this
sheaf we have by the above results

Γ (XΣ,OΣ (D)) = ⊕
m∈PD∩Z2

C ⋅ χm (6.17)

An easy calculation yields

PD = {(
x
y
) ∈ R2 , x ≥ −1, y ≥ −1, x + y ≥ −1} (6.18)

which is not limited. Consequently dimC (Γ (XΣ,OΣ (D))) = ∣PD ∩Z2∣ is infinite.
This is because Bl0 (C2) is not compact, as the following lemma shows.

Lemma 6.2.2:
Let XΣ a compact normal toric variety, i.e. the fan Σ is complete. Then the following
holds true.

• Γ (XΣ,OXΣ) = C since the only morphisms XΣ → C are the constant ones.

• PD is bounded for any D ∈ DivT (XΣ) and Γ (XΣ,OXΣ (D)) is a finite-dimensional
complex vector space.

• For any coherent sheaf F on XΣ, the space Γ (XΣ,F) is a finite dimensional
vector space.

Consequence:
From the first bullet point it follows that every compact normal toric variety is
connected.
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6.3. Line Bundle Cohomology Via Chamber
Counting

Remark (The Affine Open Cover):
Let XΣ a compact and smooth normal toric variety. In the following we will always
cover XΣ by the affine open cover. This cover is given by

U = {Uσ}σ∈Σmax
(6.19)

Lemma 6.3.1:
Let XΣ a smooth and compact normal toric variety. Then for any p ∈ N≥0 and any
D ∈ DivT (XΣ) it holds

Hp (XΣ,OXΣ (D)) = Ȟp (U ,OXΣ (D)) (6.20)

Consequence:
We can replace the harder task of computing sheaf cohomology, by the much easier
task of computing Čech cohomology.

Lemma 6.3.2:
Let XΣ a smooth and compact normal toric variety. Let us consider D ∈ DivT (XΣ).
Then the Čech cochain groups (with respect to the affine open cover U) of the sheaf
OXΣ (D) are given by

Čp (U ,OXΣ (D)) = ⊕
(i0,...,ip)∈[l]p

H0 (Uσi0
∩ ⋅ ⋅ ⋅ ∩Uσip

,OXΣ (D)) (6.21)

If we set σγ ∶= σi0 ∩ ⋅ ⋅ ⋅ ∩ σip ∈ Σ for γ = (i0, . . . , ip) ∈ [l]p, then we can rewrite this
relation more easily as

Čp (U ,OXΣ (D)) = ⊕
γ∈[l]p

H0 (Uσγ ,OXΣ (D)) (6.22)

Remark:
Since Uσ is a normal toric variety for every σ ∈ U , we can apply the results from
section 6.2. If we thus consider D = ∑ρ∈Σ(1) aρDρ ∈ DivT (XΣ), then this observation
gives us

H0 (Uσ,OXΣ (D)) = ⊕
m∈PD(Uσ)

C ⋅ χm (6.23)

where
PD (Uσ) = {m ∈ Rn , ⟨m, uρ⟩ ≥ −aρ ∀ρ ∈ σ (1)} (6.24)

Consequence:
We can thus conclude

Čp (U ,OXΣ (D)) = ⊕
γ∈[l]p

⎛
⎝ ⊕

m∈PD(Uγ)∩Zn

C ⋅ χm
⎞
⎠

(6.25)
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Remark:
Since we require that XΣ is compact, both sums are finite and we can change their
order. Thereby however, computing the Čech cochain groups turns into counting
points on the lattice Zn, where each point constitutes its Laurent monomial as basis
element to the Čech cochain. This computation can be organised by splitting the lat-
tice Zn into regions, called chambers, such that all points in one chamber contribute
to only one cochain group. After this ’chamber counting’ is done, one can finally
evaluate the Čech complex and thereby determine the sheaf cohomology groups. We
will illustrate this approach by computing line bundle cohomology on dP1 and dP3.
Before we give these examples, let us mention that the above description is the clas-
sical way to consider line bundle cohomology on toric varieties. More details on this
picture can be found in [52]. Finally we mention that the chamber counting approach
has been computerised. Details on this can be found in [61].

6.4. Line Bundle Cohomology On dP1 Via
Chamber Counting

6.4.1. The Toric Data Of dP1

Remark:
In the remainder of this thesis we will specify a normal toric variety XΣ by its
homogenisation. To this end we describe the group G ⊂ (C∗)r explicitely. From this
group action we can then determine the ray generators of the fan of Σ. These ray
generators we then triangulate with the program Sage [51] in order to determine all
Stanley-Reisner-ideals ISR ⊂ C [x1, . . . , xn] with Alexander dual irrelevant ideals BXΣ ,
such that we obtain a smooth and compact toric variety

XΣ ≅ (Cn − V (BXΣ)) /G (6.26)

This strategy we also exemplify in this particular example.

Note:
In Table 6.1 we specify a (C∗)2-action on C4. This gives us the group G that we
want to consider. Note that written explicitely we have

G = {(µ, µ, µ + ν, ν) ∈ C4 , µ, ν ∈ C∗} ≅ (C∗)2 (6.27)

Consequence:
Given the group G, we consider a fan Σ in RN with

N =# of homogenous coordinates −# C∗ operations = 4 − 2 = 2 (6.28)

We then obtain the ray generators of Σ as follows.

1. Assign to each homogeneous coordinate xi a vector ui ∈ ZN = Z2.
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homogeneous coordinates Q1 Q2

x1 1 0
x2 1 0
x3 1 1
x4 0 1

Table 6.1.: (C∗)2-action on C4 which for a suitably chosen fan gives a del Pezzo
1-surface dP1.

2. Next impose that these vectors satisfy the following constraints

u1 + u2 + u3 = 0, u3 + u4 = 0 (6.29)

Those conditions originate from the (C∗)2-action in Table 6.1.

3. These equations can be solved by

u1 = (
−1
−1 ) , u2 = (

1
0 ) , u3 = (

0
1 ) , u4 = (

0
−1 ) (6.30)

Note that the solution is not unique.

Remark:
The justification for this procedure originates from the definition of the group G as
given in subsection D.5.1.

Consequence:
Given the above data we can triangulate with Sage [51] to obtain the Stanley-Reisner-
Ideals ISR that yield a smooth and compact normal toric variety XΣ. In this case
there exists a unique such ideal, namely

ISR (XΣ) = ⟨x1x2, x3x4⟩ ⊂ C [x1, x2, x3, x4] (6.31)

6.4.2. The Picard Group
Remark:
Recall that the divisors Di ∶= {p ∈ dP1 , xi = 0} ⊂ dP1 are torus-invariant prime divi-
sors that generate DivT (dP1) over Z.

Note:
Since dP1 is smooth we have the short exact sequence

0→ Z2 f→ DivT (dP1)→ Cl (dP1)→ 0 (6.32)
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In this particular situation the map f takes the form

f ∶Z2 → Z4 , ( x1
x2
)↦
⎛
⎜⎜⎜
⎝

−1 −1
1 0
0 1
0 −1

⎞
⎟⎟⎟
⎠
⋅ ( x1

x2
) (6.33)

This implies im (f) ≅ Z2. By exactness of the above sequence we thus learn

Cl (dP1) ≅ Z4/im (f) ≅ Z2 (6.34)

Remark:
Alternatively, one concludes from

• [0] = [div (χe1)] = − [D1] + [D2]

• [0] = [div (χe2)] = − [D1] + [D3] − [D4]

that Cl (dP1) ≅ Z [D1]⊕Z [D4] ≅ Z2.

Consequence:
Since dP1 is a smooth normal toric variety it holds

Pic (dP1) = Cl (dP1) ≅ Z [D1]⊕Z [D4] (6.35)

Remark:
For a condensed notation we write OdP1 (m, n) for the isomorphism class of holomor-
phic line bundles associated to the divisor class m [D1]⊕ n [D4] ∈ Cl (XΣ).

6.4.3. Example: Cohomologies Of OdP1 (5,−2)
Remark (The Fan):
To begin the chamber counting let us first recall what the fan of dP1 looks like.
Therefore we display this fan in Figure 6.1. Note in particular that the affine open
cover of dP1 does consist of four different open sets. In fact the number of these open
sets is a measure for the effort that it takes to compute the Čech cohomology groups
via the chamber counting approach.

Note:
We now want to compute the cohomologies of the holomorphic line bundles associated
to the divisor class

[D] =
4
∑
i=1

ai [Di] = 5 [D1] + 0 [D2] + 0 [D3] + (−2) [D4] ∈ Cl (dP1) (6.36)

Consequently we have a1 = 5, a2 = a3 = 0 and a4 = −2.
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.... u2.

u3

.

u1

.

u4

.

σ1

.

σ2

.

σ3

.

σ4

Figure 6.1.: The fan of a del Pezzo 1 surface dP1.

Construction 6.4.1 (Chamber Construction):
Recall that

H0 (Uσ,OXΣ (D)) = ⊕
m∈PD(Uσ)∩Z2

C ⋅ χm (6.37)

where
PD (Uσ) = {m ∈ R2 , ⟨m, uρ⟩ ≥ −aρ ∀ρ ∈ σ (1)} (6.38)

Hence we need an efficient way to compute the number of points in the polytopes
PD (Uσ). To this end one introduces the following sets

Lρ = {m ∈ R2 , ⟨m, uρ⟩ + aρ = 0} (6.39)

In the current dP1-situation these sets form lines because the fan Σ lies in R2. In
general though these sets are affine planes.
The lines Li separate the fan Σ of the dP1 into disjoint sets - the so-called chambers.
We illustrate the chambers in Figure 6.2. It is then immediately clear, that there
are only two compact chambers, namely R+++− and R+−+−. One can argue from com-
pactness of dP1 that for the calculation of the Čech cohomology groups on dP1 only
contributions from compact chambers need to be taken into account. Consequently
we can focus on Laurent monomials stemming from R+++− and R+−+−.

Consequence:
Given the chamber decomposition in Figure 6.2, it is not too hard to compute the
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....

L1

. L2.

L3

.

L4

. u2.
u3

.
u1

.
u4

.
R+++−

.

R+−+−

Figure 6.2.: The chambers for the computation of the cohomologies of OdP1 (5,−2).

Čech cochains. Therefore we only state the results and leave it to the interested
reader to confirm these results. We define R ∶= R+++− ∪R+−+−. Then the result reads

Č0 (U ,OdP1 (5,−2)) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⊕
m∈R+++−

C ⋅ χm

⊕
m∈R+++−

C ⋅ χm

0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(6.40)

Č1 (U ,OdP1 (5,−2)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⊕
m∈R+++−

C ⋅ χm

⊕
m∈R

C ⋅ χm

⊕
m∈R

C ⋅ χm

⊕
m∈R

C ⋅ χm

⊕
m∈R

C ⋅ χm

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.41)
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Č2 (U ,OdP1 (5,−2)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⊕
m∈R

C ⋅ χm

⊕
m∈R

C ⋅ χm

⊕
m∈R

C ⋅ χm

⊕
m∈R

C ⋅ χm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.42)

Č3 (U ,OdP1 (5,−2)) = ( ⊕
m∈R

C ⋅ χm
) (6.43)

Note:
To compute the Čech cohomologies of the holomorphic line bundle L = OdP1 (5,−2)
we now consider the Čech complex given by

0→ Č0 (U ,L) f0→ Č1 (U ,L) f1→ Č2 (U ,L) f2→ Č3 (U ,L)→ 0→ 0→ . . . (6.44)

where the mappings fi are given by the following matrices

Mf0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Mf1 =
⎛
⎜⎜⎜
⎝

1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1
0 0 0 1 −1 1

⎞
⎟⎟⎟
⎠

Mf2 = ( −1 1 −1 1 )

(6.45)

Consequence:
Given the previous results, it is now an easy task to compute the cohomology of
the above Čech complex. Again we leave it to the interested reader to confirm the
following results.

• Ȟ0 (U ,L) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0
0
0
0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

≅ {0}

• Ȟ1 (U ,L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
∑

m∈R+−+−
bm ⋅ χm

∑
m∈R+−+−

bm ⋅ χm

∑
m∈R+−+−

bm ⋅ χm

∑
m∈R+−+−

bm ⋅ χm

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, bm ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≅ { ∑
m∈R+−+−

bm ⋅ χm , bm ∈ C}
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homogeneous coordinates Q1 Q2 Q3 Q4

x1 1 0 0 1
x2 1 0 1 0
x3 1 1 0 0
x4 0 1 0 0
x5 0 0 1 0
x6 0 0 0 1

Table 6.2.: (C∗)4-action on C6 which for a suitably chosen fan gives a del Pezzo
3-surface dP3.

• Ȟ2 (U ,L) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0
0
0
0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

≅ {0}

• Ȟ3 (U ,L) = {0}

Note:
By working out the Laurent monomials in the chamber R+−+− explicitely one finds
that Ȟ1 (U ,L) is the following linear span over C

Ȟ1 (U ,L) = ⟨ x6
1

x3x4
,
x2x5

1
x3x4

,
x2

2x
4
1

x3x4
,
x3

2x
3
1

x3x4
,
x4

2x
2
1

x3x4
,
x5

2x1

x3x4
,

x6
2

x3x4
⟩ (6.46)

6.5. Line Bundle Cohomology on dP3 Via
Chamber Counting

6.5.1. The Toric Data
Note:
As discussed in the dP1 example we specify dP3 via the (C∗)4-action displayed in
Table 6.2 and its Stanley-Reisner ideal

ISR = ⟨x1x2, x1x3, x1x6, x2x3, x2x5, x3x4, x4x5, x4x6, x5x6⟩ (6.47)

Consequence:
The ray generators are easily obtained from Table 6.2. This gives

u1 = (
−1
−1 ) , u2 = (

1
0 ) , u3 = (

0
1 ) , (6.48)

u4 = (
0
−1 ) , u5 = (

−1
0 ) , u6 = (

1
1 ) (6.49)
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....

u1

. u2.

u3

.

u4

.u5 .

u6

.

σ1

.

σ2

.

σ3

.

σ4

.

σ5

.

σ6

Figure 6.3.: The fan of a del Pezzo 3 surface dP3.

Together with the Stanley-Reisner-Ideal, this enables us to plot the fan Σ in R2 of
dP3. This fan we depicture in Figure 6.3.

6.5.2. The Picard Group
Note:
It is readily verified that

Pic (dP3) ≅ Z [D1]⊕Z [D2]⊕Z [D3]⊕ [D4] (6.50)

We agree on writing OdP3 (a, b, c, d) for the isomophism class of holomorphic line
bundles associated to the divisor class a [D1] + b [D2] + c [D3] + d [D4] ∈ Cl (dP3).

6.5.3. Example: Cohomologies of OdP3 (−1,−1,−1, 0)
Note:
Our goal is to compute the Čech cohomology groups of OdP3 (−1,−1,−1, 0). Let us
emphasise that now the affine open cover consists of 6 affine toric varieties. Therefore
this calculation is more elaborate than for a dP1.
Construction 6.5.1 (Chamber Decomposition):
To obtain the chamber decomposition we again introduce the sets

Li ∶= {m ∈ R2 , ⟨m, ui⟩ + ai = 0} (6.51)
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....

L1

.

L2

.

L3

. L4.

L5

.

L6

.

u1

. u2.

u3

.

u4

.u5 .

u6

.
R3.

R2

.
R1

.
R4

.
R5

.

R6

Figure 6.4.: The chambers for the computation of the cohomologies of
OdP3 (−1,−1,−1, 0). Note that only the compact chambers are coloured.

These sets separate R2 into the chambers. We picture the chamber decomposition in
Figure 6.4. Note that we only colour the compact chambers.

Consequence:
From the chamber decomposition one easily computes the Čech cochains. Let us set
R ∶= R1 ∪R2 ∪ ⋅ ⋅ ⋅ ∪R6 and agree that in the following equations Ri is to mean the C
vector space spanned by all Laurent monomials in Ri. With this agreement the Čech
cochains for L = OdP3 (−1,−1,−1, 0) can be written as follows

• Č0 (U ,L) = (0, 0, 0, 0, 0, 0)T

• Č1 (U ,L) = (R2 ∪R3 ∪R5, R, R, R, 0, 0, R, R, R, R1 ∪R2 ∪R4, R, R, 0, R, R4 ∪R5 ∪R6)T

• Č2 (U ,L) = (R, R, . . . , R)T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

20 times
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• Č3 (U ,L) = (R, R, . . . , R)T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

15 times

• Č4 (U ,L) = (R, R, R, R)T

• Č5 (U ,L) = (R)

• Čp (U ,L) = 0 for p ≥ 6

Note:
The Čech complex for L is now given by

0→ Č0 (U ,L) f0→ Č1 (U ,L) f1→ Č2 (U ,L) f2→ Č3 (U ,L) f3→ . . . (6.52)

The mapping matrices are dictated by the alternating property of the Čech differential
maps. Explicitely one has

Mf0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
−1 0 0 0 0 1
0 −1 1 0 0 0
0 −1 0 1 0 0
0 −1 0 0 1 0
0 −1 0 0 0 1
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 −1 0 0 1
0 0 0 −1 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.53)
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and

Mf1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 −1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 −1 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 −1 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 −1 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.54)

Consequence:
One finds that Ȟ0 (U ,L) = Ȟ2 (U ,L) = Ȟ3 (U ,L) = {0} whilst

Ȟ1 (U ,L) = ( ⊕
m∈R4∩Z2

C ⋅ χm) ⋅ v1 ⊕ ( ⊕
m∈R2∩Z2

C ⋅ χm) ⋅ v2 (6.55)

where

v1 = (0, 0,−1,−1, 0, 0,−1,−1, 0,−1,−1, 0, 0, 1, 1)T

v2 = (−1,−1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0)T
(6.56)

But since v1 and v2 are linearly indepedent over C we can thus conclude

Ȟ1 (U ,L) ≅ ( ⊕
m∈R4∩Z2

C ⋅ χm)⊕ ( ⊕
m∈R2∩Z2

C ⋅ χm) (6.57)

Remark:
We now come to a crucial point - we have to determine R4 ∩ Z2 and R2 ∩ Z2. To
this end we have to think carefully about the boundaries of R2 and R4 in order to
determine which lattice points are contained in R2 and R4 respectively.
To this end first recall the definition of the polytopes PD (Uσ) as

PD (Uσ) = {m ∈ Z2 , ⟨m, uρ⟩ ≥ −aρ ∀ρ ∈ σ (1)} (6.58)
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where we emphasise the inequality. This inequality needs to be taken care of - in
particular when one defines the chamber decomposition. This is also the reason why
the chambers in Figure 6.2 got termed R+++− and R+−+− respectively.
This notation is made such that a plus indicates that the corresponding line is con-
tained in the chamber, whilst a minus sign signals that it is not. So for example the
line L1 is part of R+++− as well as R+−+− since there is a plus at position one in both
cases. Conversely L2 is only part of R+++− but not of R+−+−.
If one goes through the same analysis in the current calculation on dP3 one finds that

R2 ∩Z2 = R4 ∩Z2 = {0} (6.59)

which corresponds to the Laurent monomial 1
x1x2x3

.

Consequence:
We thus conclude that Ȟ0 (U ,L) = Ȟ2 (U ,L) = Ȟ3 (U ,L) = {0} whilst

Ȟ1 (U ,L) ≅ { a1

x1x2x3
, a1 ∈ C}⊕ {

a2

x1x2x3
, a2 ∈ C} (6.60)

Note:
In this case, there is only a unique Laurent monomial contributing to Ȟ1 (U ,L). Still
the dimension of this cohomology group is two. Such multiplicities are thus impor-
tant and need to be taken care of. We will come back to this important observation
momentarily, when discussing a faster means to compute cohomology groups of holo-
morphic line bundles on smooth and compact normal toric varieties, the cohomCalg
algorithm.

6.6. Line Bundle Cohomology Via cohomCalg

6.6.1. Introduction
For the computation of sheaf cohomology of holomorphic line bundles on smooth
and compact normal toric varieties there exists a fast algorithm that was orginally
proposed in [54] and subsequently proven in [62] and [63]. This algorithm goes by
the name cohomCalg. Its applications are outlined in [55] and [56]. Therefore we will
only briefly state the algorithm and subsequently exemplify its power and speed by
working out the cohomology calculation from the preceeding two examples with the
cohomCalg algorithm. Still, let us emphasis that the chamber counting algorithm
will be anything but useless towards the end of this thesis.

6.6.2. The Algorithm
• Let ISR = {S1, . . . , S∣SR∣} the Stanley-Reisner ideal of XΣ and P (ISR) its power

set (i.e. the set of all subsets of ISR). Then

P (ISR) =
∣ISR∣
⋃
k=0

Pk (ISR) (6.61)
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where Pk (ISR) is the set of all subsets of ISR which are composed of exactly k
subsets of ISR.

• Now let A = {α1, . . . , αk} ⊂ {1, . . . , ∣ISR∣} and consider

P k
A = {Sα1 , . . . , Sαk

} ∈ Pk (ISR) (6.62)

Then define

– Qk
A ∶=

k

⋃
i=1

Sαi
, the set of all homogeneous coordinates in P k

A.

– Nk
A ∶= ∣Qk

A∣ − k, the so-called ’c-degree’.

• For fixed k define
Qk ∶=⋃

A

Qk
A (6.63)

where A runs over all subsets of {1, . . . , ∣SR∣} of lenght k.

• In order to determine to which cohomology group a given set Qk
A does con-

tribute, one follows the following steps:
1. Let ci (Qk

A) be the number of times that Qk
A does appear with c-degree i

in the sets Qk.
2. Then consider the complex 1

⋅ ⋅ ⋅→ 0→ c0 (Qk
A)→ c1 (Qk

A)→ ⋅ ⋅ ⋅→ cd (Qk
A)→ . . . (6.64)

and denote the dimension of its cohomology class at position i by hi (Qk
A).

3. For every hi (Qk
A) ≠ 0 the set Qk

A gives a contribution to H i (XΣ,OXΣ (D))
via

hi (Qk
A) ⋅

T (x)
∏ yi ⋅W (y)

(6.65)

with y ∈ Qk
A and x ∈ H −Qk

A, where T, W are monomials of degrees such
that the above rationom does match the degrees of D under the (C∗)a-
torus action on XΣ.

6.6.3. Example: Cohomologies Of OdP1 (5,−2) On dP1

Data For cohomCalg

We prepare the application of the cohomCalg algorithm by defining the generators
of the Stanley-Reisner-Ideal as

S1 ∶= x1x2, S2 ∶= x3x4 (6.66)
1The meaning and proper definition of these complexes are given in the proofs of the cohom-

Calg algorithm, i.e. in [62] and [63]. We just mention that it is these intermediate coho-
mologies that take care of multiplicities, such as the one encountered in the calculation of
Hi (dP3,OdP3 (−1,−1,−1, 0)) where the single rationom 1

x1x2x3
gave rise to a 2-complex dimen-

sional cohomology class.
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Consequently it holds

P (ISR (XΣ)) = {∅,{S1} ,{S2} ,{S1, S2}} (6.67)

In particular we get

• P 0
0 = {∅} with Q0

0 = ∅

• P 1
1 = {S1} with Q1

1 = {x1, x2}

• P 1
2 = {S2} with Q1

2 = {x3, x4}

• P 2
12 = {S1, S2} with Q2

12 = {x1, x2, x3, x4}

The c-degrees are

N0
0 = 0 − 0 = 0, N1

1 = 2 − 1 = 1, N1
2 = 2 − 1 = 1, N2

12 = 4 − 2 = 2 (6.68)

H0 (dP1,OdP1 (5,−2)):

The only P i
A with c-degree 0 is P 0

0 . Thus only P 0
0 does contribute to H0 (dP1,O (5,−2)).

Consequently only monomials

T (x1, x2, x3, x4) = xa1
1 xa2

2 xa3
3 xa4

4 , ai ≥ 0 (6.69)

with charge (5,−2) contribute. However, inspection of Table 6.1 shows that there
are no monomials with negative charge under Q2. Thus we conclude

H0 (dP1,OdP1 (5,−2)) = {0} (6.70)

H1 (dP1,OdP1 (5,−2)):

Now we have to consider the P i
A with c-degree 1. There are two, namely

P 1
1 = {S1} = {x1x2} , P 1

2 = {S2} = {x3x4} (6.71)

Consequently there are in principle two rationom contributions to this cohomology
group, namely

R(1) =
xa3

3 xa4
4

xa1+1
1 xa2+1

2
, R(2) =

xa1
1 xa2

2

xa3+1
3 xa4+1

4
(6.72)

where ai ∈ Z≥0. Next we impose that these rationoms have to carry charge (5,−2)
under the action of (C∗)2 as given in Table 6.1. This requirement rules out R(1) and
leaves us with

Ȟ1 (U ,L) = {b1
x6

1
x3x4

+ b2
x2x5

1
x3x4

+ b3
x2

2x
4
1

x3x4
+ b4

x3
2x

3
1

x3x4
+ b5

x4
2x

2
1

x3x4
+ b6

x5
2x1

x3x4
+ b7

x6
2

x3x4
} (6.73)

In concluding this we used that S1∩S2 = ∅ implies that all intermediate cohomologies
are trivial.
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H2 (dP1,O (5,−2)):

In this case only P 2
12 has c-degree 2. Imposing that the corresponding rationoms be

of charge (5,−2) rules all of them out. Consequently we have

H2 (dP1,OdP1 (5,−2)) = {0} (6.74)

6.6.4. Example - Cohomologies Of OdP3 (−1,−1,−1, 0) On dP3

This example is worked out in detail in [54]. Hence we can just quote that indeed
one reproduces the result that we obtained from the chamber counting approach.
Note that the multiplicity which we encountered from R2 ∩R4 = {0} is in this com-
putation reflected in the non-trivial intermediate cohomologies stemming from the
fact that in the Stanley-Reisner-ideal of dP3 variables xi appear multiple times. Note
in particular that a deep insight into this interplay has been obtained from the two
proofs of the cohomCalg algorithm in [62] and [63].

6.6.5. Basis Of The Cohomology Groups
Note:
Let us assume that we consider a smooth and compact normal toric variety XΣ
and considered a line bundle L = OXΣ (D) on XΣ for some D ∈ DivT (XΣ). Let us
further assume that the above procedure gave us that H0 (XΣ,L) was spanned by
the rationoms R1, R2, but with mutliplicities 1 and 2 say. Then we could represent
this cohomology class as follows

H0 (XΣ,L) = {α1R1 + α2R2 + α3R2 , αi ∈ C} ≅ C3 (6.75)

The different coefficients α2, α3 ∈ C for R2 indicate that this vector space does contain
the direct sum of two spaces spanned by R2.

Consequence:
Let XΣ a smooth and compact normal toric variety. Then the cohomCalg algorithm
allows for the calculation of a basis of the cohomology classes of all holomorphic line
bundles OXΣ (D) for D ∈ Cl (XΣ).

6.6.6. Computer Implementation
Comment:
The existing cohomCalg software 2 does not return a basis of the cohomology groups
to the user. Rather it either returns the dimension of the cohomology classes or via
the option ’integrated’ an output styled for use in Mathematica. The latter can be
used in order to compute a basis of the cohomology groups in Mathematica. Therefore

2as well as its Koszul extension, that we discuss in the next chapter.
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we have written a Mathematica notebook that performs this task for us. The source
code of an extended version of this notebook is given in Appendix E and explained
in chapter 15.

6.7. The First Chern Class Of Holomorphic Line
Bundles

Remark:
In this section we present the Demazure vanishing theorem, from which we conclude
that holomorphic line bundles on a smooth and compact normal toric variety are
uniquely specified by their first Chern class. To this end we follow closely to [52].

Definition 6.7.1 (Convex Support):
A fan Σ ⊂ Rn such that

• ∣Σ∣ ⊂ Rn is convex

• dimR (∣Σ∣) = n

is said to have convex support.

Consequence:
Any complete fan has convex support.

Definition 6.7.2:
Let XΣ a normal toric variety and D ∈ Div (XΣ) a Weil divisor. Then D is a Q-Cartier
divisor precisely if there exists a ∈ Z such that a ⋅D is a Cartier divisor.

Example 6.7.1:
On any normal toric variety XΣ, the trivial divisor is the divisor of a constant and
non-zero function and thus a Cartier divisor. In particular this implies that the trivial
divisor is a Q-Cartier divisor.

Remark:
The following definition makes use of the intersection product which we do not intro-
duce here. For details the interested reader is refered to [52].

Definition 6.7.3 (Nef Divisor):
Let XΣ a normal toric variety and D a Q-Cartier divisor on XΣ. Then D is nef
precisely if for every irreducible complete curve C ⊂XΣ it holds D ⋅C ≥ 0.

Remark:
Nef is short for numerically efficient.

Lemma 6.7.1 (A Criterion For Nef):
Let XΣ a normal toric variety such that Σ has convex support. Moreover let D a
Q-Cartier divisor on XΣ. Then the following are equivalent.
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• D is nef.

• There exists a ∈ Z>0 such that the holomorphic line bundle OXΣ (a ⋅D) is gen-
erated by its global sections, i.e. is flabby.

Consequence:
Let XΣ a smooth and compact normal toric variety. Then Σ is complete and hence
has convex support. Moreover any compact normal toric variety is connected, i.e.

H0 (XΣ,OXΣ (0)) ≅ C (6.76)

and all holomorphic functions on XΣ are constant functions. Consequently OXΣ (0)
is generated by its global sections. Together with the above lemma, this shows that
the trivial divisor on a smooth and compact normal toric variety is nef.

Theorem 6.7.1 (Demazure vanishing):
Let XΣ a normal toric variety such that ∣Σ∣ is convex and D ∈ Div (XΣ) a Q-Cartier
nef divisor. Then

Hp (XΣ,OXΣ (D)) = 0 ∀p > 0 (6.77)

Consequence:
Let us consider a smooth and compact normal toric variety XΣ. Then Σ is complete,
which shows that ∣Σ∣ is convex. We already argued that the trivial divisor D = 0 on
such a toric variety is a Q-Cartier nef divisor. Consequently we find from Demazure
vanishing

Hp (XΣ,OXΣ) = 0 ∀p > 0 (6.78)
The structure sheaf of a smooth and compact normal toric variety XΣ is hence acyclic.

Consequence:
Let us now consider on a smooth and compact toric variety XΣ the sheaf exact
sequence

0→ Z→ OXΣ → O∗XΣ
→ 0 (6.79)

The associated long exact sequence in sheaf cohomology contains the following part

⋅ ⋅ ⋅→H1 (XΣ,ZXΣ)→H1 (XΣ,OXΣ)→H1 (XΣ,O∗XΣ
)→H2 (XΣ,ZXΣ)→ . . . (6.80)

The preceeding result thus shows that all holomorphic line bundles on a smooth and
compact normal toric variety are uniquely specified by their first Chern class. We
thus conclude.

A U (1) gauge theory on a smooth and compact normal toric variety XΣ is
uniquely specified by the curvature 2-form or equivalently its field strength.

Remark:

• This situation is to be contrasted to complex torus C1,τ , where the structure
sheaf is not acyclic and consequently, as we point out in Appendix C, holomor-
phic line bundles are not uniquely determined by their first Chern class.
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• A different means to find this result is to use that a smooth and compact normal
toric variety is simply connected. As pointed out in [37] this already implies
that holomorphic line bundles are uniquely specified by their first Chern class.

• Finally note that on a smooth and compact normal toric variety XΣ, we have
an isomorphism Cl (XΣ) ≅ Pic (XΣ), so that a holomorphic line bundle is on
the one hand uniquely specified by its first Chern class and on the other hand
by its associated divisor. There are thus two means by which one can specify a
holomorphic line bundle on XΣ and one can also identify them with each other.
Our prefered picture in this thesis will be to specify a holomorphic line bundle
on XΣ by its divisor class.
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7. Summary
In Part II we learned the following.

• How to describe a holomorphic line bundle L on a smooth and compact normal
toric variety XΣ by a divisor class D ∈ Cl (XΣ).

• How to compute the cohomology classes of L.

• That we can think of the cohomology classes of L as spanned over the complex
numbers by quotients of monomials in the homogeneous coordinates of XΣ. Let
us also mention that such quotients are refered to as rationoms.

In this part we now want to consider submanifolds of a smooth and compact normal
toric variety XΣ. A non-trivial statement is, that any such manifold C ⊂ XΣ is an
algebraic submanifold, i.e. of the form

C = {p ∈XΣ , P1 (p) = ⋅ ⋅ ⋅ = Pn (p) = 0} (7.1)

for finitely many homogeneous polynomials P1, . . . , Pn in the homogeneous coordi-
nates of XΣ. This can intuitively be thought of as the generalisation of Chow’s
theorem [64] to toric varieties. We give details on this statement in section 8.2.
Note that the set C as defined above is not guaranteed to be smooth. Rather one
has to pick P1, . . . , Pn such that the so-called variety C is smooth. Then C is an
algebraic submanifold. Let us briefly exemplify that the smoothness condition is
indeed necessary. First consider the algebraic variety given by

C1 = {(x1, x2) ∈ C2 , x1 = 0} (7.2)

This variety C1 is indeed smooth. However the algebraic variety C2 given by

C2 = {(x1, x2) ∈ C2 , x1x2 = 0} (7.3)

is singular at the origin.
Given a smooth and compact normal toric variety XΣ, a holomorphic line bundle L
on XΣ and an algebraic submanifold C of XΣ one can consider the line bundle L∣C .
Sheaf theoretically this line bundle is obtained from the restriction of the sections of
L onto C. Our final task is to compute the cohomologies of L∣C from cohomologies
of suitable line bundles on the ambient space XΣ.
The technology used to perform this calculation is the so-called Koszul sequence. This
sequence we present in chapter 8. A simplified means to evaluate this sequence is by
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use of its exactness property. Unter fortunate circumstances this allows to compute
the dimension of the cohomology classes of L∣C . Still this is not true generally.
We will explain how one evaluates the Koszul sequence by exactness properties in
chapter 9 and also give examples in which exactness is not enough to compute the
cohomologies of L∣C .
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8. The Koszul Resolution

8.1. Summary
For briefness, let us exemplify the Koszul sequence for the case that C is of codimen-
sion 3, as this is the setup that we will encounter in applications to physics most of
the time. So let us consider the following setup.

• L = OXΣ (D) for D ∈ Cl (XΣ).

• s̃1 ∈H0 (XΣ,OXΣ (S1)) a non-trivial polynomial. 1

• s̃2 ∈H0 (XΣ,OXΣ (S2)) a non-trivial polynomial.

• s̃3 ∈H0 (XΣ,OXΣ (S3)) a non-trivial polynomial.

Then we consider

C ∶= {p ∈XΣ , s̃1 (p) = s̃2 (p) = s̃3 (p) = 0} (8.1)

and require that

• C is smooth

• C ⊂XΣ has codimension 3

In this setup the Koszul sequence is then given by

0→ L′ α→ V2
β→ V1

γ→ L rC→ L∣C → 0 (8.2)

where

• L′ = OXΣ (D − S1 − S2 − S3)

• V2 = OXΣ (D − S2 − S3)⊕OXΣ (D − S1 − S3)⊕OXΣ (D − S1 − S2)

• V1 = OXΣ (D − S1)⊕OXΣ (D − S2)⊕OXΣ (D − S3)

1For such a non-trivial polynomial to exist, the divisor class S1 ∈ Cl (XΣ) has to be effective, i.e.
all integer coefficients must be non-negative.
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and the mappings are induced from the following matrices

α =
⎛
⎜
⎝

s̃1
−s̃2
s̃3

⎞
⎟
⎠

, β =
⎛
⎜
⎝

0 −s̃3 −s̃2
−s̃3 0 s̃1
s̃2 s̃1 0

⎞
⎟
⎠

, γ = (s̃1, s̃2, s̃3) (8.3)

Note that rC is the ordinary restriction onto C. We give details on this construction
in section 8.4 and section 8.5.
The crucial point about the Koszul sequence is that this sequence is exact. This
means 2

ker (β) = im (α) , ker (γ) = im (β) , . . . (8.4)

To compute the cohomologies of L∣C from the exactness of the Koszul sequence one
now applies the following three-step procedure.

1. First we apply the so-called splitting principle. This tells us that instead of the
long exact Koszul sequence we can consider the following collection of short
exact sequences.

• 0→ L′ α→ V2 → I1 → 0

• 0→ I1 → V1 → I2 → 0

• 0→ I2 → L→ L∣C → 0

In these expressions the sheaves I1, I2 are quotients of direct sums of holo-
morphic line bundles. The general theory of sheaves tells us that those are in
general no longer vector bundles but coherent sheaves. In particular e.g. the
mapping V2 → I1 is involved. We give more details on this in section A.1 and
section 8.6.

2. Every short exact sequence of sheaves induces a long exact sequence in the
cohomologies of the appearing sheaves. For example the short exact sequence
0→ L′ α→ V2 → I1 → 0 induces the long exact sequence

..

..0 ..H0(X,L′) ..H0(X,V2) ..H0(X,I1)

. ..H1(X,L′) ..H1(X,V2) ..H1(X,I1)

. ..H2(X,L′) ..H2(X,V2) ..H2(X,I1)

. .. . ..

. ..Hn(X,L′) ..Hn(X,V2) ..Hn(X,I1)

.

α0

.

β0

.

δ0

.

α1

.

β1

.
δ1

.α2 . β2.

αn

.

βn

2Let us mention that we actually we mean sheaf exactness. Then e.g. im (α) must be read as the
sheaf image. This construction is non-trivial and we give details in section A.1.
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In particular note that the maps αi are induced from the map α and βi is
induced from β∶V2 → I1. We mentioned already that the mapping β is involved.
Consequently alo the induced maps βi are involved. Consequently we prefer
not to touch them just yet but will come back to this in Part IV.

3. Under fortunate circumstances one can compute from exactness properties of
the above long exact sequence in cohomologies, the cohomologies of I1 from
knowledge about the cohomologies of L′ and V2. The cohomologies of the
latter two can always be computed from the cohomCalg algorithm. So let
us assume that indeed we were able to compute the cohomologies of I1 from
exactness only. Then we would plug these cohomology classes into the long
exact sequence of cohomologies induced from the second short exact sequence

0→ I1 → V1 → I2 → 0 (8.5)

and thereby, under fortunate circumstances, compute the cohomologies of I2
from exactness only. Playing the same game with the third short exact sequence

0→ I2 → L→ L∣C → 0 (8.6)

then allows us to deduce the cohomologies of L∣C from exactness.

Let us emphasis though that exactness is in general not enough to deduce from a
long exact sequence in cohomologies and knowledge about the cohomologies of two
of the three sheaves the cohomologies of the third sheaf. This however can be done
if the mappings in the long exact sequence of cohomologies are known. This we will
explain in Part IV.

8.2. Submanifolds Of Smooth And Compact
Normal Toric Varieties

Remark:
Recall that we are interested in smooth and compact normal toric varieties XΣ. For
such toric varieties we always have

XΣ ≅ (Cr − V (BXΣ)) / (C∗)
a (8.7)

where BXΣ ⊂ C [x1, . . . , xr] is the irrelevant ideal. Note also that C [x1, . . . , xr] to-
gether with the grading induced by the (C∗)a is the total coordinate ring S of XΣ.

Theorem 8.2.1 (Hilbert Basis Theorem [65]):
Let R a commutative, Noetherian ring. Then R [x1, . . . , xn] is also Noetherian.

Consequence:
The coordinate ring S is a Noetherian ring. So every ideal I ⊂ S is finitely generated.
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Definition 8.2.1 (Radical Ideal):
Let I = ⟨p1, . . . , pn⟩ ⊂ S an ideal. Then one defines the radical of I as

√
I ∶= {Q ∈ S , Qn ∈ I for suitable n ∈ N>0} (8.8)

The ideal I is a radical ideal precisely if I =
√

I.

Example 8.2.1:
Let ⟨x2⟩ ⊂ C [x] an ideal. Then

√
I = ⟨x⟩.

Definition 8.2.2 (Homogeneous Ideal):
Recall that the coordinate ring S is graded from the (C∗)a action defining XΣ. Con-
sequently we can require f ∈ S to be homogeneous. An ideal

I = ⟨f1, . . . , fm⟩ ⊂ S (8.9)

is a homogeneous ideal precisely if f1, . . . , fm are all homogeneous.

Note:
In the above definition f1, . . . , fm ∈ S need not have the same homogeneous degrees,
but each of the polynomials fi has to be a homogeneous polynomial by itself.

Theorem 8.2.2 (Subvarieties of XΣ):
Let XΣ a smooth and compact toric variety. Then the following two are one-to-one.

• Closed subvarieties of XΣ.

• Radical homogeneous ideals I ⊆ BXΣ ⊆ S.

Note:
The above theorem holds true even if XΣ is only simplicial. Note that ’radical’ can
intuitiely be though of as ’minimal’. For example we can consider the variety

V (⟨x2
1⟩) = {(x1, x2) ∈ C2 , x2

1 = 0} (8.10)

Set theoretically

V (⟨x1⟩) = {(x1, x2) ∈ C2 , x1 = 0} = V (⟨x2
1⟩) (8.11)

Hence taking x1 as defining polynomial is ’better’ than x2
1 or even x3

1. This is also in
favour of computation that we will perform later - then namely reducing the degree
of a possibly very long polynomial means to reduce the computational effort consid-
erably.
Still in principle we can ignore the issue of I being radical and just take a homoge-
neous ideal. Then the following major implication arises.

Consequence:
Every closed variety of a smooth and compact normal toric variety is an algebraic
variety. So in particular all analytic submanifolds of XΣ are obtained from a finitely
generated ideal I ⊂ S.
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Definition 8.2.3 (Dimension Of An Algebraic Subvariety):
Let XΣ a smooth and compact normal toric variety and C ⊂ XΣ an algebraic subva-
riety defined by I ⊂ S a homogeneous ideal. Then

CC ∶= C [Xσ] /I (8.12)

is the coordinate ring of C. The dimension of C is the Krull dimension of CV .

Remark:
The definition of Krull dimension for rings coincides with the geometric definition
[60]. However the Krull dimension can be easier implemented in computer algebra
software. For example the computation of dimensionality in Sage [51] relies on this
definition. In particular one can use Sage to check that a submanifold is indeed of
the desired codimension.

8.3. The Notion Of A Pullback Line Bundle
Definition 8.3.1 (Pullback O-Modul):
Let XΣ a smooth and compact normal toric variety and C ⊂ XΣ an algebraic sub-
manifold. Then we have a canonical inclusion map

ι∶C →XΣ (8.13)

Let F an OXΣ-modul and U ⊂ C open with the induced topology. Then by definition
of the induced topology there exists V ⊂ XΣ open in XΣ such that U = V ∩C. Now
we define an OC-modul F ∣C via

(F ∣C) (U) = {g∣C , g ∈ F (V )} = F (V )∣C (8.14)

This we term the pullback OC-modul of F .

Remark:

• We make use of the smoothness of C in that we consider U ⊂ C open. In case
that C was a singular space, one would consider analytic subsets instead.

• Holomorphic line bundles and direct sums thereof can be pulled back according
to the above definition, since a holomorphic line bundle is a locally free OXΣ-
modules, i.e. a special OXΣ-module.

8.4. The Koszul Complex
Definition 8.4.1 (Koszul Complex):
Let R a commutative ring, n ∈ N>0 and x1, . . . , xn ∈ R. We want to define a complex
K●

n (x1, . . . , xn) from this. To this end set
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• Kp ∶= 0 for p < 0 and p > n.

• K0 ∶= R

• For 1 ≤ p ≤ n set
Kp ∶= ⊕

1≤i1<⋅⋅⋅<ip≤n
R ⋅ ei1 ∧ ⋅ ⋅ ⋅ ∧ eip (8.15)

so that Kp is the free module of rank (np) with basis {ei1 ∧ eip , 1 ≤ i1 < ⋅ ⋅ ⋅ < ip ≤ n}
over R.

Now we define differential maps ∂∶Kp →Kp−1 by setting

• ∂ (ei1 ∧ ⋅ ⋅ ⋅ ∧ eip) =
p

∑
r=1
(−1)r−1

xireir ∧ ⋅ ⋅ ⋅ ∧ êir ∧ ⋅ ⋅ ⋅ ∧ eip

• for p = 1 set ∂ (ei) = xi.

Claim:
This construction defines a complex.

Proof
From the definition of K●

p is follows immediately that we have defined a complex. ∎

Example 8.4.1:

• The complex K●
1 is given by

. . . 0← 0← R
x1← R ← 0← 0← . . . (8.16)

• The complex K●
2 is given by

. . . 0← 0← R
β← R2 α← R ← 0← 0← . . . (8.17)

where α = ( x1
−x2
) and β = (x1, x2).

• The complex K●
3 is given by

. . . 0← 0← R
γ← R3 β← R3 α← R ← 0← 0← . . . (8.18)

where the maps are given by

α =
⎛
⎜
⎝

x1
−x2
x3

⎞
⎟
⎠

, β =
⎛
⎜
⎝

0 −x3 −x2
−x3 0 x1
x2 x1 0

⎞
⎟
⎠

, γ = (x1, x2, x3) (8.19)

Note:
K●

p (x1, . . . , xn) need not be exact. This is because the elements x1, . . . , xn are so-far
just some elements in the commutative ring R. This we change now.
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Definition 8.4.2 (Weak Regular Sequence):
Let R a commutative ring and x1, . . . , xn ∈ R. These elements form a weak regular
sequence precisely if the following holds true.

• x1 is not a zero-divisor in R.

• x2 is not a zero-divisor in R/ (x1).

• x3 is not a zero-divisor in R/ (x1, x2).

• . . .

Theorem 8.4.1:
Let R a commutative ring and x1, . . . , xp ∈ R. We set I ∶= (x1, . . . , xp) ⊂ R and assume
that x1, . . . , xp form a weak regular sequence. Then

0→K●
p (x1, . . . , xp)→ R/I → 0 (8.20)

is exact.

Proof
A proof can be found in [60]. ∎

Comment:
Theorem 8.4.1 is the local version of the Koszul resolution, to which we turn next.
In particular note that the condition of a weak regular sequence then translates into
the local condition that C ⊂XΣ has codimension p.

8.5. The Koszul Resolution
Claim (Koszul Resolution):
Let XΣ a smooth compact toric variety. Let us consider effective divisor classes
S1, . . . , Sn ∈ Cl (XΣ) and non-trivial holomorphic sections

s̃i ∈H0 (XΣ,OXΣ (Si)) (8.21)

such that
C ∶= {p ∈XΣ , s̃1 (p) = ⋅ ⋅ ⋅ = s̃n (p) = 0} ⊂XΣ (8.22)

We is an algebraic submanifold of XΣ of codimension n.
Given this setup consider the holomorphic line bundle OXΣ (D) on XΣ described by
its divisor class D ∈ Cl (XΣ). From section 8.3 we know that this setup allows us to
consider the pullback line bundle OXΣ (D)∣C .
Given such a setup, we claim that the following sequence is sheaf exact

0→ L′ → Vn−1 → ⋅ ⋅ ⋅→ V1 → OXΣ (D)
r→ OXΣ (D)∣C → 0 (8.23)

The sheaves appearing in this sequence are defined as
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• L′ = OXΣ (D −∑
n
i=1 Si)

• Vk =⊕1≤i1<⋅⋅⋅<ik≤nOXΣ (D −∑
k
j=1 Sij

)

The last map in Equation 8.23 is the restriction map to C. All other mappings are
induced from the Koszul complex K●

n over the ring OXΣ = C (XΣ).

Example 8.5.1:
Before we prove the above statement let us give an example of a Koszul resolution.
To this end let us consider three effective divisor classes S1, S2, S3 ∈ Cl (XΣ). Given
such divisor classes we pick three non-trivial global holomorphic sections

s̃1 ∈H0 (XΣ,OXΣ (S1)) , s̃2 ∈H0 (XΣ,OXΣ (S2)) , s̃3 ∈H0 (XΣ,OXΣ (S3)) (8.24)

We assume that their common zero locus

C ∶= {p ∈XΣ , s̃1 (p) = s̃2 (p) = s̃3 (p) = 0} (8.25)

is an algebraic submanifold of XΣ of codimension 3. Then according to the above
statement we should consider the sequence

0→ L′ α→ V2
β→ V1

γ→ OXΣ (D)
r→ OXΣ (D)∣C → 0 (8.26)

for a line bundle L = OXΣ (D) of interest. The other sheaves in that sequence are
given by

• L′ = OXΣ (D − S1 − S2 − S3)

• V2 = OXΣ (D − S2 − S3)⊕OXΣ (D − S1 − S3)⊕OXΣ (D − S1 − S2)

• V1 = OXΣ (D − S1)⊕OXΣ (D − S2)⊕OXΣ (D − S3)

The sheaf homomorphisms in this sequence are induced by the following matrices of
global sections

α =
⎛
⎜
⎝

s̃1
−s̃2
s̃3

⎞
⎟
⎠

, β =
⎛
⎜
⎝

0 −s̃3 −s̃2
−s̃3 0 s̃1
s̃2 s̃1 0

⎞
⎟
⎠

, γ = (s̃1, s̃2, s̃3) (8.27)

This is to be compared to Equation 8.19, as these maps are induced from the Koszul
complex K●

3 .

Proof
For the proof of sheaf exactness of the Koszul resolution we recall two important
facts.

• Sheaf exactness is a local property.

• Vector bundles of rank r are locally free OXΣ-modules of rank r.
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Given a point p ∈ XΣ and a sufficiently small open neighbourhood p ∈ U ⊂ XΣ one
consequently has to prove exactness of the following sequence

0→ OXΣ (U)→ OXΣ (U)
⊕( n

n−1) → ⋅ ⋅ ⋅→ OXΣ (U)→ (OXΣ (U)∣C) (U)→ 0 (8.28)

We are therefore looking at the Koszul complex K●
n (s̃1, . . . , s̃n) over the ringOXΣ (XΣ).

The condition that C has codimension n translates into the condition that the germs
of s̃1, . . . , s̃n ∈ OXΣ (XΣ) form a weak regular sequence in the local coordinate ring at
p. The statement now follows from Theorem 8.4.1. ∎

Remark:

• The proof does not make use of the smoothness of C. This is correct, since the
statement holds more generally for algebraic subvarieties of XΣ. Then however,
the definition of a pullback line bundle must be refined. We briefly mentioned
this in section 8.3. Let us therefore mention that the smoothness condition is
supplemented with a look towards applications in F-theory model building.

• More information on the Koszul resolution can be found in standard textbooks
such as [44] or [66]. Note however that usually only the Koszul complex is
treated in detail. The Koszul resolution as we presented it above and will use it
during the rest of this thesis, is just a simple consequence from the technology
of Koszul complexes.

8.6. Splitting Principle Applied
Lemma 8.6.1:
Any long exact sequence of Abelian groups can be split into a number of short exact
sequences.

Proof
We assume that the long exact sequence of Abelian groups is of the form

0→ A1 → A2 → A3 → . . . (8.29)

Then introduce an Abelian group I1 such that

0→ A1 → A2 → I1 → 0 (8.30)

is a short exact sequence. Subsequently introduce an Abelian group I2 such that

0→ I1 → A3 → I2 → 0 (8.31)

is a short exact sequence.
It is clear that the abelian groups Ii do exist and that by following the above proce-
dure one obtains a number of short exact sequences which give the same information
as the long exact sequence that we started with. ∎

60/277



CHAPTER 8. THE KOSZUL RESOLUTION

Consequence:
The above generalises to sheaf exact sequences and in particular allows to split the
Koszul resolution by introducing auxilliary sheaves I1, . . . , IN−1 into a number of
short sheaf exact sequences

• 0→ L′ → VN−1 → I1 → 0

• 0→ I1 → VN−2 → I2 → 0

• 0→ I2 → VN−3 → IN−3 → 0

• . . .

• 0→ IN−2 → V1 → IN−1 → 0

• 0→ IN−1 → L→ L∣C → 0

Note:
The fundamental theorem of homological algebra states that any short exact sequence
of complexes of Abelian groups gives rise to a long exact sequence in cohomology of
these three complexes in the short exact sequence. Via the Godement resolution of
any sheaf this theorem implies that also any short exact sequence of sheaves gives
rise to a long exact sequence in sheaf cohomologies.
By use of this fact the above splitting of the Koszul resolution can be used to compute
from knowledge of the cohomology groups of L′, Vk and L the cohomologies of L∣C .
Under good circumstances 3 one can even deduce the dimensions of the cohomologies
of L∣C from exactness of the long exact cohomology sequences alone, without having
to know anything about the maps involved.
The computation of the dimension of the cohomologies of L∣C based on the use of
exactness alone has been implemented in the Koszul extension of cohomCalg [53]. In
the next chapter we will give an example of the above-mentioned good circumstances,
but will also give two other examples where these good circumstances do not appear.
The remainder of this thesis will then focus on determining the cohomology groups
of L∣C by means of the sheaf homomorphisms involved.

3This means that a sufficiently high number of the ambient space cohomology groups are trivial.
An example of this is presented in the next chapter.
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9. Limits Of The Koszul-Extension
Of cohomCalg

9.1. Summary
In chapter 8 we presented the Koszul sequence and pointed out that it relates the
desired pullback cohomologies to certain ambient space cohomologies. We also men-
tioned that exactness can be used to constraint the pullback cohomologies easily, but
not necessarily uniquely. In this chapter we explain in detail how this works.
To this end we present simple consequences from the exactness of sequences in sec-
tion 9.2. The most important result is as follows. Let

A1 → A2 → ⋅ ⋅ ⋅→ An (9.1)

a long exact sequence of finite dimensional vector spaces of dimensions a1, a2, . . . ,
an respectively. Then it holds

a1 − a2 + a3 − a4 + ⋅ ⋅ ⋅ ± an = 0 (9.2)

This knowledge we put to a use in section 9.3, where we start the discussion of an
example that will guide us through the remainder of this thesis. For this example
we specify a smooth and compact normal toric variety in subsection 9.3.1. Here we
mention briefly that XΣ is of the form

XΣ = (C8 −Z) / (C∗)4 (9.3)

and that divisor classes can canonically be identified with elements in Z4. For this
reason we can consider the effective divisor classes 1

• SB3 = (3, 2, 1, 1)

• SGUT = (1, 1, 0, 0)

• S10 = (2, 1, 2, 1)

• S5m = (4, 1, 6, 3)

• S5H = (7, 2, 10, 5)
1The terminology for these divisor classes is motivated from an F-theory application that we will

present at the very end of this thesis.
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Now consider non-trivial global sections s̃i ∈H0 (XΣ,OXΣ (Si)) in order to define

C10 = {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = s̃D10 (p) = 0} (9.4)
C5m = {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = s̃D5m (p) = 0} (9.5)
C5H = {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = s̃D5H

(p) = 0} (9.6)

All three varieties are required to be smooth and of codimension 3 in XΣ. In addition
it should be pointed out that the actual form of the polynomials s̃i shape the curves
Ci. This implies that the coefficients of the polynomials s̃i can be identified as a
redundant description of the complex structure of the curves Ci. In particular one
should expect that for L = OXΣ (2, 1, 2, 1) the cohomologies of L∣Ci

do depend on the
complex structure of the curve Ci via the coefficients in the defining polynomials of
Ci.
This indeed will turn out to be true. In contrast however, evaluating the Koszul
sequence by means of exactness only, does not require this information. So one
should not be surprised that exactness alone is in general not enough to compute
the cohomologies of L∣Ci

. This we illustrate in the above setup. As we point out in
subsection 9.3.5 the cohomologies of L∣C10

turn out to be indepedent of the actual
description of C10, whilst for C5m and C5H this does not hold true as shown in subsec-
tion 9.3.6 and subsection 9.3.7 respectively. In the latter two cases this dependence
is reflected in an unknown integer valued constant appearing in the dimensions of
the cohomologies of L∣C5m

and L∣C5H
.

This problem is of course known to the authors of the cohomCalg algorithm and its
Koszul extension which automises the evaluation of the Koszul spectral sequence by
means of exactness only [53, pp. 20]. In particular it is mentioned there, that so-
far no functionality is implemented to compute this complex structure dependence.
Therefore our final goal is to make one step towards closing this gap.
However, before we do so, let us mention that sometimes bounds on the dimension of
the cohomology groups are all that a model builder needs to rule out a certain model.
For this reason we present in section 9.4 how exact sequence technology allows for
such simple bounds. The results presented there are of the following type. Assume
that A1 →X → A2 → 0 is an exact sequence of finite dimensional vector spaces. Then
it follows

dim (X) ≤ dim (A1) + dim (A2) (9.7)
We exemplify the use of these kinds of inequalities in section 9.5 where we estimate
the cohomology classes on C5m and C5H . The so-obtained estimates are summarised
in Table 9.3.

9.2. Exact Sequence Technology - Part I

9.2.1. The Basics
Remark (Exact Sequence):
Let (Ai)i∈Z be a family of finite dimensional K-vector spaces and (fi∶Ai → Ai+1)i∈Z a
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family of vector space homomorphisms such that fi+1 ○ fi = 0 for all i ∈ Z. Then the
complex

⋅ ⋅ ⋅ f0→ A1
f1→ A2

f2→ A3
f3→ . . . (9.8)

is exact precisely if

im (Ai−1 → Ai) = ker (Ai → Ai+1) ∀i ∈ Z (9.9)

Remark (Dimension Formula For Vector Space Homomorphisms):
Let V, W finite dimensional K-vector spaces and φ∶V →W a vector space homomor-
phism. Then it holds

dimK (im (φ)) = dimK (V ) − dimK (Ker (φ)) (9.10)

9.2.2. Simple Consequences
Claim:
Let n ≥ 3. Then consider the exact sequence A1 → A2 → A3 → ⋅ ⋅ ⋅ → An of K-vector
spaces of dimensions a1, a2, . . . , an over K. Then it holds

dimK (ker (An−1 → An)) = an−2−an−3+an−4−an−5 ⋅ ⋅ ⋅±a1∓dimK (ker (A1 → A2)) (9.11)

Proof

• We begin by analysing the exactness at position An−1. There we find

dimK (ker (An−1 → An)) = dimK (im (An−2 → An−1))
= an−2 − dimK (ker (An−2 → An−1))

(9.12)

• Similarly one finds at position Ak

dimK (ker (Ak → Ak+1)) = dimK (im (Ak−1 → Ak))
= ak−1 − dimK (ker (Ak−1 → Ak))

(9.13)

An induction by the sequence index now yields the claim. ∎

Consequence:
Be n ≥ 2 and 0 → A1 → A2 → ⋅ ⋅ ⋅ → An → 0 an exact sequence of K-vector spaces of
dimensions a1, a2, . . . , an over K. Then it holds

an = an−1 − an−2 + an−3 − an−4 ⋅ ⋅ ⋅ ± a1 (9.14)

Proof
The two zeros limiting the sequence imply

• dimK (ker (A1 → A2)) = 0
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Q1 Q2 Q3 Q4

x1 1 1 0 0
x2 0 0 1 0
x3 0 0 0 1
x4 1 0 0 0
x5 1 1 0 0
x6 1 0 1 1
x7 1 0 1 0
x8 0 1 0 0

Table 9.1.: Action of the algebraic torus (C∗)4 onto C8. This is part of the defining
data of the toric ambient space XΣ in the exhaustive example.

• dimK (ker (An−1 → An)) = an−1 − an

The statement now follows from the preceeding one. ∎

Consequence:

• Let 0 → A → 0 an exact sequence of finite dimensional K-vector spaces. Then
A = {0}.

• Let 0 → A1 → A2 → 0 an exact sequence of finite dimensional K-vector spaces.
Then dimK (A1) = dimK (A2).

• Let 0 → A1 → A2 → A3 → 0 an exact sequence of finite dimensional K-vector
spaces. Then it holds dimK (A3) = dimK (A2) − dimK (A1).

9.3. An Exhaustive Example

9.3.1. Toric Ambient Space And Stanley-Reisner-Ideal
We start from an action of the algebraic torus (C∗)4 onto C8 as outlined in table
Table 9.1. From these one finds the ray generators of the fan Σ to be

u1 = e1, u2 = e2, u3 = e3, u4 = e4, u5 = −e1 + e2 − e4 (9.15)
u6 = −e3, u7 = e3 − e2, u8 = −e2 + e4 (9.16)

We note that any fan with these ray generators is smooth. It remains to require in
addition that the fan Σ be complete, so that XΣ is compact. From this condition,
the computer program Sage [51] is able to find two triangulations2 with the following
Stanley-Reisner ideals.

I
(a)
SR = ⟨x2x7, x2x8, x3x6, x3x8, x1x4x5, x1x5x8, x4x6x7⟩ (9.17)

2We described in subsection D.5.2 how this is done.
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I
(b)
SR = ⟨x2x7, x2x8, x3x6, x4x7, x1x4x5, x1x5x8⟩ (9.18)

9.3.2. Divisor Classes
One easily confirms

Cl (XΣ) = Z [D1]⊕Z [D2]⊕Z [D3]⊕Z [D4] ≅ Z4 (9.19)

Therefore we agree on the following notation for a divisor class.

(a1, a2, a3, a4) ≡ a1 [D1] + a2 [D2] + a3 [D3] + a4 [D4] (9.20)

9.3.3. Pullback Setup
We consider the following effective divisor classes

• SB3 = (3, 2, 1, 1)

• SGUT = (1, 1, 0, 0)

• S10 = (2, 1, 2, 1)

• S5m = (4, 1, 6, 3)

• S5H = (7, 2, 10, 5)
Given non-trivial holomorphic sections s̃i in the associated holomorphic line bundles,
we wish to consider the following algebraic subvarieties

C10 = {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = s̃D10 (p) = 0} (9.21)
C5m = {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = s̃D5m (p) = 0} (9.22)
C5H = {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = s̃D5H

(p) = 0} (9.23)

Those are subject to being smooth and of codimension 3 in XΣ. Finally we consider
the line bundle L = OXΣ (2, 1, 2, 1). Our task is to compute the cohomologies of L∣C10

,
L∣C5m

and L∣C5H
.

9.3.4. Ambient Space Cohomology Dependence On The
Stanley-Reisner-Ideal

To compute the pullback cohomologies one uses the Koszul resolution. Therefore
the first objects to compute are the cohomology classes of all the bundles on XΣ
that appear in the Koszul resolution. For the time being all that we need are the
dimensions of these cohomology classes, and those turn out to be independent of ISR
in this particular setup.
Whilst this indepence of the dimensions of the cohomology classes from the Stanley-
Reisner-ideal is expected, it should be mentioned that representations for the basis
of these cohomology classes will in general depend on the Stanley-Reisner-ideal, as
follows since the cohomCalg algorithm is heavily dependend on ISR.
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9.3.5. Pullback to C10

Remark (First Exact Sequence):
The first exact sequence from the splitting gives the following long exact sequence in
cohomology.

OXΣ (−4,−3,−1,−1) OXΣ (−2,−2, 1, 0)⊕OXΣ (−3,−2,−1,−1)⊕OXΣ (−1,−1, 0, 0) I1

0 0 A1
0 0 A2
0 1 A3
0 0 A4
0 0 A5

where I1 is an auxillary sheaf. From the exact sequence technology developed in
section 9.2, it follows immediately

hi (XΣ,I1) = (0, 0, 1, 0, 0) (9.24)

Remark (Second Exact Sequence):
The second exact sequence relates the auxillary sheaf I1 with the auxillary sheaf I2
and takes the form

I1 OXΣ (−1,−1, 1, 0)⊕OXΣ (1, 0, 2, 1)⊕OXΣ (0, 0, 0, 0) I2

0 4 A6
0 0 A7
1 0 A8
0 0 A9
0 0 A10

From this we conclude
hi (XΣ,I2) = (4, 1, 0, 0, 0) (9.25)

Remark (Third Exact Sequence):
The third exact sequence now relates I2 to the cohomology of OXΣ (2, 1, 2, 1)∣C10
which we intent to compute. This sequence looks like

I2 OXΣ (2, 1, 2, 1) OXΣ (2, 1, 2, 1)∣C10

4 11 A11
1 0 A12
0 0 A13
0 0 A14
0 0 A15

Consequently we find

hi (C10, OXΣ (2, 1, 2, 1)∣C10
) = (8, 0, 0, 0, 0) (9.26)
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Note:
In this particular situation, the exact sequence technology as presented in section 9.2
was enough to determine the dimensions of the cohomology groups of the pullback
line bundle uniquely. This will not be true in the following two examples.

9.3.6. Pullback to C5m

Remark (First Exact Sequence):
The first exact sequence in the splitting of the Koszul resolution gives the following
long exact sequence in cohomology.

OXΣ (−6,−3,−5,−3) OXΣ (−2,−2, 0, 0)⊕OXΣ (−5,−2,−5,−3)⊕OXΣ (−3,−1,−4,−2) I1

0 0 A1
0 0 A2
0 2 A3
0 0 A4
3 0 A5

where I1 is an auxillary sheaf. The exactness of this sequence implies

hi (XΣ,I1) = (0, 0, 2, 3, 0) (9.27)

Remark (Second Exact Sequence):
The second exact sequence looks like

I1 OXΣ (−1,−1, 0, 0)⊕OXΣ (1, 0, 2, 1)⊕OXΣ (−2, 0,−4,−2) I2

0 3 A6
0 0 A7
2 4 A8
3 0 A9
0 0 A10

From this we conclude

hi (XΣ,I2) = (3, A8 − 5, A8, 0, 0) (9.28)

Remark (Third Exact Sequence):
The third exact sequence finally takes the following shape

I2 OXΣ (2, 1, 2, 1) OXΣ (2, 1, 2, 1)∣C5m

3 11 A11
−5 +A8 0 A12

A8 0 0
0 0 0
0 0 0
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Exact sequence technology now implies

hi (C5m, OXΣ (2, 1, 2, 1)∣C5m
) = (3 +A12, A12, 0, 0, 0) (9.29)

leaving us with an unconstrained, nonnegative, integer-valued constant A12.

9.3.7. Pullback to C5H

Remark (First Exact Sequence):
The first exact sequence is given as

OXΣ (−9,−4,−9,−5) OXΣ (−2,−2, 0, 0)⊕OXΣ (−8,−3,−9,−5)⊕OXΣ (−6,−2,−8,−4) I1

0 0 A′1
0 0 A′2
0 17 A′3
0 0 A′4
34 10 A′5

This implies
hi (XΣ,I1) = (0, 0, 17, 24 +A′5, A

′
5) (9.30)

Remark (Second Exact Sequence):
The second exact sequence then looks like

I1 OXΣ (−1,−1, 0, 0)⊕OXΣ (1, 0, 2, 1)⊕OXΣ (−5,−1,−8,−4) I2

0 3 A′6
0 0 A′7
17 30 A′8

24 +A5 0 A′9
A5 0 A′10

Exactness properties now yield
hi (XΣ,I2) = (3,−37 +A′8 −A′9, A

′
8, A

′
9, 0) (9.31)

Remark (Third Exact Sequence):
The third exact sequence finally looks like

I2 OXΣ (2, 1, 2, 1) OXΣ (2, 1, 2, 1)∣C5H

3 11 A′11
−37 +A′8 −A′9 0 A′12

A′8 0 0
A′9 0 0
0 0 0

From exactness properties we conclude
hi (C5H , OXΣ (2, 1, 2, 1)∣C5H

) = (A′12 − 29, A′12, 0, 0, 0) (9.32)
where again A′12 ∈ N≥29 is left unconstrained.
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C10 C5m C5H

h0 (Ci, L∣Ci
) 8 3 +A12 A′12 − 29

h1 (Ci, L∣Ci
) 0 A12 A′12

h2 (Ci, L∣Ci
) 0 0 0

h3 (Ci, L∣Ci
) 0 0 0

h4 (Ci, L∣Ci
) 0 0 0

Table 9.2.: Cohomology groups of L = OXΣ (2, 1, 2, 1) pulled back onto C10, C5m and
C5H . Note that A12 ∈ N≥0 and A′12 ∈ N≥29 are left unconstrained.

9.3.8. Summary On The Cohomologies From Exactness
The dimensions of the pullback cohomologies as determined above, are summarised
in Table 9.2.

9.4. Exact Sequence Technology - Part II
Lemma 9.4.1:
Let A1 →X → A2 → 0 an exact sequence of finite dimensional K-vector spaces. Then
it holds

dimK (X) ≤ dimK (A1) + dimK (A2) (9.33)

Proof
From exactness at A2 it follows

im (X → A2) = ker (A2 → 0) = A2 (9.34)

Consequently the dimension formula for vector space homomorphisms implies

dimK (X) − dimK (ker (X → A2)) = dimK (A2) (9.35)

Exactness at X then implies

dimK (X) − dimK (im (A1 →X)) = dimK (A2) (9.36)

Finally applying the dimension formula a second time gives

dimK (X) − dimK (A1) + dimK (ker (A1 →X)) = dimK (A2) (9.37)

This gives the inequality that we are looking for by noting that dimK (ker (A1 →X))
is always non-negative. ∎

Consequence:
Let A → X → 0 an exact sequence of finite dimensional K-vector spaces. Then it
holds dimK (X) ≤ dimK (A).
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Lemma 9.4.2:
Let A0 → A1 → X → A2 → 0 an exact sequence of finite dimensional K-vector spaces.
Then it holds

dimK (X) ≥ dimK (A2) + dimK (A1) − dimK (A0) (9.38)

Proof
Following the strategy used to prove the first lemma, one easily finds

dimK (X) = dimK (ker (A0 → A1)) + dimK (A2) + dimK (A1) − dimK (A0) (9.39)

From this the claim follows immediately. ∎

Consequence:
Let A0 → A1 →X → 0 an exact sequence of finite dimensional K-vector spaces. Then
it holds

dimK (X) ≥ dimK (A1) − dimK (A0) (9.40)

9.5. An Exhaustive Example - Bounds On The
Cohomology Groups

9.5.1. Pullback To C10 - Bounds
The cohomologies on C10 were uniquely determined by exactness. Consequently we
are already done in this case.

9.5.2. Pullback To C5m - Bounds
Remark:
Since A12 = A8 we are looking for bounds to A8.

Claim:
It holds 5 ≤ A8 ≤ 7.

Proof
We have the exact sequence 2 → 4 → A8 → 3 → 0 from which the two bounds
follow. ∎

Consequence:
We have thus found 5 ≤ A12 ≤ 7.

9.5.3. Pullback To C5H - Bounds
Remark:
We first recall A′12 = A′8. Thus our first task is to find a bound for A′8.
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h0 (Ci, L∣C) h1 (Ci, L∣C) Parameter range
C10 8 0 0
C5m 3 +A12 A12 5 ≤ A12 ≤ 7
C5H A′12 − 29 A′12 37 ≤ A′12 ≤ 64

Table 9.3.: Bounds on the parameters which describe the dimensions of the cohomol-
ogy groups of the pullback line bundle on the matter curves C5m and C5H .

Claim:
It holds 37 +A′5 ≤ A′8 ≤ 54 +A′5.

Proof
The exact sequence 17→ 30→ A′8 → 24 +A′5 → 0 implies both bounds. ∎

Consequence:
We consequently need to find bounds for A′5 next.

Claim:
It holds 0 ≤ A′5 ≤ 10.

Proof
The exact sequence 34→ 10→ A′5 → 0 implies

− 24 ≤ A′5 ≤ 10 (9.41)

But since A′5 is the dimension of a vector space we know A′5 ≥ 0. Thus we obtain the
statement. ∎

Consequence:
It holds 37 ≤ A′12 ≤ 64.

9.5.4. Summary
We have thus found the cohomologies as listed in Table 9.3.
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10. Summary
In this chapter we present the true story behind computing pullback cohomologies.
To start off this part, we continue in chapter 11 the analysis of the exhaustive ex-
ample given in chapter 9. This time however, we use the actual mappings in the
Koszul sequence to compute the pullback cohomologies. Thereby we can in these
examples identify the dependence of the pullback cohomologies L∣Ci

on the complex
structure of the curves Ci reflected in the coefficients of their defining polynomials.
In particular we point out that the exhaustive example turns out to be an example
of the simpler kind. This is reflected in the fact that when we compute the pull-
back cohomologies L∣Ci

there are several maps that are not directly induced from the
Koszul sequence, but whose details we need not know for the computations in this
particular example. Let us term these maps ’mysterious maps’ for the time-being.
The general story is unfortunately more involved than this exhaustive example shows
on a first glance. To see this we introduce the Koszul spectral sequence in chapter 12.
General theory about sheaves tells us that the Koszul spectral sequence allows for a
very efficient and well-organised way of computing pullback cohomologies. In partic-
ular it clearifies the origin of the ’mysterious maps’.
Thus the construction of the ’mysterious maps’ is in general the real problem in
computing pullback cohomologies. The general strategy for the construction of these
maps is of course well-known in the mathematics literature. To illustrate this abstract
construction, we give an example of the construction of a special such ’mysterous map’
called the ’Knight’s move’ in chapter 13. In this chapter we also give a hint towards
a simplified construction of this ’mysterious map’. This hint involves the use of the
chamber counting algorithm and the cohomCalg algorithm for the calculation of line
bundle cohomology on the toric ambient space. In particular we will point out that
the chamber counting encodes more information than cohomCalg. This additional
information in turn is needed to perform the abstract construction of the ’mysterious
maps’. Unfortunately obtaining this additional information comes at a high cost - the
computer implementation of the chamber counting algorithm in [61] is much slower
than cohomCalg [57].
Consequently one might ask if there is a faster way for the construction of these ’mys-
terious’ maps. We turn towards this question in chapter 14. In particular we point
out that the answer is affirmative given that the smooth and compact normal toric
ambient space XΣ is a so-called generalised Flag variety. Whilst it is well-known
that CPn does indeed fall into that category it is not known to the author if this
holds true for a general smooth and compact normal toric variety. Therefore a proof
or disproof of this statement would be very interesting to know of. This however is
currently beyond the abilities of the author.
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A first approximation of the results from the Koszul spectral sequence is independent
of the construction of the ’mysterious’ maps. In the language of spectral sequences
this is the evaluation of the E1-sheet. This task has been computerised in a Math-
ematica notebook. We give the source code of this notebook in Appendix E and
present a brief manual of this notebook in chapter 15.
We conclude this thesis by putting this notebook to a use in a model building teaser
in chapter 16. There we present an SU (5) × U (1)X toy-model in F-theory with a
special choice of G4-flux. Counting the number of zero modes along the curves C10,
C5m and C5H which are charged under this G4-flux is then performed by computing
certain pullback cohomology classes. The latter we use our Mathematica notebook
for. Let us mention that we do not perform any global checks in this toy-model. So
existence of a smooth resolution Ŷ4, tadpole cancellation etc. are not checked, as this
toy-model is presented only to demonstrate how our Mathematica notebook can be
used in future model building work.
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11. Leray Property And Induced
Cohomology Maps

11.1. Summary
In this chapter we continue the analysis of the exhaustive example presented in
chapter 9. In constrast to using exactness properties only, we will now make use of the
actual mappings in the Koszul sequence. For a codimension 3 algebraic submanifold
C of a smooth and compact normal toric variety XΣ this sequence is given by

0→ L′ α→ V2
β→ V1

γ→ L→ L∣C → 0 (11.1)

We can split this long exact sequence by the so-called splitting-principle into three
short exact sequences

• 0→ L′ α→ V2 → I1 → 0

• 0→ I1 → V1 → I2 → 0

• 0→ I2 → L→ L∣C → 0

This we presented back in section 8.6. Let us focus on the first of the three short
exact sequences 0 → L′ α→ V2 → I1 → 0. This sequence induces the following long
exact sequence in cohomology

..

..0 ..H0(X,L′) ..H0(X,V2) ..H0(X,I1)

. ..H1(X,L′) ..H1(X,V2) ..H1(X,I1)

. ..H2(X,L′) ..H2(X,V2) ..H2(X,I1)

. .. . ..

. ..Hn(X,L′) ..Hn(X,V2) ..Hn(X,I1)

.

α0

.

δ0

.

α1

.
δ1

.α2 .

αn

Now two questions are immediate.

• How exactly does the map α induce the maps αi?
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• Given that we know the cohomology groups of L′ and V2 and even know the
mappings αi, how do we then compute the cohomologies of I1?

The answer to the first question we give in section 11.2. There we point out that on a
smooth and compact normal toric variety there exists a particularly nice open cover
such that computing Čech cohomology from this open cover does actually give sheaf
cohomology. This open cover is the so-called affine open cover U . Consequently we
can think about the maps between the sheaf cohomology groups as maps between
Čech cohomology groups, i.e. collections of Čech cocycles. But Čech cocycles are
equivalence classes of Čech cochains, and Čech cochains in turn only collections of
functions on the open sets of XΣ that form the affine open cover U .
That said let us focus on the situation of a sheaf homomorphism α∶OXΣ (D) →
OXΣ (D′) with D′ ≥ D. Then this homomorphism is induced from a global section
s̃ ∈H0 (XΣ,OXΣ (D′ −D)). By the above-presented observation about the affine open
cover U , we can think of Čech cochains in OXΣ (D) to be mapped to Čech cochains
in OXΣ (D′) simply by multiplication with s̃. This observation we can express in the
following commutative diagram

..
..Č0 (U ,OXΣ (D)) ..Č1 (U ,OXΣ (D))
. .

..Č0 (U ,OXΣ (D′)) ..Č1 (U ,OXΣ (D′))

.
δ

.

δ

.⋅s̃ . ⋅s̃

From this it follows that the maps αi are just the canonically induced mappings of
quotient spaces, i.e. for example

α0∶H0 (XΣ,OXΣ (D))→H0 (XΣ,OXΣ (D′)) , x = [X]↦ [s̃ ⋅X] ≡ y (11.2)

where X ∈ Č0 (U ,OXΣ (D)) and s̃ ⋅X ∈ Č0 (U ,OXΣ (D′)). We should mention that
this construction preserves closure, and that therefore this construction answers the
first question.
The answer to the second question is given in section 11.3 and can be stated in the
equation

H i (XΣ,I1) ≅ coker (αi)⊕ ker (αi+1) (11.3)

By use of these two results it is actually possible to compute the example from
chapter 9 completely. This is because the ’mysterious’ maps are all trivial in these
examples. To illustrate this we point out in the detailed computations outlined in
section 11.3, section 11.4 and section 11.5 all ’mysterious maps’. The results from the
computations in this chapter are summarised in Table 11.6 and should be compared
to the results in Table 9.3 which are obtained only from exactness considerations.
Finally we would like to point out that we discuss the meaning of a ’generic pullback
setup’ in detail in subsection 11.3.7. This will establish our terminology throughout
this thesis.
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11.2. Natural Leray Cover Of Toric Varieties And
Consequences

11.2.1. The Affine Open Cover
Remark:
Let XΣ a smooth and compact normal toric variety. Then the affine open cover
U = {Uσ}σ∈Σmax

is a Leray cover and thus allows to compute sheaf cohomology from
Čech cohomology.

Note:
We heavily used that fact when introducing the classical view of sheaf cohomology
on toric varieties in section 6.3.

11.2.2. Induced Maps On Čech Cocycles - Codimension One
Note:
Let XΣ a smooth and compact normal toric variety. In addition let S ∈ Cl (XΣ) an
effective divisor class and s̃ ∈ H0 (XΣ,OXΣ (S)) a global holomorphic section of the
associated holomorphic line bundle OXΣ (S) such that

C ∶= {p ∈XΣ , s̃ (p) = 0} (11.4)

is an algebraic submanifold with codimension 1 in XΣ. Then for any D ∈ Cl (XΣ) we
have the Koszul resolution as given by

0→ OXΣ (D − S) ⊗s̃→ OXΣ (D)
r→ OXΣ (D)∣C → 0 (11.5)

Recall that the maps in this short exact sequence are sheaf homomorphisms. In
particular we have for any open U ⊂XΣ a homomorphism of OXΣ (U)-modules

φU ∶ (OXΣ (D − S)) (U)→ (OXΣ (D)) (U) (11.6)

given by multiplication with s̃∣U .

Consequence:
Assume that the collection C = (fσ ∈ OXΣ (D − S) (Uσ))σ∈Σmax

is a Čech 0-cochain in
the sheaf OXΣ (D − S). Then the following holds true.

• We can use the maps φUσ to map the Čech 0-cochain C to a Čech 0-cochain
C ′ in the sheaf OXΣ (D).

• C is closed with respect to the Čech differential precisely if C ′ is closed.
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Proof
The image of C = (fσ ∈ (OXΣ (D − S)) (Uσ))σ∈Σmax

by the map induced from the sheaf
homomorphism ⊗s̃ is

C ′ ∶= ( s̃∣Uσ
⋅ fσ ∈ (OXΣ (D)) (Uσ))σ∈Σmax

(11.7)

which indeed forms a Čech 0-cochain in the sheaf OXΣ (D).
Next we note that s̃ ∈ H0 (XΣ,OXΣ (S)). By means of the homogenisation of XΣ
one justifies that s̃ is a polynomial in the homogeneous coordinates of XΣ with
multidegree S with respect to the defining scaling relations of XΣ. Recall also that
the affine open cover is the union of the following open affine subsets of XΣ

Ui ∶= {p ∈XΣ , xi ≠ 0} (11.8)

Consequently s̃∣Uσ
= s̃ for any σ ∈ Σmax. This implies that the cocycle condition for

C ′ is just the one for C multiplied by s̃. But s̃ is non-trivial, as otherwise its zero
locus cannot form a codimension 1 submanifold of XΣ. Consequently C is closed
with respect to the Čech differential precisely if C ′ is closed. ∎

Comment:
This argument easily generalises to Čech p-cocycles with p ≥ 1.

Remark:
Čech cohomology classes are sets of equivalence classes of Čech cochains. cohomCalg
picks certain Čech cochains to represent such a class and thus to form a basis of
the cohomology class of interest. By the above means we have maps that take Čech
cochains in one sheaf to Čech cochains in another sheaf and respect closure. Thus
these maps induce maps on the Čech cohomology classes.
Note however that a choice of basis is not unique. In particular it can happen that we
use a Čech cochain C1 in the domain and map it to a Čech cochain C2 in the target, of
which only part is expressable by means of the Čech cochains that cohomCalg chose
as target space basis. The crucial insight is then, that the part of C2 not expressable
in the target space basis is zero with respect to the equvialence relations in the
target space. Therefore one can focus on the part of the image cochain C2 that can
be expressed in terms of the target space basis and use this part to draw conclusions
on the maps of Čech cocycles. We will encounter such situations momentarily.

11.2.3. Induced Maps On Čech Cocycles - Arbitary
Codimension

Remark:
All maps in the Koszul resolution are sheaf homomorphism. That said, the above
strategy immediately generalises to the situation of arbitary codimension smooth
subvarieties of a smooth and compact normal toric variety.
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11.3. An Exhaustive Example Continued -
Pullback To C10

Remark:
In chapter 9 we found that the dimensions of the cohomology groups of L∣C10

could
be deduced from exactness alone. Nevertheless we decide to use this example in order
to demonstrate the applicability of the techniques introduced in section 11.2.

11.3.1. The Defining Polynomials of C10

Recall that we have to choose holomorphic sections

s̃1 ∈H0 (XΣ,OXΣ (SB3)) , s̃2 ∈H0 (XΣ,OXΣ (SGUT)) , s̃3 ∈H0 (XΣ,OXΣ (S10))
(11.9)

to define C10 as their common zero locus, subject to the condition that C10 is smooth
and of codimension 3. By recalling that the above divisor classes are given by

SB3 = OXΣ (3, 2, 1, 1) , SGUT = OXΣ (1, 1, 0, 0) , S10 = OXΣ (2, 1, 2, 1) (11.10)

one computes from the toric data of XΣ as given in chapter 9 a basis of these coho-
mology groups by means of the cohomCalg algorithm. This was automatised in the
Mathematica notebook whose sourcecode we display in Appendix E and discuss the
implemented functionality in chapter 15. Hence we can simply quote the results.

s̃1 = C18x
2
1x2x3x4 +C14x1x2x3x4x5 +C7x2x3x4x

2
5 +C16x

2
1x6 +C10x1x5x6

+C1x
2
5x6 +C17x

2
1x3x7 +C12x1x3x5x7 +C4x3x

2
5x7 +C15x1x2x3x

2
4x8

+C8x2x3x
2
4x5x8 +C11x1x4x6x8 +C2x4x5x6x8 +C13x1x3x4x7x8

+C5x3x4x5x7x8 +C9x2x3x
3
4x

2
8 +C3x

2
4x6x

2
8 +C6x3x

2
4x7x

2
8

s̃2 = C21x1 +C19x5 +C20x4x8

s̃3 = C32x1x
2
2x3x4 +C28x

2
2x3x4x5 +C30x1x2x6 +C24x2x5x6 +C31x1x2x3x7

+C26x2x3x5x7 +C29x
2
2x3x

2
4x8 +C25x2x4x6x8 +C27x2x3x4x7x8

+C22x6x7x8 +C23x3x
2
7x8

(11.11)

The algebraic subvariety C10 is now given by

C10 = {p ∈XΣ , s̃1 (p) = s̃2 (p) = s̃3 (p) = 0} (11.12)

The 32-parameters Ci that appear in the sections s̃i are thus identified as a redundant
description of the complex structure of C10. A priori any of these parameters can
take any value in C. However, recall that they are subject to the condition that the
algebraic subvariety C10 is smooth and of codimension 3.
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Space Basis Dimension

P1

⎛
⎜
⎝

0
0

A1
x7

x1x4x5

⎞
⎟
⎠

1

P2

⎛
⎜
⎝

0
A2x2x6

0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
A3x2x3x7

0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
A4x2

2x3x4
0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
0

A5

⎞
⎟
⎠

4

P3 A16x1x2
2x3x4 + A12x2

2x3x4x5 + A14x1x2x6 + A8x2x5x6 +
A15x1x2x3x7 + A10x2x3x5x7 + A13x2

2x3x2
4x8 + A9x2x4x6x8 +

A11x2x3x4x7x8 +A6x6x7x8 +A7x3x2
7x8

11

Table 11.1.: Non-trivial ambient space cohomologies in the computation of the coho-
mologies of OXΣ (2, 1, 2, 1)∣C10

, their bases and dimensions.

11.3.2. The Ambient Space Cohomologies
For this particular situation the Koszul resolution is given by

0→ L′ → V2 → V1 → L→ L∣C10
→ 0 (11.13)

where

• L′ = OXΣ (−4,−3,−1,−1)

• V2 = OXΣ (−1,−1, 0, 0)⊕OXΣ (−3,−2,−1,−1)⊕OXΣ (−2,−2, 1, 0)

• V1 = OXΣ (−1,−1, 1, 0)⊕OXΣ (1, 0, 2, 1)⊕OXΣ (0, 0, 0, 0)

• L = OXΣ (2, 1, 2, 1)

The cohomologies of these bundles are easily computed by our Mathematica notebook
from Appendix E. We list the non-trivial cohomology classes in Table 11.1 and use
them to neatly organise the ambient space cohomologies in Table 11.2.

11.3.3. Computation Of The First Short Exact Sequence
Remark:
Recall that the first short exact sequence resulting from the splitting of the Koszul
resolution looks like

0→ L′ → V2 → I1 → 0 (11.14)

with the auxillary sheaf I1. Our first task is therefore to learn how to compute the
cohomologies of I1 from the cohomologies of L′, V2 and knowledge about the map
L′ → V2.
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L′ 0 0 0 0 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0⊕ 0⊕ 0 0⊕ 0⊕ 0 P1 0⊕ 0⊕ 0 0⊕ 0⊕ 0
↓ ↓ ↓ ↓ ↓ ↓
V1 P2 0⊕ 0⊕ 0 0⊕ 0⊕ 0 0⊕ 0⊕ 0 0⊕ 0⊕ 0
↓ ↓ ↓ ↓ ↓ ↓
L P3 0 0 0 0

H0 H1 H2 H3 H4

Table 11.2.: Ambient space cohomologies in the computation of the cohomologies of
OXΣ (2, 1, 2, 1)∣C10

.

Claim:
Let 0 → F1 → F2 → F3 → 0 a short exact sequence of coherent sheaves on a complex
and compact manifold X. Then the finiteness theorem tells us that the cohomology
groups of these sheaves are finite dimensional vector spaces. Moreover we know that
there exists a long exact sequence in these cohomologies which looks as follows

..

..0 ..H0(X,F1) ..H0(X,F2) ..H0(X,F3)

. ..H1(X,F1) ..H1(X,F2) ..H1(X,F3)

. ..H2(X,F1) ..H2(X,F2) ..H2(X,F3)

. .. . ..

. ..Hn(X,F1) ..Hn(X,F2) ..Hn(X,F3)

.

α0

.

β0

.

δ0

.

α1

.

β1

.
δ1

.α2 . β2.

αn

.

βn

Given this situation we claim the following.

H i (X,F3) ≅ coker (αi)⊕ ker (αi+1) (11.15)

Proof
For simplicity we perform the proof for i = 0. We thus consider the finite dimensional
complex vector space H0 (X,F3). By means of the vector space homomorphism

δ0∶H0 (X,F3)→H1 (X,F1) (11.16)

we have the natural isomorphism

H0 (X,F3) ≅ ker (δ0)⊕ im (δ0) (11.17)

By means of exactness we have ker (δ0) ≅ im (β0). From the natural ismorphism

H0 (X,F2) ≅ ker (β0)⊕ im (β0) (11.18)
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..

Fj

. H i.

0

.

0

.

0

.

0

.

H0 (X,F1)

.

H1 (X,F1)

.

H2 (X,F1)

.

H3 (X,F1)

.

H0 (X,F2)

.

H1 (X,F2)

.

H2 (X,F2)

.

H3 (X,F2)

.

0

.

0

.

0

.

0

.

α0

.

α1

.

α2

.

α3

Figure 11.1.: Given a short exact sequence 0 → F1
α→ F2 → F3 → 0, the cohomologies

of F3 can be computed from the cohomologies of F1 and F2 and the mappings on their
cohomologies as induced from the sheaf homomorphism α. To this end one computes
the cohomologies of the vertical complexes. Denoting the resulting cohomology class
at position (i, j) by Eij one obtains H i (X,F3) ≅ Ei,0 ⊕Ei+1,1.

we consequently find
H0 (X,F3) ≅ coker (α0)⊕ im (δ0) (11.19)

By using the exactness property at H1 (X,F1) we finally obtain the result. ∎

Consequence:
This result enables us to compute the cohomologies of the sheaf I1 as defined by the
short exact sequence

0→ L′ → V2 → I1 → 0 (11.20)

from knowledge of the cohomology classes of L′ and V2 and the mapping between
these classes. We depicture the result of this consideration in Figure 11.1.

Consequence:
For the calculation of the cohomologies of the auxillary sheaf I1 as defined by the
short exact sequence

0→ L′ → V2 → I1 → 0 (11.21)
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..

Fj

. H i.

0

.

0

.

0

.

0

.

0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P1

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

α0

.

α1

.

α2

.

α3

.

α4

Figure 11.2.: Sheet describing the first short exact sequence 0 → L′ → V2 → I1 → 0
for the computation of line bundle cohomology on C10.

we have to consider the sheet as given in Figure 11.2. Note that from the Koszul
complex we have

αi∶H i (XΣ,L′)→H i (XΣ,V2) , [t]↦
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

s̃1
−s̃2
s̃3

⎞
⎟
⎠
⋅ t
⎤⎥⎥⎥⎥⎥⎦

(11.22)

Consequently it follows

H i (XΣ,I1) = (0⊕ 0⊕ 0, 0⊕ 0⊕ 0, P1, 0⊕ 0⊕ 0, 0⊕ 0⊕ 0) (11.23)

where P1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0
0

A1 ⋅ x7
x1x4x5

⎞
⎟
⎠

, A1 ∈ C
⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

11.3.4. Computation Of The Second Short Exact Sequence
Remark:
We now have to compute the cohomologies of the auxillary sheaf I2 defined by the
short exact sequence

0→ I1 → V1 → I2 → 0 (11.24)
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..

Fj

. H i.

0

.

0

.

0

.

0

.

0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P1

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P2

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0

.

0

.

0

.

0

.

0

.

β0

.

β1

.

β2

.

β3

.

β4

Figure 11.3.: Sheet describing the second short exact sequence 0→ I1 → V1 → I2 → 0
for the computation of line bundle cohomology on C10.

With the result from the above calculation we can organise the corresponding sheet
as outlined in Figure 11.3. Note also that we found a canonical isomorphism

H i (XΣ,I1) ≅H i (XΣ,V2) (11.25)

Consequently the maps βi are just the ones induced from the map in the Koszul
sequence, that is we have

βi∶H i (XΣ,I1)→H i (XΣ,V2) ,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 −s̃3 −s̃2
−s̃3 0 s̃1
s̃2 s̃1 0

⎞
⎟
⎠
⋅
⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(11.26)

Comment:
Let us look at the map β2 in more detail. Recall that we have

β2∶P1 → 0⊕ 0⊕ 0 ,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0
0

A1x7
x1x4x5

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 −s̃3 −s̃2
−s̃3 0 s̃1
s̃2 s̃1 0

⎞
⎟
⎠
⋅
⎛
⎜
⎝

0
0

A1x7
x1x4x5

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(11.27)

On a first glance this might look worrying, since in general

v =
⎛
⎜
⎝

−s̃2 ⋅A1 ⋅ x7
x1x4x5

s̃1 ⋅A1 ⋅ x7
x1x4x5

0

⎞
⎟
⎠
∉ 0⊕ 0⊕ 0 (11.28)
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Whilst this holds true, the crucial insight is that we use Čech cochains to represent
equivalence classes of Čech cochains, namely Čech cocycles, and induce maps of
Čech cocycles from maps of Čech cochains. As well-definedness of β2 follows from
the well-definedness of the sheaf homomorphism

β∶V2 → V1 (11.29)

as outlined in section 11.2, we must thus conclude that the non-zero vector v describes
the same equivalence class of Čech cochains in H2 (XΣ,V1) as does the cochain 0⊕0⊕0.
In particular we note that any element in H2 (XΣ,I1) is mapped to 0⊕0⊕0, so that

ker (β2) =H2 (XΣ,I1) , coker (β2) ≅ 0⊕ 0⊕ 0 (11.30)

Consequence:
The cohomologies of I2 are now easily obtained as

• H0 (XΣ,I2) ≅ P2

• H1 (XΣ,I2) ≅ P1

• H2 (XΣ,I2) ≅ 0⊕ 0⊕ 0

• H3 (XΣ,I2) ≅ 0⊕ 0⊕ 0

• H4 (XΣ,I2) ≅ 0⊕ 0⊕ 0

11.3.5. Computation Of The Third Short Exact Sequence
Remark:
Finally, we can compute the cohomologies of L∣C10

. Recall that this is achieved via
the third short exact sequence which takes the form

0→ I2 → L→ L∣C10
→ 0 (11.31)

With the cohomologies for I2 we can organise the calculation in the sheet given in
Figure 11.4. Note that

H0 (XΣ,I2) ≅H0 (XΣ,V1) (11.32)
Consequently the map γ0 is just given by the one induced from the Koszul complex,
i.e. we have

γ0∶H0 (XΣ,I2)→H0 (XΣ,L) ,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎣
(s̃1, s̃2, s̃3) ⋅

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(11.33)

This also holds true for γ2, γ3 and γ4. Note however that the story is different for
γ1. This is because we have

H1 (XΣ,I2) ≅H1 (XΣ,V2) (11.34)
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..

Fj

. H i.

0

.

0

.

0

.

0

.

0

.

P2

.

P1

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P3

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

γ0

.

γ1

.

γ2

.

γ3

.

γ4

Figure 11.4.: Sheet describing the third short exact sequence 0→ I2 → L→ L∣C10
→ 0

for the computation of line bundle cohomology on C10.

and the Koszul resolution does not include a sheaf homomorphism φ∶V2 → L. This
is the first ’mysterious’ map that we got to see so far. For the application in this
and the following examples however, we will not need to know the details of these
’mysterious maps’. Therefore we decide to remain silent on the details of these maps
now, but will discuss them in section 12.3.

Consequence:
From the sheet in Figure 11.4 we learn that

H0 (C10, L∣C10
) ≅ coker (γ0)⊕ P1 (11.35)

whilst all higher cohomology groups are trivial.

Remark (γ0 As Matrix):
Recall that

P2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0
A2x2x6

0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
A3x2x3x7

0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
A4x2

2x3x4
0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
0

A5

⎞
⎟
⎠

, Ai ∈ C
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(11.36)

From this it is easily found that the map γ0 can be represented by the following
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matrix

Mγ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 C21 C32
0 0 C19 C28

C21 0 0 C30
C19 0 0 C24
0 C21 0 C31
0 C19 0 C26
0 0 C20 C29

C20 0 0 C25
0 C20 0 C27
0 0 0 C22
0 0 0 C23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(11.37)

Comment:
From the above we see how the parameters Ci ∈ C influence the image of γ0 and
thereby also H0 (C10, L∣C10

).
Let us recall that from chapter 9 we know h0 (C10, L∣C10

) = 8. Thus a detailed study
of the allowed values for the parameters Ci, subject to the conditions that C10 is
smooth and of codimension 3, must yield

im (Mγ0) ≅ C4 (11.38)

Whilst we do not perform this analysis in detail, we give an example for a smooth
C10 locus and subsequently introduce the notion of the generic C10-curve.

11.3.6. A Smooth Example

Construction 11.3.1:
We now want to give at least one smooth example. To this end we replace the
coefficients Ci by pseudo-random numbers between 0 and 1. The program Sage
[51] is then used to check if the so-defined C10 curve is smooth and has the correct
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codimension 1. An example of polynomials that define such a C10 locus is as follows.

s̃1 = 0.419639901494x2x3x
3
4x

2
8 + 0.616192161696x1x2x3x

2
4x8 + 0.324512347891x2x3x

2
4x5x8

+ 0.516449982403x3x
2
4x7x

2
8 + 0.689070716759x2

1x2x3x4 + 0.288808226706x1x2x3x4x5

+ 0.208510506734x2x3x4x
2
5 + 0.684379783437x1x3x4x7x8 + 0.37391574191x3x4x5x7x8

+ 0.188034542702x2
4x6x

2
8 + 0.095326756162x2

1x3x7 + 0.811677985296x1x3x5x7

+ 0.818928548878x3x
2
5x7 + 0.492366395328x1x4x6x8 + 0.678754309531x4x5x6x8

+ 0.548248310387x2
1x6 + 0.228988834049x1x5x6 + 0.177375013782x2

5x6

s̃2 = 0.97133169913x4x8 + 0.580078304348x1 + 0.0708936406458x5

s̃3 = 0.451943628152x2
2x3x

2
4x8 + 0.0944105997866x1x

2
2x3x4 + 0.888785313706x2

2x3x4x5

+ 0.448344364944x2x3x4x7x8 + 0.0498775090408x1x2x3x7 + 0.452990860452x2x3x5x7

+ 0.0275749267842x2x4x6x8 + 0.833986475345x3x
2
7x8 + 0.604239004892x1x2x6

+ 0.216791670544x2x5x6 + 0.648429504954x6x7x8

(11.39)

Consequence:
It is not too hard to check that with the above values for the parameters Ci, the
matrix Mγ0 indeed has a four-dimensional kernel. So we find in this smooth example
h0 (C10, L∣C10

) = 8 as expected.

11.3.7. The Generic Pullback Setup
Remark (The Word Generic):
The word generic appears very often in algebraic geometry. Thus it is highly adequate
to explain its precise meaning. To this end we quote [44, pp. 20-21].

“We should mention here a piece of terminology that is pervasive in al-
gebraic geometry: the word generic. When we are dealing with a family
of objects parametrized locally by a complex manifold or an analytic sub-
variety of a complex manifold, the statement that "a (or the) generic
member of the family has a certain property" means exactly that "the set
of objects in the family that do not have that property is contained in a
subvariety of strictly smaller dimension".”

Note:
In our situation, the subvariety C10 is parametrised by points in a certain analytic
subvariety of C32. Note in particular that not every point in C32 corresponds to an
allowed algebraic subvariety C10. This is easily seen as e.g. the origin is not allowed
- it corresponds to the situation where all sections are trivial.
Still in order to demonstrate the meaning of ’generic’ let us for a moment assume

1This is achieved via introducing C10 as algebraic subscheme of XΣ and then checking its smooth-
ness and dimension.
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that in fact all points in C32 were allowed. Then points in

G ∶= {(C1, . . . , C32) ∈ C32 , Ci ≠ Cj∀i ≠ j} (11.40)

were generic in the above sense and one would indeed obtain im (Mγ0) ≅ C4 as
expected.
Yet the situation is much more involved since the points in C32 that correspond to
well-defined pullback setups form proper subsets of C32. Therefore the above naive
guess of ’generic’ does not apply in general.

Remark:
For simplicity we will ignore this issue in the remainder of this thesis and agree on
the following simplified convention.

’Generic pullback setup’: We replace the coefficients Ci by their index i.
Thereby kernel and image of the mapping matrices can be easily computed.
We then term any smooth pullback setup of the correct codimensionality,
such that for any involved mapping matrix the kernel is of the same dimen-
sion as computed by the replacements Ci → i, a generic pullback setup.

Consequence:
In the generic pullback setup, we have ker (Mγ0) ≅ C4.

Note:
Whilst it is very tempting to guess that the above terminology of ’generic’ agrees
with the one given in [44], the author does not know how to proof or disproof this
assertion.

11.4. An Exhaustive Example Continued -
Pullback To C5m

11.4.1. The Defining Polynomials of C5m

Recall that we have to choose holomorphic sections

s̃1 ∈H0 (XΣ,OXΣ (SB3)) , s̃2 ∈H0 (XΣ,OXΣ (SGUT)) , s̃3 ∈H0 (XΣ,OXΣ (S5m))
(11.41)

to define C5m as their common zero locus. By recalling that

SB3 = OXΣ (3, 2, 1, 1) , SGUT = OXΣ (1, 1, 0, 0) , S5m = OXΣ (4, 1, 6, 3) (11.42)
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one computes from the toric data of XΣ a basis of these cohomology groups by means
of our Mathematica notebook displayed in Appendix E. This gives

s̃1 = C18x
2
1x2x3x4 +C14x1x2x3x4x5 +C7x2x3x4x

2
5 +C16x

2
1x6 +C10x1x5x6

+C1x
2
5x6 +C17x

2
1x3x7 +C12x1x3x5x7 +C4x3x

2
5x7 +C15x1x2x3x

2
4x8

+C8x2x3x
2
4x5x8 +C11x1x4x6x8 +C2x4x5x6x8 +C13x1x3x4x7x8

+C5x3x4x5x7x8 +C9x2x3x
3
4x

2
8 +C3x

2
4x6x

2
8 +C6x3x

2
4x7x

2
8

s̃2 = C21x1 +C19x5 +C20x4x8

s̃3 = C22x
2
2x

3
6x7x8 +C23x

2
2x3x

2
6x

2
7x8 +C24x

2
2x

2
3x6x

3
7x8 +C25x

2
2x

3
3x

4
7x8

+C26x
3
2x5x

3
6 +C27x

3
2x4x

3
6x8 +C28x

3
2x3x5x

2
6x7 +C29x

3
2x3x4x

2
6x7x8

+C30x
3
2x

2
3x5x6x

2
7 +C31x

3
2x

2
3x4x6x

2
7x8 +C32x

3
2x

3
3x5x

3
7 +C33x

3
2x

3
3x4x

3
7x8

+C34x
4
2x3x4x5x

2
6 +C35x

4
2x3x

2
4x

2
6x8 +C36x

4
2x

2
3x4x5x6x7 +C37x

4
2x

2
3x

2
4x6x7x8

+C38x
4
2x

3
3x4x5x

2
7 +C39x

4
2x

3
3x

2
4x

2
7x8 +C40x

5
2x

2
3x

2
4x5x6 +C41x

5
2x

2
3x

3
4x6x8

+C42x
5
2x

3
3x

2
4x5x7 +C43x

5
2x

3
3x

3
4x7x8 +C44x

6
2x

3
3x

3
4x5 +C45x

6
2x

3
3x

4
4x8

+C46x1x
3
2x

3
6 +C47x1x

3
2x3x

2
6x7 +C48x1x

3
2x

2
3x6x

2
7 +C49x1x

3
2x

3
3x

3
7

+C50x1x
4
2x3x4x

2
6 +C51x1x

4
2x

2
3x4x6x7 +C52x1x

4
2x

3
3x4x

2
7 +C53x1x

5
2x

2
3x

2
4x6

+C54x1x
5
2x

3
3x

2
4x7 +C55x1x

6
2x

3
3x

3
4

(11.43)

The C5m-curve is now given by

C5m = {p ∈XΣ , s̃1 (p) = s̃2 (p) = s̃3 (p) = 0} (11.44)

The 54 parameters Ci, that appear in the sections s̃i and which give a redundant
description of the complex structure of C5m, are subject to the condition that their
common zero locus is a smooth subvariety of codimension 3 in XΣ.

11.4.2. The Ambient Space Cohomologies
For this particular situation the Koszul resolution is given by

0→ L′ → V2 → V1 → L→ L∣C5m
→ 0 (11.45)

where
• L′ = OXΣ (−6,−3,−5,−3)
• V2 = OXΣ (−3,−1,−4,−2)⊕OXΣ (−5,−2,−5,−3)⊕OXΣ (−2,−2, 1, 0)
• V1 = OXΣ (−1,−1, 1, 0)⊕OXΣ (1, 0, 2, 1)⊕OXΣ (−2, 0,−4,−2)
• L = OXΣ (2, 1, 2, 1)

The cohomologies of these bundles are easily computed by our Mathematica notebook
given in Appendix E. We list the non-trivial cohomology classes in Table 11.3 and
use them to neatly represent the ambient space cohomologies in Table 11.4.
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Space Basis Dimension
P1

A1
x1x2

2x3x4x5x2
6x7x8

+ A2
x1x2

2x2
3x4x5x6x2

7x8
+ A3

x1x3
2x2

3x2
4x5x6x7x8

3

P2

⎛
⎜
⎝

0
0

A4x7
x1x4x5

⎞
⎟
⎠

,
⎛
⎜
⎝

A5
x2x3x6x2

7x8

0
0

⎞
⎟
⎠

2

P3

⎛
⎜
⎝

0
A6x2x6

0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
A7x2x3x7

0

⎞
⎟
⎠

,
⎛
⎜
⎝

0
A8x2

2x3x4
0

⎞
⎟
⎠

3

P4

⎛
⎜
⎝

0
0

A9x4
x2x3x6x2

7

⎞
⎟
⎠

,
⎛
⎜
⎝

0
0

A10
x2

2x3x6x7

⎞
⎟
⎠

,
⎛
⎜
⎝

0
0

A11x5
x2x3x6x2

7x8

⎞
⎟
⎠

,
⎛
⎜
⎝

0
0

A12x1
x2x3x6x2

7x8

⎞
⎟
⎠

4

P5 A13x6x7x8 + A14x3x2
7x8 + A15x2x5x6 + A16x2x4x6x8 +

A17x2x3x5x7+A18x2x3x4x7x8+A19x2
2x3x4x5+A20x2

2x3x2
4x8+

A21x1x2x6 +A22x1x2x3x7 +A23x1x2
2x3x4

11

Table 11.3.: Non-trivial ambient space cohomologies in the computation of the coho-
mologies of OXΣ (2, 1, 2, 1)∣C5m

, their bases and dimensions.

11.4.3. Computation Of The First Short Exact Sequence
Remark:
Recall that the first short exact sequence that results from the splitting of the Koszul
sequence takes the form

0→ L′ → V2 → I1 → 0 (11.46)

with the auxillary sheaf I1. In order to compute the cohomologies of I1 we consider
the sheet given in Figure 11.5 and recall that

αi∶H i (XΣ,L′)→H i (XΣ,V2) , [t]↦
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

s̃1
−s̃2
s̃3

⎞
⎟
⎠
⋅ t
⎤⎥⎥⎥⎥⎥⎦

(11.47)

From this it is readily confirmed that

• H0 (XΣ,I1) ≅ 0⊕ 0⊕ 0

• H1 (XΣ,I1) ≅ 0⊕ 0⊕ 0

• H2 (XΣ,I1) ≅ P2 ≅H2 (XΣ,V2)

• H3 (XΣ,I1) ≅ P1 ≅H3 (XΣ,L′)

• H4 (XΣ,I1) ≅ 0⊕ 0⊕ 0
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L′ 0 0 0 0 P1
↓ ↓ ↓ ↓ ↓ ↓
V2 0⊕ 0⊕ 0 0⊕ 0⊕ 0 P2 0⊕ 0⊕ 0 0⊕ 0⊕ 0
↓ ↓ ↓ ↓ ↓ ↓
V1 P3 0⊕ 0⊕ 0 P4 0⊕ 0⊕ 0 0⊕ 0⊕ 0
↓ ↓ ↓ ↓ ↓ ↓
L P5 0 0 0 0

H0 H1 H2 H3 H4

Table 11.4.: Ambient space cohomologies in the computation of the cohomologies of
OXΣ (2, 1, 2, 1)∣C5m

.

11.4.4. Computation Of The Second Short Exact Sequence
Remark:
We now have to compute the cohomologies of the auxillary sheaf I2 defined by the
short exact sequence

0→ I1 → V1 → I2 → 0 (11.48)

With the result from the above computation we can organise the corresponding sheet
as outlined in Figure 11.6. Note that we have a canonical isomorphism

H i (XΣ,I1) ≅H i (XΣ,V2) (11.49)

for i = 0, 1, 2, 4, so that for these values of i the maps βi are just the ones induced
from the map in the Koszul sequence. Consequently we have for i = 0, 1, 2, 4

βi∶H i (XΣ,I1)→H i (XΣ,V1) ,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 −s̃3 −s̃2
−s̃3 0 s̃1
s̃2 s̃1 0

⎞
⎟
⎠
⋅
⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(11.50)

For β3 however the story is different since we have

H3 (XΣ,I1) ≅H4 (XΣ,L′) (11.51)

and there is no sheaf homomorphism φ∶L′ → V1 in the Koszul resolution. This again
is one of those ’mysterious maps’. However, in the same fashion as we were able to
perform the calculation for C10 we will not need the details of this map here. In
particular it should be clear from Figure 11.6, that we have

• H0 (XΣ,I2) ≅ P3 ≅H0 (XΣ,V1)
• H1 (XΣ,I2) ≅ ker (β2)
• H2 (XΣ,I2) ≅ coker (β2)⊕ P1

• H3 (XΣ,I2) ≅ 0⊕ 0⊕ 0 ≅H3 (XΣ,V1)
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..

Fj

. H i.

0

.

0

.

0

.

0

.

0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P2

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0

.

0

.

0

.

0

.

P1

.

0

.

0

.

0

.

0

.

0

.

α0

.

α1

.

α2

.

α3

.

α4

Figure 11.5.: Sheet describing the first short exact sequence 0 → L′ → V2 → I1 → 0
for the computation of line bundle cohomology on C5m.

• H4 (XΣ,I2) ≅ 0⊕ 0⊕ 0 ≅H4 (XΣ,V1)

Comment:
Let us take a closer look at the map β2. Recall that we have

β2∶P2 → P4
⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

A5
x2x3x6x2

7x8

0
A4x7

x1x4x5

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

↦

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 −s̃3 −s̃2
−s̃3 0 s̃1
s̃2 s̃1 0

⎞
⎟
⎠
⋅
⎛
⎜⎜
⎝

A5
x2x3x6x2

7x8

0
A4x7

x1x4x5

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

(11.52)

On a first glance this might look worrying, since for non-trivial sections s̃1, s̃2, s̃3 the
first two entries will not vanish in general. This however is necessary for the map
β2 to map into P4, as can be seen from Table 11.3. Recall however that we are
mapping equivalence classes of Čech cochains by means of maps of Čech cochains.
Thus we conclude that the first two entries are zero in the codomain with respect to
the equivalence relations in it. Therefore we have

im (β2) = 0⊕ 0⊕ { A5C20x4

x2x3x6x2
7
+ A5C21x1

x2x3x6x2
7x8
+ A5C19x5

x2x3x6x2
7x8

, A5 ∈ C} (11.53)

Note that the mapping depends on the parameters C19, C20 and C21. In terms of
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..

Fj

. H i.

0

.

0

.

0

.

0

.

0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P2

.

P1

.

0⊕ 0⊕ 0

.

P3

.

0⊕ 0⊕ 0

.

P4

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0

.

0

.

0

.

0

.

0

.

β0

.

β1

.

β2

.

β3

.

β4

Figure 11.6.: Sheet describing the second short exact sequence 0→ I1 → V1 → I2 → 0
for the computation of line bundle cohomology on C5m.

matrices we can express this the map β2 as

Mβ2 =
⎛
⎜⎜⎜
⎝

0 0
C20 0
C21 0
C19 0

⎞
⎟⎟⎟
⎠

(11.54)

11.4.5. Computation Of The Third Short Exact Sequence
Remark:
Finally, we can compute the cohomologies of L∣C5m

. Recall that this is achieved via
the short exact sequence

0→ I2 → L→ L∣C5m
→ 0 (11.55)

With the cohomologies for I2 we can organise the calculation in the sheet given in
Figure 11.7. Note that

H0 (XΣ,I2) ≅H0 (XΣ,V1) (11.56)
Consequently the map γ0 is just given by the one induced from the Koszul complex.
Thus we have

γ0∶H0 (XΣ,I2)→H0 (XΣ,L) ,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎣
(s̃1, s̃2, s̃3) ⋅

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(11.57)
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..

Fj

. H i.

0

.

0

.

0

.

0

.

0

.

P3

.

ker (β2)

.

coker (β2)⊕ P1

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P5

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

γ0

.

γ1

.

γ2

.

γ3

.

γ4

Figure 11.7.: Sheet describing the third short exact sequence 0→ I2 → L→ L∣C5m
→ 0

for the computation of line bundle cohomology on C5m.

This does not hold true for γ1 and γ2, but is again the case for the higher maps γ3

and γ4. So the maps γ1 and γ2 are again identified as ’mysterious maps’.

Remark:
The map γ0 is easily evaluated to have the following image

im (γ0) = {A8C21x1x
2
2x3x4 +A8C19x

2
2x3x4x5 +A6C21x1x2x6 +A6C19x2x5x6

+A7C21x1x2x3x7 +A7C19x2x3x5x7 +A8C20x
2
2x3x

2
4x8

+A6C20x2x4x6x8 +A7C20x2x3x4x7x8 , Ai ∈ C}
(11.58)

Hence the image does depend on the paramters C19, C20 and C21, just as does the
map β2. One can also express γ0 as matrix. We leave it to the interested reader to
confirm that this matrix takes the following form.

Mγ0 =
⎛
⎜
⎝

0 0 C21 C19 0 0 0 C20 0 0 0
0 0 0 0 C21 C19 0 0 C20 0 0

C21 C19 0 0 0 0 C20 0 0 0 0

⎞
⎟
⎠

T

(11.59)

Consequence:
Having computed that matrix we can now formulate our result as follows.

• H0 (C5m, L∣C5m
) ≅ coker (γ0)⊕ ker (β2)
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• H1 (C5m, L∣C5m
) ≅ coker (β2)⊕ P1

• All higher cohomology groups are trivial.
Note that this implies

h0 (C5m, L∣C5m
) = 13 − dimC (im (β2)) − dimC (im (γ0))

h1 (C5m, L∣C5m
) = 7 − dimC (im (β2))

(11.60)

Consequently we have just found

χ (C5m, L∣C5m
) = 6 − dimC (im (γ0)) (11.61)

11.4.6. Analysis Of C19, C20 and C21

Remark:
In principle we would now have to analyse under what conditions the common zero
locus of the three sections s̃1, s̃2 and s̃3 is a smooth algebraic subvariety of codi-
mension 3. Given the size of the polynomials s̃i, this however is a laborious task.
Therefore we decide to take a different and minimalist approach, where we make use
of the fact that at least one of the parameters C19, C20, C21 must be non-zero to
ensure that C5m can be of codimension 3.

Consequence:
From the fact that at least one of the parameters C19, C20, C21 is non-zero one
concludes

dimC (im (γ0)) = 3, dimC (im (β2)) = 1 (11.62)
This in turn suffices to deduce

h0 (C5m, L∣C5m
) = 9, h1 (C5m, L∣C5m

) = 6 (11.63)

whilst the higher cohomology classes are trivial.

Note:
This result is in agreement with the one obtained from exactness considerations only.
The latter is listed in Table 9.3.

11.5. An Exhaustive Example Continued -
Pullback To C5H

11.5.1. The Defining Polynomials of C5H

Recall that we have to choose holomorphic sections

s̃1 ∈H0 (XΣ,OXΣ (SB3)) , s̃2 ∈H0 (XΣ,OXΣ (SGUT)) , s̃3 ∈H0 (XΣ,OXΣ (S5H))
(11.64)
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to define C5H as their common zero locus. By recalling that

SB3 = OXΣ (3, 2, 1, 1) , SGUT = OXΣ (1, 1, 0, 0) , S10 = OXΣ (7, 2, 10, 5) (11.65)

one computes from the toric data of XΣ a basis of these cohomology groups by means
of our Mathematica notebook as displayed in Appendix E. This gives
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The C5H-curve is now given by

C5H = {p ∈XΣ , s̃1 (p) = s̃2 (p) = s̃3 (p) = 0} (11.66)

The 177-parameters Ci that appear in the sections s̃i give a redundant description
of the complex structure of C5H . They are subject to the condition that C5H be a
smooth subvariety of codimension 3 in XΣ.

11.5.2. The Ambient Space Cohomologies
For this particular situation the Koszul resolution is given by

0→ L′ → V2 → V1 → L→ L∣C5H
→ 0 (11.67)

where
• L′ = OXΣ (−9,−4,−9,−5)
• V2 = OXΣ (−6,−2,−8,−4)⊕OXΣ (−8,−3,−9,−5)⊕OXΣ (−2,−2, 1, 0)
• V1 = OXΣ (−1,−1, 1, 0)⊕OXΣ (1, 0, 2, 1)⊕OXΣ (−5,−1,−8,−4)
• L = OXΣ (2, 1, 2, 1)
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L′ 0 0 0 0 P1
↓ ↓ ↓ ↓ ↓ ↓
V2 0⊕ 0⊕ 0 0⊕ 0⊕ 0 P2 0⊕ 0⊕ 0 P3
↓ ↓ ↓ ↓ ↓ ↓
V1 P4 0⊕ 0⊕ 0 P5 0⊕ 0⊕ 0 0⊕ 0⊕ 0
↓ ↓ ↓ ↓ ↓ ↓
L P6 0 0 0 0

H0 H1 H2 H3 H4

Table 11.5.: Ambient space cohomologies in the computation of the cohomologies of
OXΣ (2, 1, 2, 1)∣C5H

.

The cohomologies of these bundles are easily computed by our Mathematica notebook
which is outlined in Appendix E. We give bases of the non-trivial ambient space
cohomology groups in Table 11.7, which are then used to display all ambient space
cohomologies in Table 11.5.

11.5.3. Computation Of The First Short Exact Sequence
Remark:
The first short exact sequence that results from splitting of the Koszul resolution is
given by

0→ L′ → V2 → I1 → 0 (11.68)

with the auxillary sheaf I1. The corresponding sheet is given in Figure 11.8. Note
that the only difficulty in determining the cohomologies of I1 is the map α4.

Note:
Recall that the map α4 is given by

α4∶H4 (XΣ,L′)→H4 (XΣ,V2) , [t]↦
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

s̃1
−s̃2
s̃3

⎞
⎟
⎠
⋅ t
⎤⎥⎥⎥⎥⎥⎦

(11.69)

By choosing an appropriate basis of domain and codomain the map α4 can be repre-
sented by the matrix in Figure 11.9. Note that this matrix depends on the parameters
C19, C20 and C21 which will thus determine image and kernel of the map α4.

Consequence:
We conclude from Figure 11.8 that the cohomologies of the auxillary sheaf I1 are
given as

• H0 (XΣ,I1) = 0⊕ 0⊕ 0 ≅H0 (XΣ,V2)
• H1 (XΣ,I1) = 0⊕ 0⊕ 0 ≅H1 (XΣ,V2)
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α2

.
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Figure 11.8.: Sheet describing the first short exact sequence 0 → L′ → V2 → I1 → 0
for the computation of line bundle cohomology on C5H .

• H2 (XΣ,I1) = P2 ≅H2 (XΣ,V2)
• H3 (XΣ,I1) ≅ ker (α4)
• H4 (XΣ,I1) ≅ coker (α4)

11.5.4. Computation Of The Second Short Exact Sequence
Remark:
We now have to compute the cohomologies of the auxillary sheaf I2 defined by the
short exact sequence

0→ I1 → V1 → I2 → 0 (11.70)

With the result from the above calculation we can organise the corresponding sheet
as outlined in Figure 11.11. Recall that we have a canonical isomorphism

H i (XΣ,I1) ≅H i (XΣ,V2) (11.71)

for i = 0, 1, 2. So β3 and β4 are identified as ’mysterious maps’. Note however that
the only non-trivial map is β2. This map in turn is given by

β2∶H2 (XΣ,I1)→H2 (XΣ,V2) ,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 −s̃3 −s̃2
−s̃3 0 s̃1
s̃2 s̃1 0

⎞
⎟
⎠
⋅
⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(11.72)
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Mα4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 C19 0 0 0
0 0 0 0 0 0 C20 0 0 0
0 0 0 C19 0 0 0 0 0 0
0 0 0 C20 0 0 0 0 0 0
0 C19 0 0 0 0 0 0 0 0
0 C20 0 0 0 0 0 0 0 0

C19 0 0 0 0 0 0 0 0 0
C20 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 C19 0 0
0 0 0 0 0 0 0 C20 0 0
0 0 0 0 C19 0 0 0 0 0
0 0 0 0 C20 0 0 0 0 0
0 0 C19 0 0 0 0 0 0 0
0 0 C20 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 C19 0
0 0 0 0 0 0 0 0 C20 0
0 0 0 0 0 C19 0 0 0 0
0 0 0 0 0 C20 0 0 0 0
0 0 0 0 0 0 0 0 0 C19
0 0 0 0 0 0 0 0 0 C20
0 0 0 0 0 0 C21 0 0 0
0 0 0 C21 0 0 0 0 0 0
0 C21 0 0 0 0 0 0 0 0

C21 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 C21 0 0
0 0 0 0 C21 0 0 0 0 0
0 0 C21 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 C21 0
0 0 0 0 0 C21 0 0 0 0
0 0 0 0 0 0 0 0 0 C21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

Figure 11.9.: A matrix representing the map α4 that appears in the calculation of
the first short exact sequence of the pullback cohomology of L = OXΣ (2, 1, 2, 1) onto
C5H .

A simple but cumbersome calculation reveals that β2 can be represented by the
matrix given in Figure 11.10.

Consequence:
The cohomologies of I2 are thus obtained as

• H0 (XΣ,I2) ≅ P4 ≅H0 (XΣ,V1)
• H1 (XΣ,I2) ≅ ker (β2)
• H2 (XΣ,I2) ≅ coker (β2)⊕ ker (α4)
• H3 (XΣ,I2) ≅ coker (α4)
• H4 (XΣ,I2) ≅ 0⊕ 0⊕ 0

11.5.5. Computation Of The Third Short Exact Sequence
Remark:
Finally we can compute the cohomologies of L∣C5H

. Recall that this is achieved via
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Mβ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0 0 C21 0 0 C16 C17
0 0 0 0 C21 0 0 0 0 0 0 C19 0 0 C10 C12
0 0 0 0 C19 0 0 0 0 0 0 C19 0 0 C1 C4
0 0 0 0 0 0 0 0 0 0 C21 0 0 C16 C17 0
0 0 C21 0 0 0 0 0 0 0 C19 0 0 C10 C12 0
0 0 C19 0 0 0 0 0 0 0 0 0 0 C1 C4 0
0 0 0 0 0 0 0 0 0 C21 0 0 C16 C17 0 0

C21 0 0 0 0 0 0 0 0 C19 0 0 C10 C12 0 0
C19 0 0 0 0 0 0 0 0 0 0 0 C1 C4 0 0

0 0 0 0 0 C21 0 0 0 0 0 C20 0 0 C11 C13
0 0 0 0 C20 C19 0 0 0 0 0 C20 0 0 C2 C5
0 0 0 C21 0 0 0 0 0 0 C20 0 0 C11 C13 0
0 0 C20 C19 0 0 0 0 0 0 0 0 0 C2 C5 0
0 0 0 0 0 0 0 0 C21 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 C19 0 0 0 0 0 0 0
0 C21 0 0 0 0 0 0 0 C20 0 0 C11 C13 0 0

C20 C19 0 0 0 0 0 0 0 0 0 0 C2 C5 0 0
0 0 0 0 0 0 0 C21 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 C19 0 0 0 0 0 0 0 0
0 0 0 0 0 0 C21 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 C19 0 0 0 0 0 0 0 0 0
0 0 0 0 0 C20 0 0 0 0 0 0 0 0 C3 C6
0 0 0 C20 0 0 0 0 0 0 0 0 0 C3 C6 0
0 0 0 0 0 0 0 0 C20 0 0 0 0 0 0 0
0 C20 0 0 0 0 0 0 0 0 0 0 C3 C6 0 0
0 0 0 0 0 0 0 C20 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 C20 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 11.10.: The matrix representing the map β2 that appears in the computation
of the second short exact sequence of the pullback cohomologies of L = OXΣ (2, 1, 2, 1)
onto C5H .

the third short exact sequence

0→ I2 → L→ L∣C5H
→ 0 (11.73)

With the cohomologies for I2 we can organise the computation on the sheet given in
Figure 11.12. Note that

H0 (XΣ,I2) ≅H0 (XΣ,V1) (11.74)

Consequently the map γ0 is just given by the one induced from the Koszul complex.
Thus we have

γ0∶H0 (XΣ,I2)→H0 (XΣ,L) ,

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
↦
⎡⎢⎢⎢⎢⎢⎣
(s̃1, s̃2, s̃3) ⋅

⎛
⎜
⎝

t1
t2
t3

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(11.75)

This does not hold for γ1, γ2, γ3 since these maps again fall into the category of
’mysterious maps’. However the map γ4 is induced from the Koszul complex.
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..

Fj

. H i.

0
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0

.

0

.

0

.

0

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

P2

.

ker (α4)

.

coker (α4)

.

P4

.

0⊕ 0⊕ 0

.

P5

.

0⊕ 0⊕ 0

.

0⊕ 0⊕ 0

.

0

.

0

.

0

.

0

.

0

.

β0

.

β1

.

β2

.

β3

.

β4

Figure 11.11.: Sheet describing the second short exact sequence 0→ I1 → V1 → I2 → 0
for the computation of line bundle cohomology on C5H .

Note:
A simple calculation reveals that the map γ0 can be represented by the following
matrix

Mγ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 C21
0 C21 0

C21 0 0
0 0 C20
0 0 C19
0 C20 0
0 C19 0

C20 0 0
C19 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(11.76)

Consequence:
From the above we now conclude that the cohomologies of L∣C5H

are given by

• H0 (C5H , L∣C5H
) = coker (γ0)⊕ ker (β2)

• H1 (C5H , L∣C5H
) = coker (β2)⊕ ker (α4)

• H2 (C5H , L∣C5H
) = coker (α4)
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..

Fj

. H i.

0

.

0

.

0

.

0

.

0

.

P4

.

ker (β2)

.

H2 (XΣ,I2)

.

coker (α4)

.

0⊕ 0⊕ 0

.

P8

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

0

.

γ0

.

γ1

.

γ2

.

γ3

.

γ4

Figure 11.12.: Sheet for the third short exact sequence 0 → I2 → L → L∣C5H
→ 0 for

the computation of line bundle cohomology on C5H . For better readability we have
set H2 (XΣ,I2) ≅ coker (β2)⊕ ker (α4).

• H3 (C5H , L∣C5H
) = 0

• H4 (C5H , L∣C5H
) = 0

Remark:
In principle the story ends here, and one has to go back to the sections s̃i. The condi-
tion that their common zero locus has to be a smooth subvariety of codimension 3 in
XΣ places constraints on the parameters Ci. Having chosen a set of such parameters
one can then use the above analysis to determine the cohomologies of the pullback
line bundle L∣C5H

.
Unfortunately it is a cumbersome exercise to determine which values of the param-
eters Ci meet this requirements, in particular given the length of the polynomials
s̃i. Therefore we will take a minimalistic approach in which we make use of the fact
that all three sections s̃i must be non-trivial to allow C5H to be of codimension 3.
This alone will already allow us to improve the bounds for the dimensions of the
cohomology groups of L∣C5H

that we obtained in chapter 9.

11.5.6. Analysis Of The Parameters Ci

Remark:
Recall that at least one of the parameters C19, C20, C21 is non-zero in order to ensure

105/277



CHAPTER 11. LERAY PROPERTY AND INDUCED COHOMOLOGY MAPS

that s̃2 is non-trivial. This implies

im (α4) ≅ C10, ker (α4) ≅ C24 (11.77)

In particular this implies that H2 (C5H , L∣C5H
) = 0 as expected from the finiteness

theorem. In addition the fact that at least one of the parameters C19, C20, C21 is
non-zero does imply

im (γ0) ≅ C3 (11.78)

Consequence:
From this observation alone we conclude

• h0 (C5H , L∣C5H
) = 25 − im (β2)

• h1 (C5H , L∣C5H
) = 54 − im (β2)

• h2 (C5H , L∣C5H
) = h3 (C5H , L∣C5H

) = h4 (C5H , L∣C5H
) = 0

Note:
Having at least one of the parameters C19, C20, C21 non-zero gives 2

12 ≤ dimC (im (β2)) ≤ 16 (11.79)

This then gives 1 ≤ dimC (ker (β2)) ≤ 5 and therefore implies bounds for the dimension
of the pullback cohomology groups according to

• h0 (C5H , L∣C5H
) = 8 + ker (β2)

• h1 (C5H , L∣C5H
) = 37 + ker (β2)

• h2 (C5H , L∣C5H
) = 0

• h3 (C5H , L∣C5H
) = 0

• h4 (C5H , L∣C5H
) = 0

This result improves the bounds that we computed back in chapter 9.

Note:
For the generic pullback setup we find that Mβ2 has one-dimensional kernel. Thus

h0 (C5H , L∣C5H
) = 9, h0 (C5H , L∣C5H

) = 38 (11.80)

11.6. Collection Of Results
We summarise the results from the calculations performed in this chapter in Ta-
ble 11.6. They should be compared to Table 9.3, which lists the results obtained by
use of exactness properties only.

2Linear algebra tells us that row rank and column rank of a matrix are identical.

106/277



CHAPTER 11. LERAY PROPERTY AND INDUCED COHOMOLOGY MAPS

h0 (Ci, L∣P ) h1 (Ci, L∣P ) Parameter range
C10 ’general’ 8 0 0
C10 ’generic’ 8 0 0
C5m ’general’ 9 6 0
C5m ’generic’ 9 6 0
C5H ’general’ 8 +A 37 +A 1 ≤ A ≤ 5
C5H ’generic’ 9 38 0

Table 11.6.: The pullback cohomology dimensions in the exhaustive example as com-
puted by evaluation of the appearing maps. Note that A = dimC (ker (β2)). These
results should be compared to the results obtained from exactness alone. The latter
are summarised in Table 9.3.

Space Basis Dimension
P1

A4
x1x3

2x4
3x4x5x6x5

7x2
8
+ A3

x1x3
2x3

3x4x5x2
6x4

7x2
8
+ A12

x1x4
2x4

3x2
4x5x6x4

7x2
8
+

A2
x1x3

2x2
3x4x5x3

6x3
7x2

8
+ A10

x1x4
2x3

3x2
4x5x2

6x3
7x2

8
+ A18

x1x5
2x4

3x3
4x5x6x3

7x2
8
+

A1
x1x3

2x3x4x5x4
6x2

7x2
8
+ A8

x1x4
2x2

3x2
4x5x3

6x2
7x2

8
+ A16

x1x5
2x3

3x3
4x5x2

6x2
7x2

8
+

A22
x1x6

2x4
3x4

4x5x6x3
7x2

8
+ A6

x1x4
2x3x2

4x5x4
6x7x2

8
+ A14

x1x5
2x2

3x3
4x5x3

6x7x2
8
+

A20
x1x6

2x3
3x4

4x5x2
6x7x2

8
+ A24

x1x7
2x4

3x5
4x5x6x7x2

8
+ A11

x1x4
2x4

3x4x2
5x6x4

7x8
+

A28
x2

1x4
2x4

3x4x5x6x4
7x8
+ A9

x1x4
2x3

3x2
5x2

6x3
7x8
+ A27

x2
1x4

2x3
3x4x5x2

6x3
7x8
+ A17

x1x5
2x4

3x2
4x2

5x6x3
7x8
+

A31
x2

1x5
2x4

3x2
4x5x6x3

7x8
+ A7

x1x4
2x2

3x4x2
5x3

6x2
7x8

+ A26
x2

1x4
2x2

3x4x5x3
6x2

7x8
+

A15
x1x5

2x3
3x2

4x2
5x2

6x2
7x8

+ A30
x2

1x5
2x3

3x2
4x5x2

6x2
7x8

+ A21
x1x6

2x4
3x3

4x2
5x6x2

7x8
+

A33
x2

1x6
2x4

3x3
4x5x6x2

7x8
+ A5

x1x4
2x3x4x2

6x4
6x7x8

+ A25
x2

1x4
2x3x4x5x4

6x7x8
+

A13
x1x5

2x2
3x2

4x2
5x3

6x7x8
+ A29

x2
1x5

2x2
3x2

4x5x3
6x7x8

+ A19
x1x6

2x3
3x3

4x2
5x2

6x7x8
+

A32
x2

1x6
2x3

3x3
4x5x2

6x7x8
+ A23

x1x7
2x4

3x4
4x2

5x6x7x8
+ A34

x2
1x7

2x4
3x5x6x7x8

34
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P2

⎛
⎜
⎝

0
0

A35x7
x1x4x5

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A39

x2x4
3x6x7

7x3
8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A38

x2x3
3x2

6x6
7x3

8
0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A37

x2x2
3x3

6x5
7x3

8
0

⎞
⎟
⎠
+

⎛
⎜
⎝

0
A36

x2x3x4
6x4

7x3
8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

A61x1
x2x3

3x6x6
7x3

8
0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A54x5
x2x3

3x6x6
7x3

8
0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A60x1
x2x2

3x2
6x5

7x3
8

0
0

⎞
⎟
⎠
+

⎛
⎜
⎝

A52x5
x2x2

3x2
6x5

7x3
8

0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A59x1
x2x3x3

6x4
7x3

8
0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A50x5
x2x3x3

6x4
7x3

8
0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A55x4
x2x3

3x6x6
7x2

8
0
0

⎞
⎟
⎠
+

⎛
⎜
⎝

A53x4
x2x2

3x2
6x5

7x2
8

0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A58
x2

2x3
3x6x5

7x2
8

0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A51x4
x2x3x3

6x4
7x2

8
0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

A57
x2

2x2
3x2

6x4
7x2

8
0
0

⎞
⎟
⎠
+

⎛
⎜
⎝

A56
x2

2x3x3
6x3

7x2
8

0
0

⎞
⎟
⎠

17

P3

⎛
⎜
⎝

0
A43

x1x4
2x4

3x4x5x6x4
7x8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A42

x1x4
2x3

3x4x5x2
6x3

7x8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A46

x1x5
2x4

3x2
4x5x6x3

7x8

0

⎞
⎟
⎠
+

⎛
⎜
⎝

0
A41

x1x4
2x2

3x4x5x3
6x2

7x8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A45

x1x5
2x3

3x2
4x5x2

6x2
7x8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A48

x1x6
2x4

3x3
4x5x6x2

7x8

0

⎞
⎟
⎠
+

⎛
⎜
⎝

0
A40

x1x4
2x3x4x5x4

6x7x8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A44

x1x5
2x2

3x2
4x5x3

6x7x8

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A47

x1x6
2x3

3x3
4x5x2

6x7x8

0

⎞
⎟
⎠
+

⎛
⎜
⎝

0
A49

x1x7
2x4

3x4
4x5x6x7x8

0

⎞
⎟
⎠

10

P4

⎛
⎜
⎝

0
A64x2

2x3x4
0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A62x2x6

0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
A63x2x3x7

0

⎞
⎟
⎠

3
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P5

⎛
⎜⎜
⎝

0
0

A94x2
1

x2x3
3x6x6

7x3
8

⎞
⎟⎟
⎠
+
⎛
⎜
⎝

0
0

A87x1x5
x2x3

3x6x6
7x3

8

⎞
⎟
⎠
+
⎛
⎜⎜
⎝

0
0

A71x2
5

x2x3
3x6x6

7x3
8

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0
0

A93x2
1

x2x2
3x2

6x5
7x3

8

⎞
⎟⎟
⎠
+

⎛
⎜
⎝

0
0

A85x1x5
x2x2

3x2
6x5

7x3
8

⎞
⎟
⎠
+
⎛
⎜⎜
⎝

0
0

A68x2
5

x2x2
3x2

6x5
7x3

8

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0
0

A92x2
1

x2x3x3
6x4

7x3
8

⎞
⎟⎟
⎠
+
⎛
⎜
⎝

0
0

A83x1x5
x2x3x3

6x4
7x3

8

⎞
⎟
⎠
+

⎛
⎜⎜
⎝

0
0

A65x2
5

x2x3x3
6x4

7x3
8

⎞
⎟⎟
⎠
+
⎛
⎜
⎝

0
0

A88x1x4
x2x3

3x6x6
7x2

8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A72x4x5
x2x3

3x6x6
7x2

8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A86x1x4
x2x2

3x2
6x5

7x2
8

⎞
⎟
⎠
+

⎛
⎜
⎝

0
0

A69x4x5
x2x2

3x2
6x−75x2

8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A91x1
x2

2x3
3x6x5

7x2
8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A78x5
x2

2x3
3x6x5

7x2
8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A84x1x4
x2x3x3

6x4
7x2

8

⎞
⎟
⎠
+

⎛
⎜
⎝

0
0

A66x4x5
x2x3x3

6x4
7x2

8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A90x1
x2

2x2
3x2

6x4
7x2

8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A76x5
x2

2x2
3x2

6x4
7x2

8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A89x1
x2

2x3x3
6x3

7x2
8

⎞
⎟
⎠
+

⎛
⎜
⎝

0
0

A74x5
x2

2x3x3
6x3

7x2
8

⎞
⎟
⎠
+
⎛
⎜⎜
⎝

0
0

A73x2
4

x2x3
3x6x6

7x8

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0
0

A70x2
4

x2x2
3x2

6x5
7x8

⎞
⎟⎟
⎠
+
⎛
⎜
⎝

0
0

A79x4
x2

2x3
3x6x5

7x8

⎞
⎟
⎠
+

⎛
⎜⎜
⎝

0
0

A67x2
4

x2x3x3
6x4

7x8

⎞
⎟⎟
⎠
+
⎛
⎜
⎝

0
0

A77x4
x2

2x2
3x2

6x4
7x8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A82
x3

2x3
3x6x4

7x8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A75x4
x2

2x3x3
6x3

7x8

⎞
⎟
⎠
+

⎛
⎜
⎝

0
0

A81
x3

2x2
3x2

6x3
7x8

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0

A80
x3

2x3x3
6x2

7x8

⎞
⎟
⎠

30

P6 A105x1x2
2x3x4 + A101x2

2x3x4x5 + A103x1x2x6 + A97x2x5x6 +
A104x1x2x3x7 + A99x2x3x5x7 + A102x2

2x3x2
4x8 + A98x2x4x6x8 +

A100x2x3x4x7x8 +A95x6x7x8 +A96x3x2
7x8

11

Table 11.7.: Non-trivial ambient space cohomologies in the calculation of the coho-
mologies of OXΣ (2, 1, 2, 1)∣C5H

.
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12. The Koszul Spectral Sequence

12.1. Summary
In this chapter we wish to introduce the subject of spectral sequences briefly and
then turn to the Koszul spectral sequence, which allows us to reorganise the above
computations of pullback cohomology. Unfortunately the topic of spectral sequences
is very technical. For this reason the following chapter is probably the most technical
chapter in the entire thesis. The technical reader might want to consult in addition
[58], references therein as well as [52, 44, 66].
In section 12.2 we introduction spectral sequences briefly. The intuitive picture is as
follows.

• Think about a paper stack. On each page we draw the lattice Z2. This we
illustrate in Figure 12.2.

• At page E0 we place at each lattice point (p, q) an Abelian group Ep,q
0 . In

addition we specify a number of horizontal complexes as pictured in Figure 12.3.
• We now compute the cohomologies of these horizontal complexes. These coho-

mology groups are quotients of Abelian groups. We denote the corresponding
quotient at the lattice point (p, q) by Cp,q

0 . Subsequently we place precisely this
cohomology group at the lattice point (p, q) on the sheet E1.

⇒ Roughly speaking the sheet E1 is the cohomology of the sheet E0.
• As a next step we specify complexes on the sheet E1. These are indicated in

Figure 12.3. We again compute their cohomologies and place these cohomology
groups on the sheet E2.

• We specify complexes on the sheet E2 and compute cohomology from those
complexes . . .

In particular it can happen that starting from the sheet Ep all complexes are trivial.
Then the cohomology groups become stable and the sheets Ep, Ep+1, . . . are identical
as long as the Abelian groups on them are concerned. These Abelian groups one
denotes by Ep,q

∞ and says that the spectral sequence converges on the sheet Ep. It
is precisely such a ’limit sheet’ that will tell us about the pullback cohomologies -
namely the ’limit sheet’ of the Koszul spectral sequence.
The Koszul spectral sequence is a special spectral sequence that we introduce in
section 12.3. The crucial point in introducing this spectral sequence is to make use
of the affine open cover U of the smooth and compact normal toric variety XΣ which
allows to compute sheaf cohomology on XΣ from Čech cohomology. Recall that we
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..

. ..0 ..0 ..0 .

..0 ..Č0 (U ,L′) ..Č1 (U ,L′) ..Č2 (U ,L′) ... . .

..0 ..Č0 (U ,Vn−1) ..Č1 (U ,Vn−1) ..Č2 (U ,Vn−1) ... . .

. ..⋮ ..⋮ ..⋮ .

..0 ..Č0 (U ,L) ..Č1 (U ,L) ..Č2 (U ,L) ... . .

..0 ..Č0 (U , L∣C) ..Č1 (U , L∣C) ..Č2 (U , L∣C) ... . .

. ..0 ..0 ..0 .

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

α0

.
β0

.

α1

.
β1

.

α2

.
β2

Figure 12.1.: Double complex from Koszul sequence.

used this already in section 11.1 and section 11.2 where we pointed out that the
maps in the Koszul sequence induce mappings of the Čech cocycles and thereby also
mappings of the Čech cochains. Consequently the Koszul sequence

0→ L′ α→ Vn−1
β→ ⋅ ⋅ ⋅→ V1 → L→ L∣C → 0 (12.1)

allows to consider the commutative double complex given in Figure 12.1 where the
maps αi, βi, . . . are induced from the corresponding mappings in the original Koszul
sequence.
The main result from this chapter is that this double complex induces a spectral
sequence, in that it systematically induces the complexes of the higher sheets, and
that the so-obtained Koszul spectral sequence allows for a systematic computation
of the pullback cohomologies. We give details in section 12.3 and recommend that
also the non-technical reader has a look into this chapter. In particular we indicate
how the above double complex induces a spectral sequence. Unfortunately the in-
duction of the complexes is involved. For this reason section 12.3 only sketches this
construction and we devote the entire chapter chapter 13 on a detailed discussion of
this construction.
We conclude this chapter with example applications of the Koszul spectral sequence.
To this end we work out a simple computation on CP4 from the spectral sequence
perspective in section 12.4 and have a final look at the exhaustive example from
chapter 9 and chapter 11 in section 12.5.
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..

q

. p.

r

.

E1,1
0

.

E1,2
0

.
r = 0

. r = 1.

r = 2

.

r = 3

Figure 12.2.: Organisation of the Abelian groups in a spectral sequence.

12.2. Brief Introduction To Spectral Sequences
Definition 12.2.1 (Cohomology Spectral Sequence):
A (cohomology) spectral sequence is a collection of Abelian groups (Ep,q

r )r,p,q∈Z and
group homomorphisms (dp,q

r )p,q,r∈Z such that
• r labels the sheets, that is we can think of the collection of groups (Ep,q

r ) as
organised in a paper stack. This we picture in Figure 12.2.

• in the r-th sheet there are group homomorphisms

dp,q
r ∶Ep,q

r → Ep+1−r,q−r
r (12.2)

We give pictures of this situation for the sheets E0, E1 and E2 in Figure 12.3. In
particular note that the r-th sheet thus splits up into a collection of complexes.

• The (r + 1)-th sheet is given by the cohomology groups of the complexes (Ep,q
r , dp,q

r )
in the r-th sheet, i.e.

Ep,q
r+1 ∶=

ker (dp,q
r ∶Ep,q

r → Ep+1−r,q−r
r )

im (dr∶Ep+r−1,q+r → Ep,q
r )

(12.3)

Note:

• For our purposes the group Ep,q
r carry more structure than just being an Abelian

group - they are OXΣ-modules. The maps dp,q
r consequently are homomorphisms

of OXΣ-modules.
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..

q

. p

(a) Sheet E0

..

q

. p

(b) Sheet E1

..

q

. p

(c) Sheet E2

Figure 12.3.: Splitting of the sheets E0, E1 and E2 into complexes.

• A first quadrant cohomology spectral sequences is a spectral sequence for which
Ep,q

r = 0 whenever p < 0 or q < 0.
• If the minimum value for r is 1, then we talk about an E1 spectral sequence.

Similarly if r ≥ 2 holds, we term the corresponding cohomology spectral sequence
an E2 spectral sequence.

In the remainder of this thesis we will only consider first quadrant E0 cohomology
spectral sequences.

Definition 12.2.2 (Convergence):
A first quadrant cohomology spectral sequence E0 converges at sheet R precisely if
all the differential maps dp,q

r with r ≥ R vanish identically. We then use the notation

Ep,q
∞ ∶= Ep,q

R (12.4)

Definition 12.2.3 (Convergence):
A first quadrant spectral sequence (Ep,q

r , dp,q
r ) converges to a sequence of Abelian

groups Hk (k ≥ 0) precisely if there exists a filtration

0 = F k+1Hk ⊆ F kHk ⊆ F k−1Hk ⊆ ⋅ ⋅ ⋅ ⊆ F 1Hk ⊆ F 0Hk =Hk (12.5)

of Hk by subgroups such that

Ep,q
∞ ≃

F qHp+q

F p+1Hp+q
(12.6)

Remark:
We will now introduce a special spectral sequence, the Koszul spectral sequence. This
spectral sequence enables us to organise the computation of pullback cohomologies in
a very efficient way. This reorganisation of the pullback computation will in particular
shed light on the origin of the ’mysterious maps’.
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12.3. The Koszul Spectral Sequence
Remark:
Let XΣ a smooth and compact normal toric variety. Moreover let S1, . . . , Sn ∈ Cl (XΣ)
effective divisor classes. We then pick non-trivial holomorphic sections

s̃i ∈H0 (XΣ,OXΣ (Si)) (12.7)

such that their common zero locus

C ∶= {p ∈XΣ , s̃1 (p) = ⋅ ⋅ ⋅ = sn (p) = 0} (12.8)

is a smooth algebraic subvariety of codimension n in XΣ. Finally consider D ∈ Cl (XΣ)
and the associated holomorphic line bundle L = OXΣ (D). Given all that structure
we know that the Koszul resolution

0→ L′ → Vn−1 → ⋅ ⋅ ⋅→ V1 → L→ L∣C → 0 (12.9)

is a sheaf exact sequence. By means of the Leray property of the affine open cover of
XΣ we can then induce maps on the Čech cochains of the vector bundles appearing
in the Koszul resolution. This gives rise to the commutative double complex as given
in Figure 12.4. Note in particular that the columns of this double complex are exact,
as they are stemming from the exact Koszul resolution.

Note:
It is possible to remove the last row from the commutative double complex in Fig-
ure 12.4. The resulting double complex is still commutative, but exactness of the
columns is lost.

Theorem 12.3.1:
The double complex given in Figure 12.5 gives rise to a convergent, first quadrant
E0-spectral sequence with the property

H i (C, L∣C) ≅
∞
⊕
m=0

E∞
i+m,m (12.10)

We term this particular spectral sequence the Koszul spectral sequence.

Proof
We first illustrate how one constructes a spectral sequence from the double complex
in Figure 12.5.

• Sheet E0:
The finite dimensional vector spaces that we put in this sheet are the ones
that appear in Figure 12.5. The differential maps dp,q

0 are the horizontal Čech
coboundaries.
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..

. ..0 ..0 ..0 .

..0 ..Č0 (U ,L′) ..Č1 (U ,L′) ..Č2 (U ,L′) ... . .

..0 ..Č0 (U ,Vn−1) ..Č1 (U ,Vn−1) ..Č2 (U ,Vn−1) ... . .

. ..⋮ ..⋮ ..⋮ .

..0 ..Č0 (U ,L) ..Č1 (U ,L) ..Č2 (U ,L) ... . .

..0 ..Č0 (U , L∣C) ..Č1 (U , L∣C) ..Č2 (U , L∣C) ... . .

. ..0 ..0 ..0 .

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

α0

.
β0

.

α1

.
β1

.

α2

.
β2

Figure 12.4.: The commutative double complex induced from the Koszul resolution
0 → L′ → Vn−1 → ⋅ ⋅ ⋅ → V1 → L → L∣C → 0 by use to the Leray property of the affine
open cover U of the smooth and compact normal toric variety XΣ.

• Sheet E1:
The sheet E1 is obtained by computing the cohomology of the horizontal com-
plexes in the sheet E0. By use of the Leray property of the affine open cover U
of the smooth and compact normal toric variety XΣ, the sheet E1 consequently
looks as outlined in Figure 12.6. Note that the horizontal maps disappeared as
we computed the cohomology of the corresponding complexes. In addition note
that the maps αi, βi, . . . that appear in the sheet E0 give rise to maps between
the cohomology groups of the horizontal E0-complexes. For ease of notation we
will not use different labels for these maps.

• Sheet E2:
The vector spaces in the sheet E2 are obtained from computing the cohomologies
in the sheet E1. Whilst on a first glance there are no maps between the so-
obtained quotients of vector spaces, a more throughout analysis reveals that
this is not true.
To see this consider x ∈ Ep,q

2 . As x represents an equivalence class of elements
in Ep,q

1 one can find a representative x̃ ∈ Ep,q
1 of x. This x̃ in turn represents an

equivalence class of elements in Ep,q
0 . We thus conclude that one can represent

x ∈ Ep,q
2 by very special elements ̃̃x ∈ Ep,q

0 .
In the sheet Ep,q

0 however, we have the vertical and horizontal differential maps.
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..

. ..0 ..0 ..0 .

..0 ..Č0 (U ,L′) ..Č1 (U ,L′) ..Č2 (U ,L′) ... . .

..0 ..Č0 (U ,Vn−1) ..Č1 (U ,Vn−1) ..Č2 (U ,Vn−1) ... . .

. ..⋮ ..⋮ ..⋮ .

..0 ..Č0 (U ,L) ..Č1 (U ,L) ..Č2 (U ,L) ... . .

. ..0 ..0 ..0 .

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.
δ

.

δ

.

δ

.

δ

.

δ

.

α0

.β0 .

α1

.β1.

α2

. β2

Figure 12.5.: The commutative double complex induced from the Koszul resolution
0 → L′ → Vn−1 → ⋅ ⋅ ⋅ → V1 → L → L∣C → 0 which gives rise to a convergent spectral
sequence - the Koszul spectral sequence. The limit of that spectral sequence allows
us to determine the cohomologies of L∣C .

By use of the special properties of ̃̃x, which we decide to remain silent on for
now, a simple diagram chase reveals that it is possible to assign to ̃̃x a very
special element ̃̃y ∈ Ep−1,q−2

0 . This element ̃̃y ∈ Ep−1,p−2
0 in turn, has precisely

the special properties to represent an element y ∈ Ep−1,p−2
0 . This constructs the

’Knight’s move’ 1.
• Higher sheets:

The construction of the differential maps in the higher sheets follows the same
principle.

1. Represent an element x ∈ Ep,q
r by very special elements ̃̃x ∈ Ep,q

0 .
2. Make a diagram chase in the sheet E0 to associate to ̃̃x a new element
̃̃y ∈ Ep+1−r,q−r

0 which has the same special properties as ̃̃x.
3. The special properties of ̃̃y mean that it represents an element y ∈ Ep+1−r,q−r

0 .
4. Finally one defines dp,q

r (x) ∶= y.
Consequently, the above forms a first quadrant E0 spectral sequence. It is clear that
this sequence converges as the first quadrant does only contain a rectangle of finite
size in which the OXΣ-modules are non-trivial.
For the proof that this spectral sequence does converge to OXΣ-modules Ep,q

∞ with
the property H i (C, L∣C) ≅

∞
⊕
m=0

E∞
i+m,m we refer the interested reader to [67]. ∎

1We give more details on this construction in chapter 13.

116/277



CHAPTER 12. THE KOSZUL SPECTRAL SEQUENCE

..

..0 ..0 ..0 .

..H0 (U ,L′) ..H1 (U ,L′) ..H2 (U ,L′) ... . .

..H0 (U ,Vn−1) ..H1 (U ,Vn−1) ..H2 (U ,Vn−1) ... . .

..⋮ ..⋮ ..⋮ .

..H0 (U ,L) ..H1 (U ,L) ..H2 (U ,L) ... . .

..0 ..0 ..0 .

.

α0

.β0 .

α1

.β1 .

α2

. β2

Figure 12.6.: Commuting double complex induced from the Koszul resolution 0 →
L′ → Vn−1 → ⋅ ⋅ ⋅ → V1 → L → L∣C → 0. This complex gives rise to a convergent
spectral sequence. The limit of that spectral sequence allows us to determine the
cohomologies of L∣C .

Remark:
We give more details on the construction of the maps dr with r ≥ 2 later. For example
we discuss the Knight’s move in detail in chapter 13 and formulate a proposal of a
simplified construction of these maps in chapter 14. Note that the maps dr with r ≥ 2
are the ’mysterious maps’.

12.4. An Example On Complex Projective Space

12.4.1. Some Facts About Complex Projective Space
Remark:
We want to illustrate the application of the Koszul spectral sequence with a particu-
larly simple example. In order to do so we consider line bundles on the smooth and
compact normal toric variety CP4. Let us therefore recall a few facts about this toric
variety first.

• We have Σ (1) = {u1, u2, u3, u4, u5} where the ray generators ui ∈ Z4 are given by

u1 = e1, u2 = e2, u3 = e3, u4 = e4, u5 = −e1 − e2 − e3 − e4 (12.11)

In this situation it is straight-forward to extend Σ (1) to a fan Σ, which is
complete and smooth, showing that CP4 is indeed a compact and smooth normal
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toric variety. From this fan the Stanley-Reisner ideal is obtained as

ISR = ⟨x1x2x3x4x5⟩ ⊂ C [x1, x2, x3, x4, x5] (12.12)

• Via the cone-orbit-correspondance there is a unique torus invariant prime divi-
sor associated to each ray generator. These we denote D1, D2, D3, D4 and D5
respectively.

• By recalling that the characters χm are meromorphic functions and thus have a
principal divisor, one easily confirms that [D5] generates the class group of CP4

over Z. Since CP4 is smooth this even gives

Pic (CP4) ≅ Z [D5] (12.13)

It is thus meaningful to refer to a holomorphic line bundle on CP4 by OCP4 (m)
with m ∈ Z.

12.4.2. Setup
Let us now consider the holomorphic line bundles

S1 = OCP4 (1) , S2 = OP4 (1) , S3 = OP4 (1) (12.14)

which all have effective divisor classes. It then easily follows from application of
cohomCalg that the most general global holomorphic sections of these bundles are
given by

• s̃1 = C1x1 +C2x2 +C3x3 +C4x4 +C5x5

• s̃2 = C6x1 +C7x2 +C8x3 +C9x4 +C10x5

• s̃3 = C11x1 +C12x2 +C13x3 +C14x4 +C15x5

where ci ∈ C are arbitary complex numbers. Now we set

C ∶= {p ∈ CP4 , s̃1 (p) = s̃2 (p) = s̃3 (p) = 0} (12.15)

and require that this is a smooth submanifold of codimension 3 in CP4. We now ask
for the cohomology of the holomorphic line bundle L = OCP4 (1) pulled back onto C.

12.4.3. The Koszul Sequence And Koszul Spectral Sequence
In this particular situation the Koszul sequence becomes

0→ L′ → V2 → V1 → L→ L∣C → 0 (12.16)

where
• L′ = OCP4 (−2)
• V2 = OCP4 (−1)⊕OCP4 (−1)⊕OCP4 (−1)
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L′ 0 0 0 0 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0⊕ 0⊕ 0 0⊕ 0⊕ 0 0⊕ 0⊕ 0 0⊕ 0⊕ 0 0⊕ 0⊕ 0
↓ ↓ ↓ ↓ ↓ ↓
V1 P1 0⊕ 0⊕ 0 0⊕ 0⊕ 0 0⊕ 0⊕ 0 0⊕ 0⊕ 0
↓ ↓ ↓ ↓ ↓ ↓
L P2 0 0 0 0

H0 H1 H2 H3 H4

Table 12.1.: Ambient space cohomologies in the computation of an example applica-
tion of the Koszul spectral sequence in CP4.

• V1 = OCP4 (0)⊕OCP4 (0)OCP4 (0)

• L = OCP4 (1)

By means of our Mathematica notebook, which is given in Appendix E, the coho-
mologies of the above line bundles are easily calculated. It turns out that only the
following cohomology groups are non-trivial.

• H0 (CP4,OCP4 (0)) = {a , a ∈ C} ≅ C

⇒ H0 (CP4,V1) ≅ P1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠

, ai ∈ C
⎫⎪⎪⎪⎬⎪⎪⎪⎭
≅ C3

• P2 ∶=H0 (CP4,L) = {
5
∑
i=1

aixi , ai ∈ C} ≅ C5

From this the first sheet of the Koszul spectral sequence is easily obtained. We
present this sheet in Table 12.1. This immediately shows that the spectral sequence
degenerates at sheet E2, so that all we have to do is to compute the map

γ0∶P1 → P4 (12.17)

with the result
H i (C, L∣C) = (coker (γ0) , 0, 0, 0, 0) (12.18)

The map γ0 is easily found to be represented by the matrix

Mγ0 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

c1 c6 c11
c2 c7 c12
c3 c8 c13
c4 c9 c14
c5 c10 c15

⎞
⎟⎟⎟⎟⎟⎟
⎠

(12.19)
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12.5. An Exhaustive Example - Revisited
Remark:
In chapter 9 and chapter 11 we considered a very special set of examples. We now
want to complete these examples by rephrasing them in terms of spectral sequences.
This then shows that these examples are of the simpler kind as they do not require
knowledge about the ’mysterious’ differential maps dr with r ≥ 2. It were those maps,
that we termed ’mysterious’ and decided to remain silent on back in chapter 11.

Note:
The sheet E1 for the three computations is given in Table 11.2, Table 11.4 and
Table 11.5 respectively. From the spectral sequence perspective one then concludes
that for these computations

• indeed only knowledge about the d1 differential maps is required.
• the results from the computations in chapter 11 are reproduced by the use of

the Koszul spectral sequence.
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13. The Knight’s Move

13.1. Summary
In section 12.3 we did not give the full details on the higher maps dp,q

r with r ≥ 2 that
appear in the Koszul spectral sequence. To remedy this we want to use this chapter
to discuss the Knight’s move dp,q

2
1 in detail. We give the general construction of the

Knight’s move in section 13.2 and hope that this exposition is also accessible for the
non-technical reader.
Whilst this general construction works flawless from the theoretical point of view, it
is computationally very elaborate. This is because the general construction requires
knowledge about the the Čech cochains displayed in the sheet E0 of the Koszul spec-
tral sequence. Unfortunately this information is not accessible from the cohomCalg
algorithm but only via the chamber counting approach. The chamber counting in
turn is computationally very elaborate. In particular it is much slower than cohom-
Calg.
To illustrate this point we give an example in section 13.3 which makes use of the
chamber counting approach to compute the E0-sheet. Subsequently we apply the
general strategy from section 13.2 in order to construct the Knight’s move.
After going through this example it should be clear to the reader that a computer-
isation of the general strategy from section 13.2 is very time-consuming both while
programming the algorithm as well as while running the program. For this reason
one can ask the following question.

Suppose we use cohomCalg to compute the E1-sheet directly - is there a way
to construct the maps dr with r ≥ 2 without going back to the E0-sheet in
the Koszul spectral sequence?

We give a hint towards the answer of this question in the example in section 13.3. In
this example we have to construct a Knight’s move

α0
(2)∶P1 → P2 (13.1)

where
• P1 = {A1 ⋅ x4

x5x6
+A2 ⋅ x3

x5x6
, Ai ∈ C} ≅ C2

• P2 = {A3x2x4 +A4x2x3 +A5x1x4 +A6x1x3 , Ai ∈ C} ≅ C4

1In chess the Knight performs precisely the move of the maps dp,q
2 . For that reason the d2-maps

are known as the ’Knight’s move’.
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Let us set
a, b ∈ {1, 2} , i, j ∈ {3, 4} , A, B ∈ {5, 6} (13.2)

Then we can describe the above spaces roughly as

P1 = SiϵAB ⋅
xi

xAxB

, P2 = TiUa ⋅ xixa (13.3)

Consequently both P1 and P2 have tensor properties. Consequently the map α0
(2)

should respect those (anti)-symmetrisation properties. Inducing the map α0
(2) from

the global sections s̃i in the Koszul sequence and in addition asking for respect of the
tensor structures of the spaces P1 and P2 then leads to proposing that polynomially

α0
(2) = x1x5x6 [C4C5 −C3C6] + x2x5x6 [C2C5 −C1C6] (13.4)

We will prove in section 13.4 that in this particular example the proposal is indeed
correct. Motivated from this example we will have much more to say about this
simplified construction in chapter 14.

13.2. General Strategy
Note (The sheets):
We will need to look at the sheets E0, E1 and E2 simultaneously to understand the
construction of the maps d2. To this end we picture these sheets in Figure 13.1,
Figure 13.2 and Figure 13.3.

Construction 13.2.1:
We now wish to map x ∈ ker (β̃2) /im (α̃2) to an element z ∈ ker (ϵ̃1) /im (γ̃1).

1. Note that x ∈ ker (β̃2) /im (α̃2) can be represented by x′ ∈ H2 (XΣ,V3) which
has the property

β̃2 (x′) = 0 (13.5)
But note that H2 (XΣ,V3) = Ȟ2 (U ,V3) where U is the affine open cover of XΣ.
Consequently H2 (XΣ,V3) is a quotient space also. For that reason a general
element in H2 (XΣ,V3) can be expressed by an element in Č2 (U ,V3) which lies in
the kernel of the subsequent Čech differential. Consequently it is not hard to see
that the special element x′ ∈ H2 (XΣ,V3) can be represented by x′′ ∈ Č2 (U ,V3)
which has the following two properties

• δ (x′′) = 0
• ∃y′′ ∈ Č1 (U ,V2) ∶ δ (y′′) = β2 (x′′)

Let us mention that y′′ ∈ Č1 (U ,V2) is unique only up to addition of δ (w) for
w ∈ Č0 (U ,V2).

2. Now we set
z′′ ∶= γ1 (y′′) ∈ Č1 (U ,V1) (13.6)

Note that z′′ is unqiue only up to addition of γ1 ○ δ (w) for w ∈ Č0 (U ,V2).
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..

. ..0 ..0 ..0 .

..0 ..Č0 (U ,L′) ..Č1 (U ,L′) ..Č2 (U ,L′) ... . .

..0 ..Č0 (U ,V3) ..Č1 (U ,V3) ..x′′ ∈ Č2 (U ,V3) ... . .

..0 ..w ∈ Č0 (U ,V2) ..y′′ ∈ Č1 (U ,V2) ..Č2 (U ,V2) ... . .

..0 ..Č0 (U ,V1) ..z′′ ∈ Č1 (U ,V1) ..Č2 (U ,V1) ... . .

..0 ..Č0 (U ,L) ..Č1 (U ,L) ..Č2 (U ,L) ... . .

. ..0 ..0 ..0 .

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.δ .δ . δ. δ.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

δ

.

α0

.
β0

.

γ0

.

ϵ0

.

α1

.
β1

.

γ1

.

ϵ1

.

α2

.
β2

.

γ2

.

ϵ2

Figure 13.1.: The E0-sheet of the Koszul spectral sequence for a codimension 4 locus.
Note that this diagramm is commutative.

3. We now note two important properties of z′′. In order to do so, we make use of
the commutativity of the sheet E0.

• δ (z′′) = δ ○ γ1 (y′′) = γ2 ○ δ (y′′) = γ2 ○ β2 (x′′) = 0.
• ϵ1 (z′′) = ϵ1 ○ γ1 (y′′) = 0. But since 0 ∈ Č0 (U ,L) we thus have

δ (0) = ϵ1 (z′′) (13.7)

These two properties now show, that z′′ gives rise to an element z ∈ ker (γ̃1) /im (β̃1).
It is not too hard to verify that z is well-defined, i.e. independent of changing
z′′ by elements γ1 ○ δ (w).

We conclude that we have just constructed a map

d2∶ker (β̃2) /im (α̃2)→ ker (ϵ̃1) /im (γ̃1) (13.8)

This is the Knight’s move.
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..

..0 ..0 ..0 .

..H0 (XΣ,L′) ..H1 (XΣ,L′) ..H2 (XΣ,L′) ... . .

..H0 (XΣ,V3) ..H1 (XΣ,V3) ..x′ ∈H2 (XΣ,V3) ... . .

..H0 (XΣ,V2) ..H1 (XΣ,V2) ..H2 (XΣ,V2) ... . .

..H0 (XΣ,V1) ..H1 (XΣ,V1) ..H2 (XΣ,V1) ... . .

..H0 (XΣ,L) ..H1 (XΣ,L) ..H2 (XΣ,L) ... . .

..0 ..0 ..0 .

.

α̃0

.
β̃0

.

γ̃0

.

ϵ̃0

.

α̃1

.
β̃1

.

γ̃1

.

ϵ̃1

.

α̃2

.
β̃2

.

γ̃2

.

ϵ̃2

Figure 13.2.: The E1-sheet of the Koszul spectral sequence for a codimension 4 locus.

13.3. An Example With A Simple Knight’s Move
And A Proposal For A Simplified
Construction

13.3.1. An Example With d1-Maps Only

Ambient Space

Let us consider X̃Σ = CP1×CP1 as ambient space. Its toric data is given in Table 13.1.

vertices homogeneous coordinates Q1 Q2 divisor class
(1, 0) x1 1 0 H
(−1, 0) x2 1 0 H
(0, 1) x3 0 1 H ′

(0,−1) x4 0 1 H ′

Table 13.1.: Toric data of X̃Σ = CP1 × CP1. Note that the Stanley-Reisner ideal of
this space is IX̃Σ

= ⟨x1x2, x3x4⟩.
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..

..0 ..0 ..0 .

..ker (α̃0) ..ker (α̃1) ..ker (α̃2) ... . .

..ker (β̃0) /im (α̃0) ..ker (β̃1) /im (α̃1) ..x ∈ ker (β̃2) /im (α̃2) ... . .

..ker (γ̃0) /im (β̃0) ..ker (γ̃1) /im (β̃1) ..ker (γ̃2) /im (β̃2) ... . .

..ker (ϵ̃0) /im (β̃0) ..z ∈ ker (ϵ̃1) /im (β̃1) ..ker (ϵ̃2) /im (β̃2) ... . .

..H0 (XΣ,L) /im (ϵ̃0) ..H1 (XΣ,L) /im (ϵ̃1) ..H2 (XΣ,L) /im (ϵ̃2) ... . .

..0 ..0 ..0 .

Figure 13.3.: The E2-sheet of the Koszul spectral sequence for a codimension 4 locus.
The Knight’s move is given by a dashed line.

Pullback Setup

Now let us consider the effective divisor class S = (1, 0) ∈ Cl (CP1 ×CP1). The most
general element s̃ ∈H0 (X̃Σ,OX̃Σ

(S)) is given by

s̃ = C̃2x1 + C̃1x2 (13.9)

where C̃1, C̃2 ∈ C. Then we consider the algebraic variety

C̃ ∶= {p ∈ X̃Σ , s̃ (p) = 0} (13.10)

Finally we require that C̃1, C̃2 are chosen such that C̃ is an algebraic submanifold of
codimension 1 in X̃Σ.
Given this setup we want to compute the cohomologies of L∣C̃ for L = OXΣ (1, 1).

The E1-Sheet

In this particular situation the Koszul sequence becomes

0→ L′ → L→ L∣C̃ → 0 (13.11)

where L′ = OCP1×CP1 (0, 1). By use of the cohomCalg algorithm one easily computes
the ambient space cohomologies. We list the non-trivial ambient space cohomologies
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Space Basis Dimension
P1 =H0 (X̃Σ,OX̃Σ

(0, 1)) A1 ⋅ x4 +A2 ⋅ x3 2
P2 =H0 (X̃Σ,OX̃Σ

(1, 1)) A3 ⋅ x2x4 +A4 ⋅ x2x3 +A5x1x4 +A6x1x3 4

Table 13.2.: Non-trivial ambient space cohomologies in the simple Knight’s move
example on X̃Σ = CP1 ×CP1.

L′ P1 0 0
↓ ↓ ↓ ↓
L P2 0 0

H0 H1 H2

Table 13.3.: The E1-sheet of the Koszul spectral sequence in the simple Knight’s
move example on X̃Σ = CP1 ×CP1.

in Table 13.2.
Thereby we can neatly organise the ambient space cohomologies in the E1-sheet
of the Koszul spectral sequence which is displayed in Table 13.3. Note that this
spectral sequence does converge on the E2-sheet. By means of the by now familiar
construction of the d1-maps we can represent the map α0 by the following matrix

Mα0 =

⎛
⎜⎜⎜⎜
⎝

C̃1 0
0 C̃1

C̃2 0
0 C̃2

⎞
⎟⎟⎟⎟
⎠

(13.12)

Consequently H0 (C̃, L∣C̃) ≅ coker (Mα0) whilst all higher cohomology classes vanish.

13.3.2. An Example With A Single d2-Map And A Proposal
For This Map

Ambient Space

Now we consider the different ambient space XΣ = CP1 ×CP1 ×CP1. Its toric data is
given in Table 13.4.

Pullback Setup

Now let us consider the effective divisor classes

S1 = (1, 0, 1) , S2 = (0, 0, 1) (13.13)
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ray generators homogeneous coordinates Q1 Q2 Q3 divisor class
(1, 0, 0) x1 1 0 0 H
(−1, 0, 0) x2 1 0 0 H
(0, 1, 0) x3 0 1 0 H ′

(0,−1, 0) x4 0 1 0 H ′

(0, 0, 1) x5 0 0 1 H ′′

(0, 0,−1) x6 0 0 1 H ′′

Table 13.4.: Toric data of XΣ = CP1×CP1×CP1. Note that the Stanley-Reisner ideal
of this space is IXΣ = ⟨x1x2, x3x4, x5x6⟩.

The most general global sections of the associated holomorphic line bundles are given
by

• s̃1 = C4x1x5 +C2x2x5 +C3x1x6 +C1x2x6

• s̃2 = C6x5 +C5x6

where the parameters Ci ∈ C are subject to the conditions that

C ∶= {p ∈XΣ , s̃1 (p) = s̃2 (p) = 0} (13.14)

is an algebraic submanifold of codimension 2 in XΣ.
Given this setup we wish to compute the cohomologies of L∣C for L = OXΣ (1, 1, 0).

Equivalent Setups

It should be apparent that this situation is very similar to that given in subsec-
tion 13.3.1. In particular it is simple to verify that we have a canonical biholomor-
phism C̃ ≅ C precisely if

C̃1 = ϵ (C2C5 −C1C6) , C̃2 = ϵ (C4C5 −C3C6) (13.15)

where ϵ = ±1. We will use this relation momentarily.

The E1-Sheet

For this example the Koszul sequence is given by

0→ L′ → V1 → L→ L∣C → 0 (13.16)

where

• L′ = OXΣ (0, 1,−2)
• V1 = OXΣ (0, 1,−1)⊕OXΣ (1, 1,−1)
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Space Basis Dimension
P1 =H1 (XΣ,L′) A1 ⋅ x4

x5x6
+A2 ⋅ x3

x5x6
2

P2 =H0 (XΣ,L) A3 ⋅ x2x4 +A4 ⋅ x2x3 +A5x1x4 +A6x1x3 4

Table 13.5.: Non-trivial ambient space cohomologies in the simple Knight’s move
example on XΣ = CP1 ×CP1 ×CP1.

L′ 0 P1 0 0
↓ ↓ ↓ ↓ ↓
V1 0 0 0 0
↓ ↓ ↓ ↓ ↓
L P2 0 0 0

H0 H1 H2 H3

Table 13.6.: Ambient space cohomologies in the simple example on XΣ = CP1×CP1×
CP1.

We use the cohomCalg algorithm to compute the ambient space cohomologies and
list the non-trivial ones in Table 13.5. Thereby we can neatly organise the ambient
space cohomologies in the E1-sheet of the Koszul spectral sequence. This sheet we
display in Table 13.6. Note that this spectral sequence does converge on the E3-sheet
and that given the d2-map

α0
(2)∶P1 → P2 (13.17)

we have H0 (C, L∣C) ≅ coker(α0
(2)) whilst all higher cohomology classes do vanish.

Proposal For The d2-Map

We propose that the d2-map α0
(2) is polynomially represented as

α0
(2) = x1x5x6 [C4C5 −C3C6] + x2x5x6 [C2C5 −C1C6] (13.18)

Equivalently it can be given by the following matrix

Mα0
(2)
=
⎛
⎜⎜⎜
⎝

C2C5 −C1C6 0
0 C2C5 −C1C6

C4C5 −C3C6 0
0 C4C5 −C3C6

⎞
⎟⎟⎟
⎠

(13.19)

Consistency Check

Recall that C ≅ C̃ precisely if

C̃1 = ϵ (C2C5 −C1C6) , C̃2 = ϵ (C4C5 −C3C6) (13.20)
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with ϵ = ±1. Then however we have

Mα0
(2)
= ϵ

⎛
⎜⎜⎜⎜
⎝

C̃1 0
0 C̃1

C̃2 0
0 C̃2

⎞
⎟⎟⎟⎟
⎠

(13.21)

which is up to a sign just the matrix Mα0 from subsection 13.3.1. Hence the coho-
mology classes computed from the two setups are precisely the same. Therefore the
above proposal passes this consistency check.
Whilst this simple consistency check is passed, we want to prove that this is indeed
the correct map to consider. To this end we will apply the general strategy of con-
structing the map α0

(2) to this particular situation. The detailed analysis presented
in section 13.4 then finally proves the given proposal.

13.4. Proof Of The Proposal For A Simplified
Construction Of The Knight’s Move In The
Preceeding Example

Remark:
Recall that the general construction of the Knight’s move makes use of the Čech
cochains. To prove the propsal for the d2 in section 13.3 we will therefore need to
compute the Čech cochains and subsequently follow the general construction outlined
in section 13.2. This is what we need the chamber counting for - it allows for the
explicit computation of the Čech cochains and therefore gives more information than
the faster cohomCalg algorithm alone.

13.4.1. Strategy Of The Proof
Our strategy in this proof is as follows.

1. Construct the maximal cones in the fan Σ of XΣ in order to obtain the affine
open cover U .

2. Compute Č i (U ,L′) for 0 ≤ i ≤ 1 where L′ = OXΣ (0, 1,−2).

3. Compute Č0 (U ,V) for V = OXΣ (0, 1,−1)⊕OXΣ (1, 1,−1).

4. Represent the general element in H1 (XΣ,L′) by a special element y ∈ Č1 (XΣ,L′).
5. Find the corresponding element x ∈ Č0 (U ,V) subject to the condition

δ (x) = α1 (y) (13.22)

where δ is the Čech coboundary and α1∶ Č1 (U ,L′)→ Č1 (U ,V) the d1-map given
by (s̃1,−s̃2)T with
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• s̃1 = C4x1x5 +C2x2x5 +C3x1x6 +C1x2x6

• s̃2 = C6x5 +C5x6

6. Subsequently map the element x via the d1-map β0 to z ∈ Č0 (U ,L). As argued
in section 13.2 z will then give rise to an element in H0 (XΣ,L). For this reason
it will give us the d2-map α0

(2) that we are looking for.

13.4.2. The Affine Open Cover
Recall that the toric data of XΣ is given in Table 13.4. In particular we have

ISR = ⟨x1x2, x3x4, x5x6⟩ ⊂ C [x1, x2, x3, x4, x5, x6] (13.23)

and that the ray generators in Z3 are given by

n1 = −n2 = e1, n3 = −n4 = e2, n5 = −n6 = e3 (13.24)

From this we conclude that the maximal cones in Σ are the eight octans in R3 given
by

• σ1 = ⟨n1, n3, n5⟩
• σ2 = ⟨n1, n3, n6⟩
• σ3 = ⟨n1, n4, n5⟩
• σ4 = ⟨n1, n4, n6⟩
• σ5 = ⟨n2, n3, n5⟩
• σ6 = ⟨n2, n3, n6⟩
• σ7 = ⟨n2, n4, n5⟩
• σ8 = ⟨n2, n4, n6⟩

Via the cone-orbit-correspondance the open cover U is now given by

U = {Uσ1 , . . . , Uσ8} (13.25)

13.4.3. Čech Cochains For L′

We consider D = ∑
ρ∈Σ(1)

aρDρ with

a1 = a2 = a4 = a6 = 0, a3 = 1, a5 = −2 (13.26)

Next we introduce the following planes in order to determine the compact chambers
in R3 that we need to take into account in the computation of the Čech cochains.

• E1 = {m ∈ R3 , ⟨m, n1⟩ = −a1} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0
m2
m3

⎞
⎟
⎠
∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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• E2 = {m ∈ R3 , ⟨m, n2⟩ = −a2} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0
m2
m3

⎞
⎟
⎠
∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• E3 = {m ∈ R3 , ⟨m, n3⟩ = −a3} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

m1
−1
m3

⎞
⎟
⎠
∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• E4 = {m ∈ R3 , ⟨m, n4⟩ = −a4} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

m1
0

m3

⎞
⎟
⎠
∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• E5 = {m ∈ R3 , ⟨m, n5⟩ = −a5} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

m1
m2
2

⎞
⎟
⎠
∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• E6 = {m ∈ R3 , ⟨m, n6⟩ = −a6} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

m1
m2
0

⎞
⎟
⎠
∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
These planes separate R3 such that there is only a single compact chamber, namely

C =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0
m2
m3

⎞
⎟
⎠
∈ R3 , −1 ≤m2 ≤ 0, 0 ≤m3 ≤ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(13.27)

Since XΣ is compact it suffices to consider only Laurent monomials that stem from
C.
A simple but tedious computation now determines the Čech cochains. Therefore we
only state the results and leave it to the interested reader to confirm these results.
Let us first introduce the following three spaces

• S0 = {α1
x3
x2

5
+ α2

x4
x2

5
, αi ∈ C}

• S1 = {α1
x3

x5x6
+ α2

x4
x5x6

, αi ∈ C}

• S2 = {α1
x3
x2

6
+ α2

x4
x2

6
, βi ∈ C}

and note that C = S0 ⊕ S1 ⊕ S2 in the meaning that the union of S0, S1 and S2 gives
all Laurent monomials stemming from integral points in C. In an abuse of notion, we
can then write

Č0 (U ,L′) = (S2, S0, S2, S0, S2, S0, S2, S0)
Č1 (U ,L′) = (C, C, C, S2, C, S2, C, C, C, C, S0, C, S0,

C, S2, C, S2, C, C, S0, C, S0, C, S2, C, C, S0, C)
(13.28)

13.4.4. Čech Cohomology For L′

The mappings in the Čech complex

0→ Č0 (U ,L′) δ0→ Č1 (U ,L′) δ1→ . . . (13.29)
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are given by huge matrices which we display in Figure 13.4 and Figure 13.5. From
these mapping matrices Mδ0 and Mδ1 it is not too hard to verify that Ȟ0 (U ,L′) is
trivial, whilst Ȟ1 (U ,L) is spanned over C by the vectors

v1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α
0
α
0
α
0
α
−α
0
−α
0
−α
0
α
0
α
0
α
−α
0
−α
0
α
0
α
−α
0
α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β
0
β
0
β
0
β
−β
0
−β
0
−β
0
β
0
β
0
β
−β
0
−β
0
β
0
β
−β
0
β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(13.30)

where α = x3
x5x6

and β = x4
x5x6

.

13.4.5. Čech Cochains For D = 1 ⋅ [D3] + (−1) ⋅ [D5]
For this divisor only a single compact chamber does exist. This chamber is given by

C =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0
m2
m3

⎞
⎟
⎠

, −1 ≤m2 ≤ 0, 0 ≤m3 ≤ 1
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(13.31)

Let us define
• S̃1 = {α1

x4
x6
+ α2

x3
x6

, αi ∈ C}
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• S̃2 = {α1
x4
x5
+ α2

x3
x5

, αi ∈ C}
Then a simple but tedious computation reveals

Č0 (U ,OXΣ (0, 1,−1)) ≅ S̃1 ⊕ S̃2 ⊕ S̃1 ⊕ S̃2 ⊕ S̃1 ⊕ S̃2 ⊕ S̃1 ⊕ S̃2 (13.32)

In particular one concludes from this result that Ȟ0 (U ,OXΣ (0, 1,−1)) = 0.

13.4.6. Čech Cochains For D = 1 ⋅ [D1] + 1 ⋅ [D3] + (−1) ⋅ [D5]
For this divisor there is again only a single compact chamber. It is given by

C =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

m1
m2
m3

⎞
⎟
⎠

, −1 ≤mi ≤ 0
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(13.33)

We define
• ̃̃S1 = {α1

x2x4
x6
+ α2

x2x3
x6
+ α3

x1x4
x6
+ α4

x1x3
x6

, αi ∈ C}

• ̃̃S2 = {α1
x2x4
x5
+ α2

x2x3
x5
+ α3

x1x4
x5
+ α4

x1x3
x5

, αi ∈ C}
Then one confirmes by a tedious calculation

Č0 (U ,OXΣ (0, 1,−1)) ≅ ̃̃S1 ⊕ ̃̃S2 ⊕ ̃̃S1 ⊕ ̃̃S2 ⊕ ̃̃S1 ⊕ ̃̃S2 ⊕ ̃̃S1 ⊕ ̃̃S2 (13.34)

13.4.7. Čech Cochains For V
It holds Č0 (U ,V) = Č0 (U ,OXΣ (1, 1,−1)) ⊕ Č0 (U ,OXΣ (0, 1,−1)). Thus the results
from subsection 13.4.5 and subsection 13.4.6 determine the Čech cochains of V.

13.4.8. The Knight’s Move
Let us recall that our aim is to construct the map

α0
(2)∶H1 (XΣ,L′)→H0 (XΣ,L) (13.35)

To this end we start with an element in H1 (XΣ,L′). We found in subsection 13.4.4
that this space is spanned over C by v1 and v2. So let us first take care of 1 and take
care of 2 later.
We can consider 1 as an element in Č1 (U ,L′). Our first task is therefore to find an
element y ∈ Č0 (U ,V) such that

δ (y) = α1 (v1) (13.36)

To this end let us define
• x̌1 = −C6x3

x6
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• x̌2 = +C5x3
x5

• ˇ̌x1 = C4x1x3
x6
+ C2x2x3

x6

• ˇ̌x2 = −C3x1x3
x5
− C1x2x3

x5

Then it holds
x̃1 ∶= (x̌1, x̌2, x̌1, x̌2, x̌1, x̌2, x̌1, x̌2)T ∈ Č0 (U ,OXΣ (1, 1,−1))

x̃2 ∶= (ˇ̌x1, ˇ̌x2, ˇ̌x1, ˇ̌x2, ˇ̌x1, ˇ̌x2, ˇ̌x1, ˇ̌x2)
T
∈ Č0 (U ,OXΣ (0, 1,−1))

(13.37)

Consequently y ∶= (x̃1, x̃2)T ∈ Č0 (U ,V). And indeed one readily confirms

δ (( x̃1
x̃2
)) = ( s̃1 ⋅ v1

−s̃2 ⋅ v1
) (13.38)

The next step is consequently to map y ∈ Č0 (U ,V) by means of the map β1 to an
element z ∈ Č0 (U ,L). Recall that β1 is given by (s̃1, s̃2). Thus we have to consider

z = s̃1x̃1 + s̃2x̃2 (13.39)

But z is canonically identified with s̃1x̌1 + s̃2 ˇ̌x1 and an easy computation shows

s̃1x̌1 + s̃2 ˇ̌x1 = x1x3 [C4C5 −C3C6] + x2x3 [C2C5 −C1C6] (13.40)

Indeed one can show that z gives rise to an element in H0 (XΣ,L). This is left for
the interested reader.
In conclusion we have done the following.

• We started with x3
x5x6
∈H1 (XΣ,L′). This rationom is canonically identified with

v1.
• Then we mapped v1 to an element in z ∈ H0 (XΣ,L) which can canonically be

identified with

z = x1x3 [C4C5 −C3C6] + x2x3 [C2C5 −C1C6] (13.41)

We can thus write

z = (x1x5x6 [C4C5 −C3C6] + x2x5x6 [C2C5 −C1C6]) ⋅
x3

x5x6
(13.42)

Finally we have to repeat the above analysis for v2. We leave it to the interested
reader to perform this computation in detail and thereby to confirm that x4

x5x6
gets

mapped to

z′ = (x1x5x6 [C4C5 −C3C6] + x2x5x6 [C2C5 −C1C6]) ⋅
x4

x5x6
(13.43)

In conclusion we can polynomially represent the map α0
(2) by

α0
(2) = x1x5x6 [C4C5 −C3C6] + x2x5x6 [C2C5 −C1C6] (13.44)

This is precisely the proposal given in section 13.3.
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Mδ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
1 0 0 0 −1 0 0 0
1 0 0 0 0 −1 0 0
1 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1
0 1 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 1 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1
0 0 1 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 1 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 1 0 0 0 0 −1
0 0 0 1 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 −1 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 13.4.: Computing the Čech complex for an open cover U with ∣U ∣ = 8, the Čech
coboundary δ0∶ Č0 (U , ⋅)→ Č1 (U , ⋅) is given by the above 8 x 28 matrix.
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Mδ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 13.5.: Computing the Čech complex for an open cover U with ∣U ∣ = 8, the Čech
coboundary δ1∶ Č1 (U , ⋅)→ Č2 (U , ⋅) is given by the above 28 x 56 matrix.
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14. Simplified Construction Of
Higher d-Maps

14.1. Summary
In chapter 13 we learned the general construction of the maps dr with r ≥ 2 in the
Koszul spectral sequence. We also gave a proposal for a simplified Knight’s move
construction in section 13.3 and proved this proposal subsequently in section 13.4.
Our goal in this chapter is to analyse the structure underlying this proposal further.
In particular this analysis will lead to formulate a proposal for simplified construction
of all maps dr with r ≥ 2.
We begin our analysis by introducing the notion of a generlised Flag variety in sec-
tion 14.2. The most prominent example of a Flag variety is CPn. The property that
makes CPn a flag variety is that one can prove [68]

CPn ≅ U (n + 1) / (U (1) ×U (n)) (14.1)

from which a transitive U (1)×U (n)-action on CPn is induced. As a consequence of
this, the theorem of Bott-Borel-Weil implies that the cohomology groups of holo-
morphic line bundles on CPn are classified by representations of the Lie group
U (1) ×U (n) [68].
By means of the Künneth formula this generalises to direct products of CPn. In
particular line bundle cohomology on direct products of CPn is again labeled by rep-
resentations of certain Lie groups. This observation was heavily exploited in [58]
and following works. In particular it is those tensor properties that where present
in the cohomology groups in section 13.3 and lead to the proposal for the simplified
construction of the Knight’s move α0

(2) in section 13.3.
Consequently we might ask if also for more general smooth and compact normal toric
varieties the line bundle cohomology groups are labeled by representations of certain
Lie groups and thus come equipped with a certain tensor structure. This would for
example be the case if we knew that every smooth and compact normal toric variety
indeed formed a generalised Flag varieties.
Proving or disproving his assertion is currently beyond the abilities of the author.
Still, all line bundle cohomology groups presented in this thesis have rationom bases
which naturally lead to such tensor structures in the cohomology groups. As we
only looked at a finite number of cohomology groups in this thesis, this of course
is no proof of the general principle but is enough to formulate the following two
propositions.
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• Every smooth and compact normal toric variety XΣ is a generalised Flag variety.
• The higher dr-maps are the (anti)-symmetrised partitions of the Koszul complex.

The construction of the (anti)-symmetrised partitions of the Koszul complex we de-
scribe in detail in section 14.3. Proving or disproving these statements is left for
future work.

14.2. Generalised Flag Varieties And Toric
Varieties

14.2.1. Homogeneous Spaces
Definition 14.2.1 (G-Space):
Let G a topological group and X a nonempty topological space. Suppose that we
have a continuous map φ∶G→ Aut (X). Then (X, φ) is a G-space.

Example 14.2.1:
Let us consider the group Z2 equipped with the trivial topology. This gives Z2 the
structure of a topological group. Now consider the map

φ∶Z2 → Aut (R) (14.2)

given by

• φ (0) = (R→ R , x↦ 0)
• φ (1) = (R→ R , x↦ 1)

Then this map is continuous and thus gives us a Z2-space (R, φ).

Definition 14.2.2 (Homogeneous G-Space):
A G-space (X, φ) is a homogeneous space precisely if G acts transitively, i.e. the
following property is satisfied

∀x, y ∈X ∃g ∈ G∶ (φ (g)) (x) = y (14.3)

Example 14.2.2:
The above Z2-space (R, φ) is not a homogeneous Z2-space since for any g ∈ Z2 it
holds

2 ∉ (φ (g)) (R) (14.4)

Note however that we can build a homogeneous Z2-space by defining φ′∶Z2 → Aut (R)
as follows

• φ′ (0) = (R→ R , x↦ 0)
• φ′ (1) = (R→ R , x↦ x)
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14.2.2. Generalised Flag Varieties
Definition 14.2.3 (Generalised Flag Variety):
Simply connected, compact, complex, homogeneous G-spaces are termed generalised
Flag varieties or C-spaces.
Remark:
It can be shown [69] that every generalised Flag variety is homeomorphic to a torus
fibration over a certain product of quotient spaces G(C)/H where G(C) is a compact
and simple Lie group, whilst H is a regular semi-simple Lie group. More details can
also be found in [68].
Note:
The Bott-Borel-Weil theorem implies that holomorphic line bundles over a Flag vari-
ety of the form F = G(C)/H are labeled by representations of H [68] [70]. By means
of the Künneth formula this generalises to holomorphic line bundles over products
of Flag varieties.

14.2.3. Toric Varieties As Generalised Flag Varieties
Remark:
Let XΣ a smooth and compact normal toric variety. Then it turns out [52] that XΣ
is already simply connected. Moreover it is a complex manifold. Thus if we knew
that XΣ was for some group action G→ Aut (XΣ) a homogeneous G-space, then we
could conclude that XΣ was a generalised Flag variety. Unfortunately the action of
the algebraic torus (C∗)a does in general not act transitively, but rather there exist
various torus orbits on general smooth and compact normal toric variety [52]. In
particular on CPn there exist multiple such torus orbits. This is easily seen from the
cone-orbit-correspondance and the fact that one can associate to every ray generator
a torus-invariant prime divisor. This observation shows that we have to consider a
different group action. Let us stay with CPn to illustrate this.
Construction 14.2.1:
Let us define the following U (n + 1) group action on CPn

ρU(n+1)∶U (n + 1)→ Aut (CPn) , A↦ (CPn → CPn , x = [x0, . . . , xn]↦ [A ⋅ (x0, . . . , xn)])
(14.5)

Similarly one can define a U (1)×U (n) group action on CPn if we represent elements
in U (1) ×U (n) by block matrices of the form

A = ( eiλ 0
0 B

) ∈ U (1) ×U (n) (14.6)

where B ∈ U (n). Given these group actions one can prove [68] that the isomorphism

CPn ≅ U (n + 1) / (U (1) ×U (n)) (14.7)

induces a transitive group action of U (1) × U (n) on CPn. This establishes CPn as
Flag variety.
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ray generators homogeneous coordinates Q1 Q2 divisor class
(1, 0) x1 1 0 H
(0, 1) x2 1 1 H +E
(−1,−1) x3 1 0 H
(0,−1) x4 0 1 E

Table 14.1.: Toric data of a del Pezzo 1-surface dP1. The Stanley-Reisner ideal is
ISR = ⟨x1x3, x2x4⟩.

Consequence:
Holomorphic line bundles on CPn are hence labeled by representation of the regular
semi-simple Lie group U (1)×U (n). This relationsship was heavily exploited in [58].

Example 14.2.3:
Let us consider CP1 and the line bundle L = OCP1 (2) on CP1. Then it follows from
cohomCalg

H0 (CP1,L) = {α1x
2
1 + α2x1x2 + α3x

2
2 , αi ∈ C} ≅ C3 (14.8)

whilst the higher cohomology classes are all trivial. Now let i, j ∈ {1, 2}. Then we
can describe H0 (CP1,L) by a symmetric tensor Sij, i.e.

H0 (CP1,L) = {Sijxixj} (14.9)

Note:
Let us now look at a del Pezzo 1-surface dP1. Its toric data is given in Table 14.1.
Subsequently let us consider the line bundle L = OdP1 (5,−2). We learned back in
section 6.4

H0 (XΣ,L) = {α1x6
3 + α2x1x5

3 + α3x2
1x

4
3 + α4x3

1x
3
3 + α5x4

1x
2
3 + α6x5

1x3 + α7x6
1

x2x4
, αi ∈ C}

(14.10)
We now set i1, . . . , i6 ∈ {1, 3} and J, K ∈ {2, 4}. Then we observe

Si1...i6 ⋅ ϵJK ⋅
xi1 ⋅ ⋅ ⋅ ⋅ ⋅ xi6

xJxK

(14.11)

where S is a symmetric tensor and ϵ the totally antisymmetric tensor in two dimen-
sions.
This looks as if the cohomology groups of this holomorphic line bundle on dP1 were
also classified by a tensor representation of some possible regular and semi-simple
Lie group. In fact this observation generalises to all line bundle cohomologies on
smooth and compact normal toric varieties that the author got to see to date. This
observation therefore motivates the following proposition.

Proposition:
Every smooth and compact normal toric variety XΣ is a generalised flag variety.
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Remark:
The author would like to emphasize that the above is a proposition and that it is
currently beyond the knowledge of the author to proof or disprove it.

14.3. (Anti-)Symmetrised Partitions Of The
Koszul Complex

Remark:
We have described in chapter 13 the general construction of the maps dr for r ≥ 2
in the Koszul spectral sequence. This procedure involves knowledge about the Čech
cochains as these form the E0-sheet of the Koszul spectral sequence. Unfortunately
their computation takes much longer than the application of cohomCalg. For this
reason it is tempting to compute the sheaf cohomology groups via cohomCalg and
thereby to start the computation at the E1-sheet instead.
This speed advantage comes at the cost that it is impossible to construct the maps dr

with r ≥ 2 via tracing them back onto the E0-sheet as presented out in section 13.2.
For this reason we intent to give a proposition for a different way of constructing
these maps. We start with a few examples and fomulate the general proposition
afterwards.

Note (Codimension 1):
Recall that for the computation of pullback cohomologies on a hypersurface, the
Koszul spectral sequence converges on the E2-sheet. Thus only knowledge about
the d1-maps is needed in this situation. Consequently the computation of pullback
cohomologies on codimension 2 algebraic subvarieties is the simplest situation with
non-trivial d2-maps.

Example 14.3.1 (Codimension 2):
Let XΣ a smooth and compact normal toric variety. Then consider two effective
divisor classes S1, S2 ∈ Cl (XΣ) and pick holomorphic sections s̃i ∈H0 (XΣ,OXΣ (Si))
such that

C ∶= {p ∈XΣ , s̃1 (p) = s̃2 (p) = 0} ⊂XΣ (14.12)

is an algebraic submanifold of codimension 2 in XΣ. Now pick a holomorphic line
bundle L = OXΣ (D) on XΣ for D ∈ Cl (XΣ).
Given this information we know that the E1-sheet of the Koszul spectral sequence
looks as illustrated in Figure 14.1. Also recall

• L′ = OXΣ (D − S1 − S2)
• V1 = OXΣ (D − S2)⊕OXΣ (D − S1)

The Koszul resolution gives us maps
• αi

(1)∶H i (XΣ,L′)→H i (XΣ,V1)

• βi
(1)∶H i (XΣ,V1)→H i (XΣ,L)
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..

..0 ..0 ..0 .

..H0 (XΣ,L′) ..H1 (XΣ,L′) ..H2 (XΣ,L′) ... . .

..H0 (XΣ,V1) ..H1 (XΣ,V1) ..H2 (XΣ,V1) ... . .

..H0 (XΣ,L) ..H1 (XΣ,L) ..H2 (XΣ,L) ... . .

..0 ..0 ..0 .

.
α0
(1)

.

β0
(1)

.
α1
(1)

.

β1
(1)

.
α2
(1)

.

β2
(1)

.α0
(2)

. α1
(2)

Figure 14.1.: The sheet E1 of the Koszul spectral sequence for a codimension 2 locus.
The Knight’s moves αi

(2) to be constructed on the E2-sheet are indicated by dashed
green lines.

We now wish to construct the d2-mappings αi
(2). A natural guess is to consider the

mappings
α̃i
(2)∶H i+1 (XΣ,L′)→H i (XΣ,L) (14.13)

and then to induce from these maps the Knight’s moves on the sheet E2. Therefore
our task has turned into constructing the maps α̃i

(2). A naive guess for these maps
in turn would be to construct them from the global section valued matrix

Mα̃i
(2)
= (s̃1 ⋅ s̃2) (14.14)

We will come back to turning this naive guess into an educated guess momentarily.

Example 14.3.2 (Codimension 3):
We consider precisely the same situation as in the preceeding example, except that we
consider a codimension 3 algebraic variety C ⊂XΣ. Hence we consider three effective
divisor classes S1, S2, S3 ∈ Cl (XΣ) and holomorphic sections s̃i ∈ H0 (XΣ,OXΣ (Si))
such that

C ∶= {p ∈XΣ , s̃1 (p) = s̃2 (p) = 0} ⊂XΣ (14.15)

is an algebraic submanifold of codimension 3 of XΣ. Then the E1-sheet of the Koszul
spectral sequence looks as illustrated in Figure 14.2. Recall in particular that we
have

• L′ = OXΣ (D − S1 − S2 − S3)
• V2 = OXΣ (D − S2 − S3)⊕OXΣ (D − S1 − S3)⊕OXΣ (D − S1 − S2)
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• V1 = OXΣ (D − S1)⊕OXΣ (D − S2)⊕OXΣ (D − S3)
The Koszul resolution gives us maps

• αi
(1)∶H i (XΣ,L′)→H i (XΣ,V2)

• βi
(1)∶H i (XΣ,V2)→H i (XΣ,V1)

• γi
(1)∶H i (XΣ,V1)→H i (XΣ,L)

We now wish to construct the d2-mappings αi
(2), βi

(2) and the d3-mappings αi
(3). Again

we consider the maps
• α̃i

(2)∶H i+1 (XΣ,L′)→H i (XΣ,V1)

• β̃i
(2)∶H i+1 (XΣ,V2)→H i (XΣ,L)

• α̃i
(3)∶H i+2 (XΣ,L′)→H i (XΣ,L)

instead and induce the higher dr-maps from these level E1-mappings. The task of
constructing the mappings α̃i

(2), β̃i
(2) and α̃i

(3) in turn can naively be done by inducing
these mappings from the following global section valued matrices.

Mα̃(2) =
⎛
⎜
⎝

s̃2s̃3
s̃1s̃3
s̃1s̃2

⎞
⎟
⎠

, Mβ̃(2)
= (s̃2s̃3, s̃1s̃3, s̃1s̃2) , Mα̃(3) = (s̃1s̃2s̃3) (14.16)

We now turn this naive guess into an educated guess via the following proposition.

Proposition (Alternative Construction Of Higher d-Maps):
The maps dr with r ≥ 2 in the Koszul spectral sequence are the, up to an overall
minus sign, unique maps which have the following properties.

1. They are induced from mappings on the E1-sheet given by a matrix, whose
entries are products, but no inverses, of the global sections s̃i and which in
addition are (anti)-symmetrised such as to respect the tensor structure of the
corresponding cohomology groups on the E1-sheet.

2. The mappings split the Er-sheet of the Koszul spectral sequence into complexes,
i.e. subsequent application of two neighbouring dr-maps gives the trivial map-
ping.

Definition 14.3.1 ((Anti)-Symmetrised Partitions Of The Koszul Complex):
We term the maps in the preceeding proposition the (anti)-symmetrised partitions
of the Koszul complex.

Example 14.3.3 (Application Of The Proposal):
We illustrate this proposition on the Knight’s move example presented in subsec-
tion 13.3.2. In this example all d1-maps are trivial and we have α̃0

(2) = α0
(2). Hence

the Knight’s move to be constructed is just the map

α0
(2)∶H1 (CP1 ×CP1,L′)→H0 (CP1 ×CP1,L) (14.17)
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..

..0 ..0 ..0 .

..H0 (XΣ,L′) ..H1 (XΣ,L′) ..H2 (XΣ,L′) ... . .

..H0 (XΣ,V2) ..H1 (XΣ,V2) ..H2 (XΣ,V2) ... . .

..H0 (XΣ,V1) ..H1 (XΣ,V1) ..H2 (XΣ,V1) ... . .

..H0 (XΣ,L) ..H1 (XΣ,L) ..H2 (XΣ,L) ... . .

..0 ..0 ..0 .

.

α0
(1)

.β0
(1)

.

γ0
(1)

.

α1
(1)

.β1
(1)

.

γ1
(1)

.

α2
(1)

. β2
(1)

.

γ2
(1)

.
α0
(2)

.
α1
(2)

.

β0
(2)

.

β1
(2)

Figure 14.2.: The sheet E1 of the Koszul spectral sequence for a codimension 3 locus.
The red dashed arrow indicates the d3-map α0

(3), whilst αi
(2) and βi

(2) are the Knight’s
moves on the E2-sheet.

To this end we first consider the global section valued matrix

Mnaive
α0
(2)
= (s̃1 ⋅ s̃2) (14.18)

Secondly we have to make sure that all entries of this matrix respect the tensor
structure of the corresponding cohomology groups. To this end let us recall that

• P1 =H1 (XΣ,L′) = {A1 ⋅ x4
x5x6
+A2 ⋅ x3

x5x6
, Ai ∈ C}

• P2 =H0 (XΣ,L) = {A3 ⋅ x2x4 +A4 ⋅ x2x3 +A5x1x4 +A6x1x3 , Ai ∈ C}
Let us now use the following indices

α ∈ {1, 2} , a ∈ {3, 4} , A ∈ {5, 6} (14.19)

Then we can describe the spaces P1 and P2 via the following tensor structure

P1 = SaϵAB ⋅
xa

xAxB

, P2 = SaTα ⋅ xaxα (14.20)

Consequently a mapping P1 → P2 has to cancel the antisymmetrisation ϵAB. This is
achieved by antisymmetrising s̃1s̃2 with respect to the variables x5 and x6. Let us
perform this in detail. We first recall

s̃1 = (C4x1 +C2x2)x5 + (C3x1 +C1x2)x6, s̃2 = C6x5 +C5x6 (14.21)
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Then one obtains

s̃1s̃2 = (C4x1 +C2x2)C6x
2
5 + (C4x1 +C2x2)C5x5x6 (14.22)

+ (C3x1 +C1x2)C6x5x6 + (C3x1 +C1x2)C5x
2
6 (14.23)

Antisymmetrisation with respect to x5 and x6 rules out the two terms with x2
5 and x2

6.
Hence we conclude that we should consider up to an overall minus sign the matrix

Mfinal
α0
(2)
= ((C4x1 +C2x2)C5x5x6 − (C3x1 +C1x2)C6x5x6) (14.24)

= (x1x5x6 [C4C5 −C3C6] + x2x5x6 [C2C5 −C1C6]) (14.25)

This matrix now induces a map α0
(2) which satisfies the first bullet point in the

proposition of (anti-)symmetrised partitions of the Koszul complex. In addition it is
clear that we obtain a complex by adding the trivial mappings leading to H1 (XΣ,L′)
and away from H0 (XΣ,L) respectively. Thus this is up to an overall minus sign the
unique map described in the proposition.
Comparison with section 13.4 shows that this is indeed the correct Knight’s move
mapping.
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15. Computation Of The E1-Sheet
With Mathematica

15.1. Summary
In this chapter we summarise the commands that are implemented in the Math-
ematica notebook given in Appendix E. This notebook allows for the computa-
tion of the E1-sheet of the Koszul spectral sequence. It is based on the cohomCalg
algorithm [57]. Therefore the C++ program cohomCalg need to be downloaded
from http://wwwth.mpp.mpg.de/members/bjurke/cohomcalg/. The path of the
executable file is needed as input in the Mathematica notebook. Given that the note-
book is run on a Windows system and cohomCalg.exe is placed in the same folder as
the Mathematica notebook, one has to set

cohomCalgExecutable="cohomcalg.exe"

at the very top of the notebook. Subsequently the first two large code blocks have
to be executed. Thereafter all implemented functions can be used.

15.2. Collection Of Implemented Commands

15.2.1. Toric Variety Input
To enter a toric variety the following information is required.

• The homogeneous coordinates. In this notebook they are always taken as xi.
• The scaling relations.
• The Stanley-Reisner ideal.

For example the following command implements CP2 ×CP1 ×CP1.

In[1]:=CP2CP1CP1 = {
(∗Coordinates∗){x1, x2, x3, x4, x5, x6, x7},
(∗Stanley Reisner∗)Map[Variables[#] &, {x1∗x2∗x3, x4∗x5, x6∗x7}],
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(∗Equivalence Relations∗){{1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {0, 1,
0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 1}}

};

It is expected that the input gives a smooth and compact normal toric variety. No
check on this is performed in the notebook. Consequently the user has to make sure
this is the case.

15.2.2. Holomorphic Line Bundles And Divisor Classes
In smooth and compact normal toric varieties both holomorphic line bundles as well
as divisor classes can be specified by an integer valued vector of appropriate length.
Therefore both are entered as such integer valued vectors into the Mathematica note-
book.

15.2.3. Ambient Space Cohomology Computations
Let us compute the cohomologies of the line bundle L = OCP2×CP1×CP1 (1, 0, 0). To
this end we use that we have already implemented CP2 ×CP1 ×CP1 as CP2CP1CP1.
Therefore the following command computes a basis of the cohomology classes.

In[2]:=GetBasisOfLineBundleCohomology[CP2CP1CP1, {1, 0, 0}]
Out[2]={{x3, x2, x1}, {}, {}, {}, {}}

This result says

H0 (CP2 ×CP1 ×CP1,L) = {A1x1 +A2x2 +A3x3 , Ai ∈ C} ≅ C3 (15.1)

and all higher cohomology classes are trivial.
Similarly we can compute the cohomologies of a direct sum of holomorphic line
bundles.

In[3]:=GetBasisOfVectorBundleCohomology[CP2CP1CP1, {{0,0,1},{0,1,0}}]
Out[3]={{{{{x7}, {0}}, {{x6}, {0}}, {{0}, {x5}}, {{0}, {x4}}}, {}}, {{{{0},

{0}}}, {}}, {{{{0}, {0}}}, {}}, {{{{0}, {0}}}, {}}, {{{{0}, {0}}},
{}}}

147/277



CHAPTER 15. COMPUTATION OF THE E1-SHEET WITH MATHEMATICA

This means that on XΣ = CP2×CP1×CP1 the cohomologies of the holomorphic vector
bundle V = OXΣ (0, 0, 1)⊕OXΣ (0, 1, 0) are as follows. We have

H0 (XΣ,V) = {A1 (
x6
0 ) +A2 (

x7
0 ) +A3 (

0
x4
) +A4 (

0
x5
) , Ai ∈ C} ≅ C5 (15.2)

and all higher cohomology classes are trivial.

15.2.4. Computation Of Sheet E1

Let us now turn to the computation of the E1-sheet of the Koszul spectral sequence.
Let us compute the cohomologies of L = OXΣ (1, 1, 0) on the algebraic submanifold
C of codimension 3 in CP2 × CP1 × CP1 which in divisor language is the complete
intersection

C = (1, 0, 0) ∩ (0, 1, 0) ∩ (1, 0, 1) (15.3)

In a first approach we compute only the ambient space cohomologies. This suffices
to plot the E1-sheet. This task is performed by the following command.

In[4]:=DrawFirstSheetWithMaps[CP2CP1CP1, {{1,0,0}, {0,1,0}, {1,0,1}}, {1,1,0},
{{"none"}}]

The output of this command is given in Figure 15.1. From this we see that this
spectral sequence does indeed converge on the sheet E2. In addition only the map
P2 → P3 has to be computed to obtain the pullback cohomology classes. So we
repeat the same computation, but this time we compute the map γ0∶P2 → P3. This
is achieved via the following command.

In[5]:=DrawFirstSheetWithMaps[CP2CP1CP1, {{1,0,0}, {0,1,0}, {1,0,1}}, {1,1,0},
{{3,1}}]

From the output in Figure 15.2 we conclude that the map γ0∶P1 → P2 can be repre-
sented by the matrix

Mγ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1 0 C4 0 0
0 C1 C5 0 0

C2 0 0 C4 0
0 C2 0 C5 0

C3 0 0 0 C4
0 C3 0 0 C5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(15.4)
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This is all the information needed to analyse pullback cohomology dependence on
the parameters Ci ∈ C which give a redundant description of the complex structure
of C. In particular we have

H0 (C, L∣C) ≅ ker (Mγ0) , H i (C, L∣C) = 0 i ≥ 1 (15.5)

Let us mention that the command

In[6]:=DrawFirstSheetWithMaps[CP2CP1CP1, {{1,0,0}, {0,1,0}, {1,0,1}}, {1,1,0},
{{3,1},{2,1}}]

computes the maps at position (3, 1) and (2, 1). Therefore the above command can
be used to compute several mapping matrices in one run. However one can also
compute all maps in one run by use of.

In[7]:=DrawFirstSheetWithMaps[CP2CP1CP1, {{1,0,0}, {0,1,0}, {1,0,1}}, {1,1,0},
{{"all "}}]

It should be mentioned that most of the computational time is used for computing
the mapping matrices. The needed time for determining these matrices grows fast
as the dimensions of the ambient space cohomologies increases. Therefore we advise
the user to apply the following two step procedure.

1. First compute no mapping matrices at all, but only the cohomology groups in
the E1-sheet by use of the option "none".

2. Secondly identify the maps needed for the analysis of the E2-sheet and compute
those maps only.

15.2.5. Application To Model Building
In chapter 16 we give a simple application of the technology of pullback cohomology
computations to model building. Whilst we give a detailed description of the models
there, let us mention that we need the following input for this model.

• A smooth and compact normal toric variety XΣ.
• DB3 ∈ Cl (XΣ).
• DGUT ∈ Cl (XΣ).
• A quasi-divisor-class D with 2D ∈ Cl (XΣ).

So for example for XΣ = CP2×CP1×CP1 we could have DB3 = (1, 2, 1), DGUT = (1, 0, 1)
and D = (−7

2 , 0, 9
2). Then the following command computes the model for us.
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In[8]:=Model[CP2CP1CP1, {1, 2, 1}, {1, 0, 1}, {−7/2, 0, 9/2}]

We display the output in Figure 15.3, Figure 15.4, Figure 15.5, Figure 15.6 and
Figure 15.7.
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In[105]:= DrawFirstSheetWithMaps @CP2CP1CP1, 881, 0, 0<, 80, 1, 0<, 81, 0, 1<<, 81, 1, 0<, 88"none"<<D
Computation started

Section Explicit form Charges

s1 C3 x1 + C2 x2 + C1 x3 81, 0, 0<
s2 C5 x4 + C4 x5 80, 1, 0<
s3 C11 x1 x6 + C9 x2 x6 + C7 x3 x6 + C10 x1 x7 + C8 x2 x7 + C6 x3 x7 81, 0, 1<

Global sections defining the complete intersection subvariety.

Space Basis Equivalence Relations Naive Dimension

P1 :
1

0

0

> 8< 1

P2 :
x5

0

0

,

x4

0

0

,

0

x3

0

,

0

x2

0

,

0

x1

0

> 8< 5

P3 8H x3 x5 L, H x3 x4 L, H x2 x5 L, H x2 x4 L, H x1 x5 L, H x1 x4 L< 8< 6

Rationom spaces in the first sheet of the Koszul spectral sequence.

OH-1,0,-1L 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<<

s3

-s2

s1

not computed not computed not computed not computed not computed

OH0,0,0LÅOH-1,1,-1LÅOH0,0,-1L P1 ::
0

0

0

>, 8<> ::
0

0

0

>, 8<> ::
0

0

0

>, 8<> ::
0

0

0

>, 8<>

-s2 -s3 0

s1 0 -s3

0 s1 s2

not computed not computed not computed not computed not computed

OH0,1,0LÅOH1,0,0LÅOH0,1,-1L P2 ::
0

0

0

>, 8<> ::
0

0

0

>, 8<> ::
0

0

0

>, 8<> ::
0

0

0

>, 8<>

H s1 s2 s3 L not computed not computed not computed not computed not computed

OH1,1,0L P3 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<<
H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

Out[105]= Computation finished after 0.7710441 seconds.

Figure 15.1.: Computation of E1-sheet by Mathematica notebook - map computa-
tions are supressed.
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In[129]:= DrawFirstSheetWithMaps @CP2CP1CP1, 881, 0, 0<, 80, 1, 0<, 81, 0, 1<<, 81, 1, 0<, 883, 1<<D
Computation started

Section Explicit form Charges

s1 C3 x1 + C2 x2 + C1 x3 81, 0, 0<
s2 C5 x4 + C4 x5 80, 1, 0<
s3 C11 x1 x6 + C9 x2 x6 + C7 x3 x6 + C10 x1 x7 + C8 x2 x7 + C6 x3 x7 81, 0, 1<

Global sections defining the complete intersection subvariety.

Space Basis Equivalence Relations Naive Dimension

P1 :
1
0
0

> 8< 1

P2 :
x5
0
0

,
x4
0
0

,
0

x3
0

,
0

x2
0

,
0

x1
0

> 8< 5

P3 8H x3 x5 L, H x3 x4 L, H x2 x5 L, H x2 x4 L, H x1 x5 L, H x1 x4 L< 8< 6

Rationom spaces in the first sheet of the Koszul spectral sequence.

OH-1,0,-1L 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<<

s3
-s2
s1

not computed not computed not computed not computed not computed

OH0,0,0LÅOH-1,1,-1LÅOH0,0,-1L P1 ::
0
0
0

>, 8<> ::
0
0
0

>, 8<> ::
0
0
0

>, 8<> ::
0
0
0

>, 8<>

-s2 -s3 0
s1 0 -s3
0 s1 s2

not computed not computed not computed not computed not computed

OH0,1,0LÅOH1,0,0LÅOH0,1,-1L P2 ::
0
0
0

>, 8<> ::
0
0
0

>, 8<> ::
0
0
0

>, 8<> ::
0
0
0

>, 8<>

H s1 s2 s3 L

C1 0 C4 0 0
0 C1 C5 0 0

C2 0 0 C4 0
0 C2 0 C5 0

C3 0 0 0 C4
0 C3 0 0 C5

not computed not computed not computed not computed

OH1,1,0L P3 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<< 88H 0 L<, 8<<
H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

Out[129]= Computation finished after 0.8600012 seconds.

Figure 15.2.: Computation of E1-sheet by Mathematica notebook - only the impor-
tant map at position (3, 1) was computed.
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CHAPTER 15. COMPUTATION OF THE E1-SHEET WITH MATHEMATICA

In[131]:= Model@CP2CP1CP1, 81, 2, 1<, 81, 0, 1<, 8-7 � 2, 0, 9 � 2<D
Started computation.

Name Charge Random Section

Base 81, 2, 1< 0.809356x1 x42 x6 + 0.146078x2 x42 x6 + 0.0591562x3 x42 x6 +

0.376335x1 x4 x5 x6 + 0.637865x2 x4 x5 x6 + 0.784765x3 x4 x5 x6 +

0.43033x1 x52 x6 + 0.188448x2 x52 x6 + 0.439943x3 x52 x6 + 0.903981x1 x42 x7 +

0.781722x2 x42 x7 + 0.232888x3 x42 x7 + 0.975963x1 x4 x5 x7 + 0.46887x2 x4 x5 x7 +

0.346646x3 x4 x5 x7 + 0.823916x1 x52 x7 + 0.319159x2 x52 x7 + 0.0863057x3 x52 x7

GUT 81, 0, 1< 0.0550177x1 x6 + 0.609207x2 x6 + 0.94568x3 x6 + 0.682536x1 x7 + 0.822599x2 x7 + 0.232181x3 x7

a1 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

a21 83, 0, 1< 0.529199x13 x6 + 0.838528x12 x2 x6 + 0.840043x1 x22 x6 + 0.445524x23 x6 +

0.948063x12 x3 x6 + 0.0943822x1 x2 x3 x6 + 0.330786x22 x3 x6 + 0.453929x1 x32 x6 +

0.737271x2 x32 x6 + 0.460944x33 x6 + 0.456702x13 x7 + 0.657483x12 x2 x7 +

0.372096x1 x22 x7 + 0.270854x23 x7 + 0.306919x12 x3 x7 + 0.647227x1 x2 x3 x7 +

0.180077x22 x3 x7 + 0.036952x1 x32 x7 + 0.653654x2 x32 x7 + 0.326238x33 x7

a32 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

a43 85, 0, 1< 0.710384x15 x6 + 0.916609x14 x2 x6 + 0.756759x13 x22 x6 + 0.559207x12 x23 x6 +

0.576848x1 x24 x6 + 0.371201x25 x6 + 0.823283x14 x3 x6 + 0.133729x13 x2 x3 x6 +

0.760824x12 x22 x3 x6 + 0.220988x1 x23 x3 x6 + 0.396195x24 x3 x6 +

0.815669x13 x32 x6 + 0.0762325x12 x2 x32 x6 + 0.386434x1 x22 x32 x6 +

0.846821x23 x32 x6 + 0.74492x12 x33 x6 + 0.455711x1 x2 x33 x6 + 0.513031x22 x33 x6 +

0.224662x1 x34 x6 + 0.162035x2 x34 x6 + 0.320198x35 x6 + 0.93546x15 x7 +

0.718881x14 x2 x7 + 0.0369824x13 x22 x7 + 0.789456x12 x23 x7 + 0.0807137x1 x24 x7 +

0.739937x25 x7 + 0.523926x14 x3 x7 + 0.26974x13 x2 x3 x7 + 0.0353793x12 x22 x3 x7 +

0.918838x1 x23 x3 x7 + 0.441546x24 x3 x7 + 0.0820188x13 x32 x7 + 0.404392x12 x2 x32 x7 +

0.550655x1 x22 x32 x7 + 0.191122x23 x32 x7 + 0.611362x12 x33 x7 + 0.997466x1 x2 x33 x7 +

0.720157x22 x33 x7 + 0.0434576x1 x34 x7 + 0.536702x2 x34 x7 + 0.993361x35 x7

C10 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

C5m 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

C5H 87, 0, 2< -0.30559x17 x62 - 0.429506x16 x2 x62 - 0.0277435x15 x22 x62 + 0.184965x14 x23 x62 -

0.0524425x13 x24 x62 - 0.218305x12 x25 x62 - 0.182041x1 x26 x62 - 0.0530896x27 x62 -

0.394313x16 x3 x62 - 0.283381x15 x2 x3 x62 + 0.630356x14 x22 x3 x62 + 1.036 x13 x23 x3 x62 +

0.842395x12 x24 x3 x62 + 0.440347x1 x25 x3 x62 + 0.206953x26 x3 x62 - 0.62072x15 x32 x62 +

0.701849x14 x2 x32 x62 + 0.739129x13 x22 x32 x62 + 1.00504x12 x23 x32 x62 +

0.0294108x1 x24 x32 x62 + 0.177674x25 x32 x62 - 0.517135x14 x33 x62 +

0.473963x13 x2 x33 x62 + 1.07212x12 x22 x33 x62 + 0.263449x1 x23 x33 x62 +

0.422661x24 x33 x62 + 0.115898x13 x34 x62 + 0.140353x12 x2 x34 x62 + 0.522825x1 x22 x34 x62 +

0.674321x23 x34 x62 + 0.128017x12 x35 x62 + 0.142336x1 x2 x35 x62 + 0.22277x22 x35 x62 +

0.148215x1 x36 x62 + 0.221444x2 x36 x62 + 0.162563x37 x62 - 0.535026x17 x6 x7 -

0.271346x16 x2 x6 x7 + 0.836493x15 x22 x6 x7 + 1.01847x14 x23 x6 x7 + 1.34652x13 x24 x6 x7 +

0.435864x12 x25 x6 x7 + 0.500435x1 x26 x6 x7 + 0.102052x27 x6 x7 - 0.698735x16 x3 x6 x7 -

0.547846x15 x2 x3 x6 x7 + 0.772938x14 x22 x3 x6 x7 + 1.08812x13 x23 x3 x6 x7 +

0.812676x12 x24 x3 x6 x7 - 0.417988x1 x25 x3 x6 x7 - 0.0626312x26 x3 x6 x7 -

0.831582x15 x32 x6 x7 + 0.411994x14 x2 x32 x6 x7 + 1.33165x13 x22 x32 x6 x7 +

0.985085x12 x23 x32 x6 x7 + 0.339257x1 x24 x32 x6 x7 + 0.126454x25 x32 x6 x7 -

0.522241x14 x33 x6 x7 - 0.353962x13 x2 x33 x6 x7 + 0.137949x12 x22 x33 x6 x7 +

0.63582x1 x23 x33 x6 x7 + 0.569253x24 x33 x6 x7 - 0.196679x13 x34 x6 x7 +

0.280202x12 x2 x34 x6 x7 - 0.485726x1 x22 x34 x6 x7 + 0.310395x23 x34 x6 x7 -

0.753854x12 x35 x6 x7 - 0.307724x1 x2 x35 x6 x7 + 0.174523x22 x35 x6 x7 - 0.603937x1 x36 x6 x7 +

0.312672x2 x36 x6 x7 + 0.0898299x37 x6 x7 - 0.144589x17 x72 - 0.0175113x16 x2 x72 +

0.490579x15 x22 x72 + 0.738952x14 x23 x72 + 0.92061x13 x24 x72 + 0.412399x12 x25 x72 +

0.117152x1 x26 x72 + 0.06701x27 x72 - 0.394204x16 x3 x72 - 0.560141x15 x2 x3 x72 +

0.381174x14 x22 x3 x72 + 0.491803x13 x23 x3 x72 + 0.00612297x12 x24 x3 x72 +

0.089792x1 x25 x3 x72 - 0.508529x26 x3 x72 - 0.570922x15 x32 x72 - 0.000798621x14 x2 x32 x72 +

0.669647x13 x22 x32 x72 - 0.203938x12 x23 x32 x72 - 0.0957055x1 x24 x32 x72 -

0.252372x25 x32 x72 - 0.220926x14 x33 x72 + 0.0472718x13 x2 x33 x72 - 0.201172x12 x22 x33 x72 -

0.678661x1 x23 x33 x72 + 0.343708x24 x33 x72 + 0.0546948x13 x34 x72 - 0.414094x12 x2 x34 x72 -

0.785641x1 x22 x34 x72 - 0.229731x23 x34 x72 - 0.601563x12 x35 x72 - 0.829329x1 x2 x35 x72 -

0.36404x22 x35 x72 - 0.46628x1 x36 x72 - 0.58937x2 x36 x72 - 0.411845x37 x72

L1 84, 0, -4< -

L2 8-9, 0, 14< -

L3 8-4, 0, 10< -

Global sections defining the complete intersection subvariety.

Start computation on C10 curve

Computation started

OH0,-2,-7L 0 0 6 0 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 15 45 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 0 Ker = 0

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 64 40 0 0

H s1 s2 s3 L Ker = 0 Ker = 19 Ker = 40 Ker = 0 Ker = 0

OH4,0,-4L 0 45 0 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH0,-2,-7L 0 0 0 0 0

s3

-s2

s1

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 0 0 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 4 1 0 0

H s1 s2 s3 L

OH4,0,-4L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 2.9328052 seconds.

Start computation on C5m curve

Computation started

OH-15,-2,11L 0 0 0 1092 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 1014 1599 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 1095 Ker = 0

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 1428 504 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 1008 Ker = 504 Ker = 0

OH-9,0,14L 0 0 420 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-15,-2,11L 0 0 0 0 0

s3

-s2

s1

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 6 3 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 0 0 0

H s1 s2 s3 L

OH-9,0,14L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 1044.4199890 seconds.

Start computation on C5H curve

Computation started

OH-13,-2,6L 0 0 0 462 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 440 530 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 9 Ker = 470 Ker = 0

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 465 60 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 432 Ker = 60 Ker = 0

OH-4,0,10L 0 0 33 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-13,-2,6L 0 0 0 0 0

s3

-s2

s1

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 9 8 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 1 0 0

H s1 s2 s3 L

OH-4,0,10L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 181.1066774 seconds.

Out[131]= Finished the computation after 1229.1178728 seconds.

Figure 15.3.: Computation of the model presented in chapter 16 - page 1.
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CHAPTER 15. COMPUTATION OF THE E1-SHEET WITH MATHEMATICA

In[131]:= Model@CP2CP1CP1, 81, 2, 1<, 81, 0, 1<, 8-7 � 2, 0, 9 � 2<D
Started computation.

Name Charge Random Section

Base 81, 2, 1< 0.809356x1 x42 x6 + 0.146078x2 x42 x6 + 0.0591562x3 x42 x6 +

0.376335x1 x4 x5 x6 + 0.637865x2 x4 x5 x6 + 0.784765x3 x4 x5 x6 +

0.43033x1 x52 x6 + 0.188448x2 x52 x6 + 0.439943x3 x52 x6 + 0.903981x1 x42 x7 +

0.781722x2 x42 x7 + 0.232888x3 x42 x7 + 0.975963x1 x4 x5 x7 + 0.46887x2 x4 x5 x7 +

0.346646x3 x4 x5 x7 + 0.823916x1 x52 x7 + 0.319159x2 x52 x7 + 0.0863057x3 x52 x7

GUT 81, 0, 1< 0.0550177x1 x6 + 0.609207x2 x6 + 0.94568x3 x6 + 0.682536x1 x7 + 0.822599x2 x7 + 0.232181x3 x7

a1 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

a21 83, 0, 1< 0.529199x13 x6 + 0.838528x12 x2 x6 + 0.840043x1 x22 x6 + 0.445524x23 x6 +

0.948063x12 x3 x6 + 0.0943822x1 x2 x3 x6 + 0.330786x22 x3 x6 + 0.453929x1 x32 x6 +

0.737271x2 x32 x6 + 0.460944x33 x6 + 0.456702x13 x7 + 0.657483x12 x2 x7 +

0.372096x1 x22 x7 + 0.270854x23 x7 + 0.306919x12 x3 x7 + 0.647227x1 x2 x3 x7 +

0.180077x22 x3 x7 + 0.036952x1 x32 x7 + 0.653654x2 x32 x7 + 0.326238x33 x7

a32 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

a43 85, 0, 1< 0.710384x15 x6 + 0.916609x14 x2 x6 + 0.756759x13 x22 x6 + 0.559207x12 x23 x6 +

0.576848x1 x24 x6 + 0.371201x25 x6 + 0.823283x14 x3 x6 + 0.133729x13 x2 x3 x6 +

0.760824x12 x22 x3 x6 + 0.220988x1 x23 x3 x6 + 0.396195x24 x3 x6 +

0.815669x13 x32 x6 + 0.0762325x12 x2 x32 x6 + 0.386434x1 x22 x32 x6 +

0.846821x23 x32 x6 + 0.74492x12 x33 x6 + 0.455711x1 x2 x33 x6 + 0.513031x22 x33 x6 +

0.224662x1 x34 x6 + 0.162035x2 x34 x6 + 0.320198x35 x6 + 0.93546x15 x7 +

0.718881x14 x2 x7 + 0.0369824x13 x22 x7 + 0.789456x12 x23 x7 + 0.0807137x1 x24 x7 +

0.739937x25 x7 + 0.523926x14 x3 x7 + 0.26974x13 x2 x3 x7 + 0.0353793x12 x22 x3 x7 +

0.918838x1 x23 x3 x7 + 0.441546x24 x3 x7 + 0.0820188x13 x32 x7 + 0.404392x12 x2 x32 x7 +

0.550655x1 x22 x32 x7 + 0.191122x23 x32 x7 + 0.611362x12 x33 x7 + 0.997466x1 x2 x33 x7 +

0.720157x22 x33 x7 + 0.0434576x1 x34 x7 + 0.536702x2 x34 x7 + 0.993361x35 x7

C10 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

C5m 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

C5H 87, 0, 2< -0.30559x17 x62 - 0.429506x16 x2 x62 - 0.0277435x15 x22 x62 + 0.184965x14 x23 x62 -

0.0524425x13 x24 x62 - 0.218305x12 x25 x62 - 0.182041x1 x26 x62 - 0.0530896x27 x62 -

0.394313x16 x3 x62 - 0.283381x15 x2 x3 x62 + 0.630356x14 x22 x3 x62 + 1.036 x13 x23 x3 x62 +

0.842395x12 x24 x3 x62 + 0.440347x1 x25 x3 x62 + 0.206953x26 x3 x62 - 0.62072x15 x32 x62 +

0.701849x14 x2 x32 x62 + 0.739129x13 x22 x32 x62 + 1.00504x12 x23 x32 x62 +

0.0294108x1 x24 x32 x62 + 0.177674x25 x32 x62 - 0.517135x14 x33 x62 +

0.473963x13 x2 x33 x62 + 1.07212x12 x22 x33 x62 + 0.263449x1 x23 x33 x62 +

0.422661x24 x33 x62 + 0.115898x13 x34 x62 + 0.140353x12 x2 x34 x62 + 0.522825x1 x22 x34 x62 +

0.674321x23 x34 x62 + 0.128017x12 x35 x62 + 0.142336x1 x2 x35 x62 + 0.22277x22 x35 x62 +

0.148215x1 x36 x62 + 0.221444x2 x36 x62 + 0.162563x37 x62 - 0.535026x17 x6 x7 -

0.271346x16 x2 x6 x7 + 0.836493x15 x22 x6 x7 + 1.01847x14 x23 x6 x7 + 1.34652x13 x24 x6 x7 +

0.435864x12 x25 x6 x7 + 0.500435x1 x26 x6 x7 + 0.102052x27 x6 x7 - 0.698735x16 x3 x6 x7 -

0.547846x15 x2 x3 x6 x7 + 0.772938x14 x22 x3 x6 x7 + 1.08812x13 x23 x3 x6 x7 +

0.812676x12 x24 x3 x6 x7 - 0.417988x1 x25 x3 x6 x7 - 0.0626312x26 x3 x6 x7 -

0.831582x15 x32 x6 x7 + 0.411994x14 x2 x32 x6 x7 + 1.33165x13 x22 x32 x6 x7 +

0.985085x12 x23 x32 x6 x7 + 0.339257x1 x24 x32 x6 x7 + 0.126454x25 x32 x6 x7 -

0.522241x14 x33 x6 x7 - 0.353962x13 x2 x33 x6 x7 + 0.137949x12 x22 x33 x6 x7 +

0.63582x1 x23 x33 x6 x7 + 0.569253x24 x33 x6 x7 - 0.196679x13 x34 x6 x7 +

0.280202x12 x2 x34 x6 x7 - 0.485726x1 x22 x34 x6 x7 + 0.310395x23 x34 x6 x7 -

0.753854x12 x35 x6 x7 - 0.307724x1 x2 x35 x6 x7 + 0.174523x22 x35 x6 x7 - 0.603937x1 x36 x6 x7 +

0.312672x2 x36 x6 x7 + 0.0898299x37 x6 x7 - 0.144589x17 x72 - 0.0175113x16 x2 x72 +

0.490579x15 x22 x72 + 0.738952x14 x23 x72 + 0.92061x13 x24 x72 + 0.412399x12 x25 x72 +

0.117152x1 x26 x72 + 0.06701x27 x72 - 0.394204x16 x3 x72 - 0.560141x15 x2 x3 x72 +

0.381174x14 x22 x3 x72 + 0.491803x13 x23 x3 x72 + 0.00612297x12 x24 x3 x72 +

0.089792x1 x25 x3 x72 - 0.508529x26 x3 x72 - 0.570922x15 x32 x72 - 0.000798621x14 x2 x32 x72 +

0.669647x13 x22 x32 x72 - 0.203938x12 x23 x32 x72 - 0.0957055x1 x24 x32 x72 -

0.252372x25 x32 x72 - 0.220926x14 x33 x72 + 0.0472718x13 x2 x33 x72 - 0.201172x12 x22 x33 x72 -

0.678661x1 x23 x33 x72 + 0.343708x24 x33 x72 + 0.0546948x13 x34 x72 - 0.414094x12 x2 x34 x72 -

0.785641x1 x22 x34 x72 - 0.229731x23 x34 x72 - 0.601563x12 x35 x72 - 0.829329x1 x2 x35 x72 -

0.36404x22 x35 x72 - 0.46628x1 x36 x72 - 0.58937x2 x36 x72 - 0.411845x37 x72

L1 84, 0, -4< -

L2 8-9, 0, 14< -

L3 8-4, 0, 10< -

Global sections defining the complete intersection subvariety.

Start computation on C10 curve

Computation started

OH0,-2,-7L 0 0 6 0 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 15 45 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 0 Ker = 0

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 64 40 0 0

H s1 s2 s3 L Ker = 0 Ker = 19 Ker = 40 Ker = 0 Ker = 0

OH4,0,-4L 0 45 0 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH0,-2,-7L 0 0 0 0 0

s3

-s2

s1

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 0 0 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 4 1 0 0

H s1 s2 s3 L

OH4,0,-4L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 2.9328052 seconds.

Start computation on C5m curve

Computation started

OH-15,-2,11L 0 0 0 1092 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 1014 1599 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 1095 Ker = 0

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 1428 504 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 1008 Ker = 504 Ker = 0

OH-9,0,14L 0 0 420 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-15,-2,11L 0 0 0 0 0

s3

-s2

s1

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 6 3 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 0 0 0

H s1 s2 s3 L

OH-9,0,14L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 1044.4199890 seconds.

Start computation on C5H curve

Computation started

OH-13,-2,6L 0 0 0 462 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 440 530 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 9 Ker = 470 Ker = 0

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 465 60 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 432 Ker = 60 Ker = 0

OH-4,0,10L 0 0 33 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-13,-2,6L 0 0 0 0 0

s3

-s2

s1

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 9 8 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 1 0 0

H s1 s2 s3 L

OH-4,0,10L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 181.1066774 seconds.

Out[131]= Finished the computation after 1229.1178728 seconds.

Figure 15.4.: Computation of the model presented in chapter 16 - page 2.
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CHAPTER 15. COMPUTATION OF THE E1-SHEET WITH MATHEMATICA

In[131]:= Model@CP2CP1CP1, 81, 2, 1<, 81, 0, 1<, 8-7 � 2, 0, 9 � 2<D
Started computation.

Name Charge Random Section

Base 81, 2, 1< 0.809356x1 x42 x6 + 0.146078x2 x42 x6 + 0.0591562x3 x42 x6 +

0.376335x1 x4 x5 x6 + 0.637865x2 x4 x5 x6 + 0.784765x3 x4 x5 x6 +

0.43033x1 x52 x6 + 0.188448x2 x52 x6 + 0.439943x3 x52 x6 + 0.903981x1 x42 x7 +

0.781722x2 x42 x7 + 0.232888x3 x42 x7 + 0.975963x1 x4 x5 x7 + 0.46887x2 x4 x5 x7 +

0.346646x3 x4 x5 x7 + 0.823916x1 x52 x7 + 0.319159x2 x52 x7 + 0.0863057x3 x52 x7

GUT 81, 0, 1< 0.0550177x1 x6 + 0.609207x2 x6 + 0.94568x3 x6 + 0.682536x1 x7 + 0.822599x2 x7 + 0.232181x3 x7

a1 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

a21 83, 0, 1< 0.529199x13 x6 + 0.838528x12 x2 x6 + 0.840043x1 x22 x6 + 0.445524x23 x6 +

0.948063x12 x3 x6 + 0.0943822x1 x2 x3 x6 + 0.330786x22 x3 x6 + 0.453929x1 x32 x6 +

0.737271x2 x32 x6 + 0.460944x33 x6 + 0.456702x13 x7 + 0.657483x12 x2 x7 +

0.372096x1 x22 x7 + 0.270854x23 x7 + 0.306919x12 x3 x7 + 0.647227x1 x2 x3 x7 +

0.180077x22 x3 x7 + 0.036952x1 x32 x7 + 0.653654x2 x32 x7 + 0.326238x33 x7

a32 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

a43 85, 0, 1< 0.710384x15 x6 + 0.916609x14 x2 x6 + 0.756759x13 x22 x6 + 0.559207x12 x23 x6 +

0.576848x1 x24 x6 + 0.371201x25 x6 + 0.823283x14 x3 x6 + 0.133729x13 x2 x3 x6 +

0.760824x12 x22 x3 x6 + 0.220988x1 x23 x3 x6 + 0.396195x24 x3 x6 +

0.815669x13 x32 x6 + 0.0762325x12 x2 x32 x6 + 0.386434x1 x22 x32 x6 +

0.846821x23 x32 x6 + 0.74492x12 x33 x6 + 0.455711x1 x2 x33 x6 + 0.513031x22 x33 x6 +

0.224662x1 x34 x6 + 0.162035x2 x34 x6 + 0.320198x35 x6 + 0.93546x15 x7 +

0.718881x14 x2 x7 + 0.0369824x13 x22 x7 + 0.789456x12 x23 x7 + 0.0807137x1 x24 x7 +

0.739937x25 x7 + 0.523926x14 x3 x7 + 0.26974x13 x2 x3 x7 + 0.0353793x12 x22 x3 x7 +

0.918838x1 x23 x3 x7 + 0.441546x24 x3 x7 + 0.0820188x13 x32 x7 + 0.404392x12 x2 x32 x7 +

0.550655x1 x22 x32 x7 + 0.191122x23 x32 x7 + 0.611362x12 x33 x7 + 0.997466x1 x2 x33 x7 +

0.720157x22 x33 x7 + 0.0434576x1 x34 x7 + 0.536702x2 x34 x7 + 0.993361x35 x7

C10 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

C5m 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

C5H 87, 0, 2< -0.30559x17 x62 - 0.429506x16 x2 x62 - 0.0277435x15 x22 x62 + 0.184965x14 x23 x62 -

0.0524425x13 x24 x62 - 0.218305x12 x25 x62 - 0.182041x1 x26 x62 - 0.0530896x27 x62 -

0.394313x16 x3 x62 - 0.283381x15 x2 x3 x62 + 0.630356x14 x22 x3 x62 + 1.036 x13 x23 x3 x62 +

0.842395x12 x24 x3 x62 + 0.440347x1 x25 x3 x62 + 0.206953x26 x3 x62 - 0.62072x15 x32 x62 +

0.701849x14 x2 x32 x62 + 0.739129x13 x22 x32 x62 + 1.00504x12 x23 x32 x62 +

0.0294108x1 x24 x32 x62 + 0.177674x25 x32 x62 - 0.517135x14 x33 x62 +

0.473963x13 x2 x33 x62 + 1.07212x12 x22 x33 x62 + 0.263449x1 x23 x33 x62 +

0.422661x24 x33 x62 + 0.115898x13 x34 x62 + 0.140353x12 x2 x34 x62 + 0.522825x1 x22 x34 x62 +

0.674321x23 x34 x62 + 0.128017x12 x35 x62 + 0.142336x1 x2 x35 x62 + 0.22277x22 x35 x62 +

0.148215x1 x36 x62 + 0.221444x2 x36 x62 + 0.162563x37 x62 - 0.535026x17 x6 x7 -

0.271346x16 x2 x6 x7 + 0.836493x15 x22 x6 x7 + 1.01847x14 x23 x6 x7 + 1.34652x13 x24 x6 x7 +

0.435864x12 x25 x6 x7 + 0.500435x1 x26 x6 x7 + 0.102052x27 x6 x7 - 0.698735x16 x3 x6 x7 -

0.547846x15 x2 x3 x6 x7 + 0.772938x14 x22 x3 x6 x7 + 1.08812x13 x23 x3 x6 x7 +

0.812676x12 x24 x3 x6 x7 - 0.417988x1 x25 x3 x6 x7 - 0.0626312x26 x3 x6 x7 -

0.831582x15 x32 x6 x7 + 0.411994x14 x2 x32 x6 x7 + 1.33165x13 x22 x32 x6 x7 +

0.985085x12 x23 x32 x6 x7 + 0.339257x1 x24 x32 x6 x7 + 0.126454x25 x32 x6 x7 -

0.522241x14 x33 x6 x7 - 0.353962x13 x2 x33 x6 x7 + 0.137949x12 x22 x33 x6 x7 +

0.63582x1 x23 x33 x6 x7 + 0.569253x24 x33 x6 x7 - 0.196679x13 x34 x6 x7 +

0.280202x12 x2 x34 x6 x7 - 0.485726x1 x22 x34 x6 x7 + 0.310395x23 x34 x6 x7 -

0.753854x12 x35 x6 x7 - 0.307724x1 x2 x35 x6 x7 + 0.174523x22 x35 x6 x7 - 0.603937x1 x36 x6 x7 +

0.312672x2 x36 x6 x7 + 0.0898299x37 x6 x7 - 0.144589x17 x72 - 0.0175113x16 x2 x72 +

0.490579x15 x22 x72 + 0.738952x14 x23 x72 + 0.92061x13 x24 x72 + 0.412399x12 x25 x72 +

0.117152x1 x26 x72 + 0.06701x27 x72 - 0.394204x16 x3 x72 - 0.560141x15 x2 x3 x72 +

0.381174x14 x22 x3 x72 + 0.491803x13 x23 x3 x72 + 0.00612297x12 x24 x3 x72 +

0.089792x1 x25 x3 x72 - 0.508529x26 x3 x72 - 0.570922x15 x32 x72 - 0.000798621x14 x2 x32 x72 +

0.669647x13 x22 x32 x72 - 0.203938x12 x23 x32 x72 - 0.0957055x1 x24 x32 x72 -

0.252372x25 x32 x72 - 0.220926x14 x33 x72 + 0.0472718x13 x2 x33 x72 - 0.201172x12 x22 x33 x72 -

0.678661x1 x23 x33 x72 + 0.343708x24 x33 x72 + 0.0546948x13 x34 x72 - 0.414094x12 x2 x34 x72 -

0.785641x1 x22 x34 x72 - 0.229731x23 x34 x72 - 0.601563x12 x35 x72 - 0.829329x1 x2 x35 x72 -

0.36404x22 x35 x72 - 0.46628x1 x36 x72 - 0.58937x2 x36 x72 - 0.411845x37 x72

L1 84, 0, -4< -

L2 8-9, 0, 14< -

L3 8-4, 0, 10< -

Global sections defining the complete intersection subvariety.

Start computation on C10 curve

Computation started

OH0,-2,-7L 0 0 6 0 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 15 45 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 0 Ker = 0

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 64 40 0 0

H s1 s2 s3 L Ker = 0 Ker = 19 Ker = 40 Ker = 0 Ker = 0

OH4,0,-4L 0 45 0 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH0,-2,-7L 0 0 0 0 0

s3

-s2

s1

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 0 0 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 4 1 0 0

H s1 s2 s3 L

OH4,0,-4L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 2.9328052 seconds.

Start computation on C5m curve

Computation started

OH-15,-2,11L 0 0 0 1092 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 1014 1599 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 1095 Ker = 0

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 1428 504 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 1008 Ker = 504 Ker = 0

OH-9,0,14L 0 0 420 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-15,-2,11L 0 0 0 0 0

s3

-s2

s1

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 6 3 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 0 0 0

H s1 s2 s3 L

OH-9,0,14L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 1044.4199890 seconds.

Start computation on C5H curve

Computation started

OH-13,-2,6L 0 0 0 462 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 440 530 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 9 Ker = 470 Ker = 0

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 465 60 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 432 Ker = 60 Ker = 0

OH-4,0,10L 0 0 33 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-13,-2,6L 0 0 0 0 0

s3

-s2

s1

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 9 8 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 1 0 0

H s1 s2 s3 L

OH-4,0,10L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 181.1066774 seconds.

Out[131]= Finished the computation after 1229.1178728 seconds.

Figure 15.5.: Computation of the model presented in chapter 16 - page 3.
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CHAPTER 15. COMPUTATION OF THE E1-SHEET WITH MATHEMATICA

In[131]:= Model@CP2CP1CP1, 81, 2, 1<, 81, 0, 1<, 8-7 � 2, 0, 9 � 2<D
Started computation.

Name Charge Random Section

Base 81, 2, 1< 0.809356x1 x42 x6 + 0.146078x2 x42 x6 + 0.0591562x3 x42 x6 +

0.376335x1 x4 x5 x6 + 0.637865x2 x4 x5 x6 + 0.784765x3 x4 x5 x6 +

0.43033x1 x52 x6 + 0.188448x2 x52 x6 + 0.439943x3 x52 x6 + 0.903981x1 x42 x7 +

0.781722x2 x42 x7 + 0.232888x3 x42 x7 + 0.975963x1 x4 x5 x7 + 0.46887x2 x4 x5 x7 +

0.346646x3 x4 x5 x7 + 0.823916x1 x52 x7 + 0.319159x2 x52 x7 + 0.0863057x3 x52 x7

GUT 81, 0, 1< 0.0550177x1 x6 + 0.609207x2 x6 + 0.94568x3 x6 + 0.682536x1 x7 + 0.822599x2 x7 + 0.232181x3 x7

a1 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

a21 83, 0, 1< 0.529199x13 x6 + 0.838528x12 x2 x6 + 0.840043x1 x22 x6 + 0.445524x23 x6 +

0.948063x12 x3 x6 + 0.0943822x1 x2 x3 x6 + 0.330786x22 x3 x6 + 0.453929x1 x32 x6 +

0.737271x2 x32 x6 + 0.460944x33 x6 + 0.456702x13 x7 + 0.657483x12 x2 x7 +

0.372096x1 x22 x7 + 0.270854x23 x7 + 0.306919x12 x3 x7 + 0.647227x1 x2 x3 x7 +

0.180077x22 x3 x7 + 0.036952x1 x32 x7 + 0.653654x2 x32 x7 + 0.326238x33 x7

a32 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

a43 85, 0, 1< 0.710384x15 x6 + 0.916609x14 x2 x6 + 0.756759x13 x22 x6 + 0.559207x12 x23 x6 +

0.576848x1 x24 x6 + 0.371201x25 x6 + 0.823283x14 x3 x6 + 0.133729x13 x2 x3 x6 +

0.760824x12 x22 x3 x6 + 0.220988x1 x23 x3 x6 + 0.396195x24 x3 x6 +

0.815669x13 x32 x6 + 0.0762325x12 x2 x32 x6 + 0.386434x1 x22 x32 x6 +

0.846821x23 x32 x6 + 0.74492x12 x33 x6 + 0.455711x1 x2 x33 x6 + 0.513031x22 x33 x6 +

0.224662x1 x34 x6 + 0.162035x2 x34 x6 + 0.320198x35 x6 + 0.93546x15 x7 +

0.718881x14 x2 x7 + 0.0369824x13 x22 x7 + 0.789456x12 x23 x7 + 0.0807137x1 x24 x7 +

0.739937x25 x7 + 0.523926x14 x3 x7 + 0.26974x13 x2 x3 x7 + 0.0353793x12 x22 x3 x7 +

0.918838x1 x23 x3 x7 + 0.441546x24 x3 x7 + 0.0820188x13 x32 x7 + 0.404392x12 x2 x32 x7 +

0.550655x1 x22 x32 x7 + 0.191122x23 x32 x7 + 0.611362x12 x33 x7 + 0.997466x1 x2 x33 x7 +

0.720157x22 x33 x7 + 0.0434576x1 x34 x7 + 0.536702x2 x34 x7 + 0.993361x35 x7

C10 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

C5m 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

C5H 87, 0, 2< -0.30559x17 x62 - 0.429506x16 x2 x62 - 0.0277435x15 x22 x62 + 0.184965x14 x23 x62 -

0.0524425x13 x24 x62 - 0.218305x12 x25 x62 - 0.182041x1 x26 x62 - 0.0530896x27 x62 -

0.394313x16 x3 x62 - 0.283381x15 x2 x3 x62 + 0.630356x14 x22 x3 x62 + 1.036 x13 x23 x3 x62 +

0.842395x12 x24 x3 x62 + 0.440347x1 x25 x3 x62 + 0.206953x26 x3 x62 - 0.62072x15 x32 x62 +

0.701849x14 x2 x32 x62 + 0.739129x13 x22 x32 x62 + 1.00504x12 x23 x32 x62 +

0.0294108x1 x24 x32 x62 + 0.177674x25 x32 x62 - 0.517135x14 x33 x62 +

0.473963x13 x2 x33 x62 + 1.07212x12 x22 x33 x62 + 0.263449x1 x23 x33 x62 +

0.422661x24 x33 x62 + 0.115898x13 x34 x62 + 0.140353x12 x2 x34 x62 + 0.522825x1 x22 x34 x62 +

0.674321x23 x34 x62 + 0.128017x12 x35 x62 + 0.142336x1 x2 x35 x62 + 0.22277x22 x35 x62 +

0.148215x1 x36 x62 + 0.221444x2 x36 x62 + 0.162563x37 x62 - 0.535026x17 x6 x7 -

0.271346x16 x2 x6 x7 + 0.836493x15 x22 x6 x7 + 1.01847x14 x23 x6 x7 + 1.34652x13 x24 x6 x7 +

0.435864x12 x25 x6 x7 + 0.500435x1 x26 x6 x7 + 0.102052x27 x6 x7 - 0.698735x16 x3 x6 x7 -

0.547846x15 x2 x3 x6 x7 + 0.772938x14 x22 x3 x6 x7 + 1.08812x13 x23 x3 x6 x7 +

0.812676x12 x24 x3 x6 x7 - 0.417988x1 x25 x3 x6 x7 - 0.0626312x26 x3 x6 x7 -

0.831582x15 x32 x6 x7 + 0.411994x14 x2 x32 x6 x7 + 1.33165x13 x22 x32 x6 x7 +

0.985085x12 x23 x32 x6 x7 + 0.339257x1 x24 x32 x6 x7 + 0.126454x25 x32 x6 x7 -

0.522241x14 x33 x6 x7 - 0.353962x13 x2 x33 x6 x7 + 0.137949x12 x22 x33 x6 x7 +

0.63582x1 x23 x33 x6 x7 + 0.569253x24 x33 x6 x7 - 0.196679x13 x34 x6 x7 +

0.280202x12 x2 x34 x6 x7 - 0.485726x1 x22 x34 x6 x7 + 0.310395x23 x34 x6 x7 -

0.753854x12 x35 x6 x7 - 0.307724x1 x2 x35 x6 x7 + 0.174523x22 x35 x6 x7 - 0.603937x1 x36 x6 x7 +

0.312672x2 x36 x6 x7 + 0.0898299x37 x6 x7 - 0.144589x17 x72 - 0.0175113x16 x2 x72 +

0.490579x15 x22 x72 + 0.738952x14 x23 x72 + 0.92061x13 x24 x72 + 0.412399x12 x25 x72 +

0.117152x1 x26 x72 + 0.06701x27 x72 - 0.394204x16 x3 x72 - 0.560141x15 x2 x3 x72 +

0.381174x14 x22 x3 x72 + 0.491803x13 x23 x3 x72 + 0.00612297x12 x24 x3 x72 +

0.089792x1 x25 x3 x72 - 0.508529x26 x3 x72 - 0.570922x15 x32 x72 - 0.000798621x14 x2 x32 x72 +

0.669647x13 x22 x32 x72 - 0.203938x12 x23 x32 x72 - 0.0957055x1 x24 x32 x72 -

0.252372x25 x32 x72 - 0.220926x14 x33 x72 + 0.0472718x13 x2 x33 x72 - 0.201172x12 x22 x33 x72 -

0.678661x1 x23 x33 x72 + 0.343708x24 x33 x72 + 0.0546948x13 x34 x72 - 0.414094x12 x2 x34 x72 -

0.785641x1 x22 x34 x72 - 0.229731x23 x34 x72 - 0.601563x12 x35 x72 - 0.829329x1 x2 x35 x72 -

0.36404x22 x35 x72 - 0.46628x1 x36 x72 - 0.58937x2 x36 x72 - 0.411845x37 x72

L1 84, 0, -4< -

L2 8-9, 0, 14< -

L3 8-4, 0, 10< -

Global sections defining the complete intersection subvariety.

Start computation on C10 curve

Computation started

OH0,-2,-7L 0 0 6 0 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 15 45 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 0 Ker = 0

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 64 40 0 0

H s1 s2 s3 L Ker = 0 Ker = 19 Ker = 40 Ker = 0 Ker = 0

OH4,0,-4L 0 45 0 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH0,-2,-7L 0 0 0 0 0

s3

-s2

s1

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 0 0 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 4 1 0 0

H s1 s2 s3 L

OH4,0,-4L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 2.9328052 seconds.

Start computation on C5m curve

Computation started

OH-15,-2,11L 0 0 0 1092 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 1014 1599 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 1095 Ker = 0

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 1428 504 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 1008 Ker = 504 Ker = 0

OH-9,0,14L 0 0 420 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-15,-2,11L 0 0 0 0 0

s3

-s2

s1

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 6 3 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 0 0 0

H s1 s2 s3 L

OH-9,0,14L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 1044.4199890 seconds.

Start computation on C5H curve

Computation started

OH-13,-2,6L 0 0 0 462 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 440 530 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 9 Ker = 470 Ker = 0

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 465 60 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 432 Ker = 60 Ker = 0

OH-4,0,10L 0 0 33 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-13,-2,6L 0 0 0 0 0

s3

-s2

s1

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 9 8 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 1 0 0

H s1 s2 s3 L

OH-4,0,10L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 181.1066774 seconds.

Out[131]= Finished the computation after 1229.1178728 seconds.

Figure 15.6.: Computation of the model presented in chapter 16 - page 4.
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CHAPTER 15. COMPUTATION OF THE E1-SHEET WITH MATHEMATICA

In[131]:= Model@CP2CP1CP1, 81, 2, 1<, 81, 0, 1<, 8-7 � 2, 0, 9 � 2<D
Started computation.

Name Charge Random Section

Base 81, 2, 1< 0.809356x1 x42 x6 + 0.146078x2 x42 x6 + 0.0591562x3 x42 x6 +

0.376335x1 x4 x5 x6 + 0.637865x2 x4 x5 x6 + 0.784765x3 x4 x5 x6 +

0.43033x1 x52 x6 + 0.188448x2 x52 x6 + 0.439943x3 x52 x6 + 0.903981x1 x42 x7 +

0.781722x2 x42 x7 + 0.232888x3 x42 x7 + 0.975963x1 x4 x5 x7 + 0.46887x2 x4 x5 x7 +

0.346646x3 x4 x5 x7 + 0.823916x1 x52 x7 + 0.319159x2 x52 x7 + 0.0863057x3 x52 x7

GUT 81, 0, 1< 0.0550177x1 x6 + 0.609207x2 x6 + 0.94568x3 x6 + 0.682536x1 x7 + 0.822599x2 x7 + 0.232181x3 x7

a1 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

a21 83, 0, 1< 0.529199x13 x6 + 0.838528x12 x2 x6 + 0.840043x1 x22 x6 + 0.445524x23 x6 +

0.948063x12 x3 x6 + 0.0943822x1 x2 x3 x6 + 0.330786x22 x3 x6 + 0.453929x1 x32 x6 +

0.737271x2 x32 x6 + 0.460944x33 x6 + 0.456702x13 x7 + 0.657483x12 x2 x7 +

0.372096x1 x22 x7 + 0.270854x23 x7 + 0.306919x12 x3 x7 + 0.647227x1 x2 x3 x7 +

0.180077x22 x3 x7 + 0.036952x1 x32 x7 + 0.653654x2 x32 x7 + 0.326238x33 x7

a32 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

a43 85, 0, 1< 0.710384x15 x6 + 0.916609x14 x2 x6 + 0.756759x13 x22 x6 + 0.559207x12 x23 x6 +

0.576848x1 x24 x6 + 0.371201x25 x6 + 0.823283x14 x3 x6 + 0.133729x13 x2 x3 x6 +

0.760824x12 x22 x3 x6 + 0.220988x1 x23 x3 x6 + 0.396195x24 x3 x6 +

0.815669x13 x32 x6 + 0.0762325x12 x2 x32 x6 + 0.386434x1 x22 x32 x6 +

0.846821x23 x32 x6 + 0.74492x12 x33 x6 + 0.455711x1 x2 x33 x6 + 0.513031x22 x33 x6 +

0.224662x1 x34 x6 + 0.162035x2 x34 x6 + 0.320198x35 x6 + 0.93546x15 x7 +

0.718881x14 x2 x7 + 0.0369824x13 x22 x7 + 0.789456x12 x23 x7 + 0.0807137x1 x24 x7 +

0.739937x25 x7 + 0.523926x14 x3 x7 + 0.26974x13 x2 x3 x7 + 0.0353793x12 x22 x3 x7 +

0.918838x1 x23 x3 x7 + 0.441546x24 x3 x7 + 0.0820188x13 x32 x7 + 0.404392x12 x2 x32 x7 +

0.550655x1 x22 x32 x7 + 0.191122x23 x32 x7 + 0.611362x12 x33 x7 + 0.997466x1 x2 x33 x7 +

0.720157x22 x33 x7 + 0.0434576x1 x34 x7 + 0.536702x2 x34 x7 + 0.993361x35 x7

C10 82, 0, 1< 0.965737x12 x6 + 0.399804x1 x2 x6 + 0.269027x22 x6 + 0.846127x1 x3 x6 +

0.422912x2 x3 x6 + 0.157133x32 x6 + 0.555685x12 x7 + 0.561758x1 x2 x7 +

0.192047x22 x7 + 0.513682x1 x3 x7 + 0.983103x2 x3 x7 + 0.625067x32 x7

C5m 84, 0, 1< 0.718925x14 x6 + 0.258641x13 x2 x6 + 0.831174x12 x22 x6 +

0.0748824x1 x23 x6 + 0.104985x24 x6 + 0.60516x13 x3 x6 + 0.813322x12 x2 x3 x6 +

0.807712x1 x22 x3 x6 + 0.978169x23 x3 x6 + 0.142021x12 x32 x6 + 0.212022x1 x2 x32 x6 +

0.517164x22 x32 x6 + 0.5311 x1 x33 x6 + 0.0907438x2 x33 x6 + 0.461829x34 x6 +

0.821614x14 x7 + 0.804168x13 x2 x7 + 0.569678x12 x22 x7 + 0.963772x1 x23 x7 +

0.77205x24 x7 + 0.274347x13 x3 x7 + 0.468654x12 x2 x3 x7 + 0.274181x1 x22 x3 x7 +

0.607986x23 x3 x7 + 0.468464x12 x32 x7 + 0.387115x1 x2 x32 x7 +

0.246592x22 x32 x7 + 0.145521x1 x33 x7 + 0.931167x2 x33 x7 + 0.640857x34 x7

C5H 87, 0, 2< -0.30559x17 x62 - 0.429506x16 x2 x62 - 0.0277435x15 x22 x62 + 0.184965x14 x23 x62 -

0.0524425x13 x24 x62 - 0.218305x12 x25 x62 - 0.182041x1 x26 x62 - 0.0530896x27 x62 -

0.394313x16 x3 x62 - 0.283381x15 x2 x3 x62 + 0.630356x14 x22 x3 x62 + 1.036 x13 x23 x3 x62 +

0.842395x12 x24 x3 x62 + 0.440347x1 x25 x3 x62 + 0.206953x26 x3 x62 - 0.62072x15 x32 x62 +

0.701849x14 x2 x32 x62 + 0.739129x13 x22 x32 x62 + 1.00504x12 x23 x32 x62 +

0.0294108x1 x24 x32 x62 + 0.177674x25 x32 x62 - 0.517135x14 x33 x62 +

0.473963x13 x2 x33 x62 + 1.07212x12 x22 x33 x62 + 0.263449x1 x23 x33 x62 +

0.422661x24 x33 x62 + 0.115898x13 x34 x62 + 0.140353x12 x2 x34 x62 + 0.522825x1 x22 x34 x62 +

0.674321x23 x34 x62 + 0.128017x12 x35 x62 + 0.142336x1 x2 x35 x62 + 0.22277x22 x35 x62 +

0.148215x1 x36 x62 + 0.221444x2 x36 x62 + 0.162563x37 x62 - 0.535026x17 x6 x7 -

0.271346x16 x2 x6 x7 + 0.836493x15 x22 x6 x7 + 1.01847x14 x23 x6 x7 + 1.34652x13 x24 x6 x7 +

0.435864x12 x25 x6 x7 + 0.500435x1 x26 x6 x7 + 0.102052x27 x6 x7 - 0.698735x16 x3 x6 x7 -

0.547846x15 x2 x3 x6 x7 + 0.772938x14 x22 x3 x6 x7 + 1.08812x13 x23 x3 x6 x7 +

0.812676x12 x24 x3 x6 x7 - 0.417988x1 x25 x3 x6 x7 - 0.0626312x26 x3 x6 x7 -

0.831582x15 x32 x6 x7 + 0.411994x14 x2 x32 x6 x7 + 1.33165x13 x22 x32 x6 x7 +

0.985085x12 x23 x32 x6 x7 + 0.339257x1 x24 x32 x6 x7 + 0.126454x25 x32 x6 x7 -

0.522241x14 x33 x6 x7 - 0.353962x13 x2 x33 x6 x7 + 0.137949x12 x22 x33 x6 x7 +

0.63582x1 x23 x33 x6 x7 + 0.569253x24 x33 x6 x7 - 0.196679x13 x34 x6 x7 +

0.280202x12 x2 x34 x6 x7 - 0.485726x1 x22 x34 x6 x7 + 0.310395x23 x34 x6 x7 -

0.753854x12 x35 x6 x7 - 0.307724x1 x2 x35 x6 x7 + 0.174523x22 x35 x6 x7 - 0.603937x1 x36 x6 x7 +

0.312672x2 x36 x6 x7 + 0.0898299x37 x6 x7 - 0.144589x17 x72 - 0.0175113x16 x2 x72 +

0.490579x15 x22 x72 + 0.738952x14 x23 x72 + 0.92061x13 x24 x72 + 0.412399x12 x25 x72 +

0.117152x1 x26 x72 + 0.06701x27 x72 - 0.394204x16 x3 x72 - 0.560141x15 x2 x3 x72 +

0.381174x14 x22 x3 x72 + 0.491803x13 x23 x3 x72 + 0.00612297x12 x24 x3 x72 +

0.089792x1 x25 x3 x72 - 0.508529x26 x3 x72 - 0.570922x15 x32 x72 - 0.000798621x14 x2 x32 x72 +

0.669647x13 x22 x32 x72 - 0.203938x12 x23 x32 x72 - 0.0957055x1 x24 x32 x72 -

0.252372x25 x32 x72 - 0.220926x14 x33 x72 + 0.0472718x13 x2 x33 x72 - 0.201172x12 x22 x33 x72 -

0.678661x1 x23 x33 x72 + 0.343708x24 x33 x72 + 0.0546948x13 x34 x72 - 0.414094x12 x2 x34 x72 -

0.785641x1 x22 x34 x72 - 0.229731x23 x34 x72 - 0.601563x12 x35 x72 - 0.829329x1 x2 x35 x72 -

0.36404x22 x35 x72 - 0.46628x1 x36 x72 - 0.58937x2 x36 x72 - 0.411845x37 x72

L1 84, 0, -4< -

L2 8-9, 0, 14< -

L3 8-4, 0, 10< -

Global sections defining the complete intersection subvariety.

Start computation on C10 curve

Computation started

OH0,-2,-7L 0 0 6 0 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 15 45 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 0 Ker = 0

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 64 40 0 0

H s1 s2 s3 L Ker = 0 Ker = 19 Ker = 40 Ker = 0 Ker = 0

OH4,0,-4L 0 45 0 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH0,-2,-7L 0 0 0 0 0

s3

-s2

s1

OH2,-2,-6LÅOH1,-2,-6LÅOH1,0,-6L 0 0 0 0 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH3,-2,-5LÅOH3,0,-5LÅOH2,0,-5L 0 4 1 0 0

H s1 s2 s3 L

OH4,0,-4L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 2.9328052 seconds.

Start computation on C5m curve

Computation started

OH-15,-2,11L 0 0 0 1092 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 1014 1599 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 6 Ker = 1095 Ker = 0

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 1428 504 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 1008 Ker = 504 Ker = 0

OH-9,0,14L 0 0 420 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-15,-2,11L 0 0 0 0 0

s3

-s2

s1

OH-11,-2,12LÅOH-14,-2,12LÅOH-14,0,12L 0 0 6 3 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-10,-2,13LÅOH-10,0,13LÅOH-13,0,13L 0 0 0 0 0

H s1 s2 s3 L

OH-9,0,14L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 1044.4199890 seconds.

Start computation on C5H curve

Computation started

OH-13,-2,6L 0 0 0 462 0

s3

-s2

s1

Ker = 0 Ker = 0 Ker = 0 Ker = 0 Ker = 0

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 440 530 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

Ker = 0 Ker = 0 Ker = 9 Ker = 470 Ker = 0

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 465 60 0

H s1 s2 s3 L Ker = 0 Ker = 0 Ker = 432 Ker = 60 Ker = 0

OH-4,0,10L 0 0 33 0 0

H0 H1 H2 H3 H4

First sheet of the Koszul exact sequence and the maps therein.

OH-13,-2,6L 0 0 0 0 0

s3

-s2

s1

OH-6,-2,8LÅOH-12,-2,7LÅOH-12,0,7L 0 0 9 8 0

-s2 -s3 0

s1 0 -s3

0 s1 s2

OH-5,-2,9LÅOH-5,0,9LÅOH-11,0,8L 0 0 1 0 0

H s1 s2 s3 L

OH-4,0,10L 0 0 0 0 0

H0 H1 H2 H3 H4

Second sheet of the Koszul exact sequence and the maps therein.

Computation finished after 181.1066774 seconds.

Out[131]= Finished the computation after 1229.1178728 seconds.

Figure 15.7.: Computation of the model presented in chapter 16 - page 5.
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16. Application To Model Building
- A Teaser

16.1. Summary
In section 1.3 we discussed a global Tate model with SU (5)×U (1)X gauge symmetry.
This type of F-theory model can be used for GUT-model building. Recall in particular
that we pointed out that pullback cohomologies of a certain line bundle count the
number of the states that experiments would observe as electrons, quarks etc. To
conclude this thesis we therefore decide to put the developed technology about the
computation of pullback cohomologies to a use in a model building teaser.
In section 16.2 we give a cooking recipe for this model. In particular we mention that a
pseudo-random representative for such a model can be generated by our Mathematica
notebook. The implemented functionality is described in subsection 15.2.5. We run
a scan over roughly 45.8 ⋅ 106 parameter values that describe these kinds of models
in the toric ambient space CP2 ×CP1 ×CP1. Of those parameter values only 20 give
distinct candidate models. We give the details on this scan in section 16.3. Finally
we exemplify the needed cohomology computations on the 10-th model that the scan
found. This analysis is presented in section 16.4.
We have to mention that the ability to resolve the singularity structure is crucial
in F-theory model building. As our intention is to exemplify the application of the
computational methods on pullback cohomologies, we do not check if such a resolution
does exist. Similarly we do not check Tadpole cancellations. In fact we focus entirely
on the cohomological aspects of the model and leave further checks to the future. In
this sense the presented models are toy-models only.

16.2. Setup For SU (5) ×U (1)X-Models With Line
Bundle G4-Flux

Construction 16.2.1 (Pick A Geometric Backbone, . . . ):

1. Pick a smooth and compact normal toric varietyXΣ of complex dimension 4.
This toric variety we specify by means of a homogenisation, i.e.

XΣ ≅ (Cr −Z) / ((C∗)a) (16.1)

The (C∗)a action is given by an a × r integer-valued matrix M . If we sum the
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CHAPTER 16. APPLICATION TO MODEL BUILDING - A TEASER

entries in each row of M we obtain a vector

T ∈ Za (16.2)

In particular we can consider the divisor class

DT ∶= T t ∈ Cl (XΣ) (16.3)

2. Next consider an effective divisor DB3 ∈ Cl (XΣ) and s̃B3 ∈H0 (XΣ,OXΣ (DB3))
a holomorphic section. Then we define

B3 ∶= {p ∈XΣ , s̃B3 (p) = 0} (16.4)

We require that B3 is an algebraic submanifold of codimension 1 in XΣ. B3 is
termed the ’base’. Subsequently we consider the divisor class

KB3 = T t −DB3 ∈ Cl (XΣ) (16.5)

which gives rise to an isomorphism class of holomorphic line bundles

LKB3
= OXΣ (KB3) ∈ Pic (XΣ) (16.6)

We claim that LKB3
∣
B3

is isomorphic to the anticanonical bundle of B3.
The proof of this statements rests on the adjunction formula [44] which states
that in this particular situation

KB3 = KXΣ ∣B3
⊗ NB3/XΣ ∣B3

(16.7)

General theory of toric varieties implies KXΣ = OXΣ (−T t) 1. Moreover we have
NB3/XΣ ∣B3

= OXΣ (DB3)∣B3
. Consequently

KB3 = OXΣ (−T t +DB3)∣B3
= LKB3

∣
B3

(16.8)

which proves the claim. In particular this justifies our notation.

Construction 16.2.2 (. . . Form A Global Tate Model, . . . ):
In this geometry we now construct a global Tate model.

1. We require that the divisor class KB3 is effective. This enables us to consider
for i ∈ {1, 2, 3, 4, 6}

ãi ∈H0 (XΣ,OXΣ (iKB3)) (16.9)
Note that this implies

ai ∶= ãi∣B3
∈H0 (B3, L⊗i

KB3
∣
B3

) (16.10)

1The more familiar case is the canonical bundle of complex projective space. For this situation it
holds KCPn = OCPn (− (n + 1)).
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2. Next let [x, y, z] ∈ CP2,3,1 the homogeneous coordinates and p ∈ B3. Then we
set

Cp ∶= {[x, y, z] ∈ CP2,3,1 , P (x, y, z, p) = 0} (16.11)
where

P (x, y, z, p) ∶= x2 − y2 + xyza1 (p) + x2z2a2 (p) + yz3a3 (p)
+ xz4a4 (p) + z6a6 (p)

(16.12)

is the Tate polynomial. Thereby we have obtained a family of elliptic curves
labeled by points p ∈ B3.

3. Finally we set
Y4 ∶= ⋃

p∈B3

Cp (16.13)

so that we can define the holomorphic projection map

π∶Y4 → B3 (16.14)

with the property π−1 (p) = Cp for any p ∈ B3.
Let us mention two things here. First of all note that the above elliptic fibration is a
special form of the Weierstrass form, which we described in section 1.1. This special
form of elliptic fibrations is called a global Tate form elliptic fibration. Secondly we
highlight that the motivation to study such a global Tate model is that the singularity
structure of Y4 is much easier worked out than in the Weierstrass model. This has
been described in detail in [14]. It is this simplifcation that allows to easily work out
an SU (5) ×U (1)X gauge symmetry.

Construction 16.2.3 (. . . Shed Some SU (5) In This Model, . . . ):

1. As a next step consider an effective divisor DGUT ∈ Cl (XΣ) and a non-trivial
holomorphic section s̃ GUT ∈H0 (XΣ,OXΣ (DGUT)). Then consider

GUT ∶= {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = 0} ⊂ B3 (16.15)

We require that this is an algebraic submanifold of codimension 2 in XΣ. This
manifold we term ’the GUT’. Moreover we set

w∶B3 → C , p↦ s̃GUT (p) (16.16)

2. As pointed out in [14] for an SU (5) singularity structure along the GUT, we
have to require that the holomorphic functions a2, a3, a4 and a6 factor according
to

a2 = a2,1w, a3 = a3,2w
2, a4 = a4,3w

3, a6 = a6,5w
5 (16.17)

where ai,j ∶= ãi,j ∣B3
for

ãi,j ∈H0 (XΣ,OXΣ (i ⋅KB3 − j ⋅DGUT)) (16.18)

such that all ai,j are not diviable by w in the ring OB3 (B3).
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3. Finally we consider the following codimension 3 curves of XΣ.
• C10 ∶= {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = ã1 (p) = 0}
• C5m ∶= {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = ã3,2 (p) = 0}
• C5H ∶= {p ∈XΣ , s̃B3 (p) = s̃GUT (p) = ã3,2 (p) ⋅ ã2,1 (p) − ã4,3 (p) ⋅ ã1 (p) = 0}

Note that they are all required to be smooth and of codimension 3 in XΣ.
We term these complex curves the 10-curve, the 5m-curve and the 5H-curve
respectively.

4. The homogeneity of ã1, ã3,2 and ã3,2ã2,1−ã4,3ã1 canonically induce divisor classes
on XΣ, which we term DC10 , DC5m

and DC5H
.

Construction 16.2.4 (. . . Restrict To An SU (5) ×U (1)X Model, . . . ):

1. We restrict the form of the elliptic fibration further, so as to enlarge the gauge
group.

2. Enlarging SU (5) to SU (5)×U (1)X is most easily achieved by requiring a6 ≡ 0.
This type of model is known as a U (1) restricted model. More details on this
type of model can be found in [46].

Construction 16.2.5 (. . . And Finally Add G4-Flux To It):

1. Last but not least, we add G4-flux to the model. Hence this is the point where a
special form of G4-flux kicks in. We mentioned that in the above type of model
one can pick holomorphic line bundles on the GUT [37] to form special G4-fluxes.
Here we will be even more special, in that we choose a holomorphic line bundle
on XΣ. Via pullback onto the GUT this gives us a special holomorphic line
bundle on the GUT and therefore a very special G4-flux.
So let D ∈ Cl (XΣ) 2. The associated holomorphic line bundle L̃ = OXΣ (D) then
plays the role of a G4-flux. Note that in [47] the line bundle L̃ is refered to as
FX .

2. Next let us compute the canonical bundle of C10. To this end we use the
adjunction formula twice. First we realise

KC10 = KGUT∣C10
⊗ NC10/GUT∣C10

(16.19)

with NC10/GUT∣C10
= OXΣ (DC10)∣C10

. Secondly we have again from the adjunc-
tion formula

KGUT = KB3 ∣GUT ⊗ NGUT/B3 ∣GUT (16.20)
By using KB3 = OXΣ (−T t +DB3)∣B3

we then find

KGUT = OXΣ (DGUT +DB3 − T t)∣GUT (16.21)

From KB3 =DB3 − T t = −KB3 we finally conclude

KC10 = OXΣ (DGUT −KB3 +DC10)∣C10
(16.22)

2This divisor class should not be effective, as otherwise supersymmetry constraints are hard to
satsify.
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3. Motivated by this finding we focus on the following three formal 3 divisor classes
• D1 = −1D + 1

2 (DC10 +DGUT −KB3)
• D2 = 3D + 1

2 (DC5m
+DGUT −KB3)

• D3 = 2D + 1
2 (DC5H

+DGUT −KB3)
Note that the second part 1

2 (. . . ) resembles in analogy to the type IIB-picture
a formal spin divisor. This observation is based on the fact that on a connected
and compact Riemann surface Mg of genus g the spin structures are one-to-one
with holomorphic line bundles S with the property S⊗2 =KMg as proven in [43].

4. As a next step we implement the Freed-Witten quantisation condition. In this
particular context this requires that D1, D2 and D3 are divisor classes, i.e.
canonically identified with integer valued vectors of length a.

5. Given Freed-Witten quantisation, we can thus consider the holomorphic line
bundles L̃i = OXΣ (Di) on XΣ. We are then interested in the cohomologies of
the following three holomorphic line bundles.

• L1 ∶= L̃1∣C10

• L2 ∶= L̃2∣C5m

• L3 ∶= L̃3∣C5H

Note that it is this final step that needs the computation of cohomologies of
pullback line bundles. It is hence the ability to perform this task that most of
the work in this thesis focused on.

6. Finally we mention that for model-building purposes we are mostly interested
in situations, such that the cohomologies are according to one of the following
two cases.

• Case 1:
h0 (C10,L1) = 3 and h1 (C10,L1) = 0
h0 (C5m,L2) = 3 and h1 (C5m,L2) = 0
h0 (C5H ,L3) = 1 and h1 (C5H ,L3) = 1

• Case 2:
h0 (C10,L1) = 0 and h1 (C10,L1) = 3
h0 (C5m,L2) = 0 and h1 (C5m,L2) = 3
h0 (C5H ,L3) = 1 and h1 (C5H ,L3) = 1

16.3. A Scan On CP2 ×CP1 ×CP1

Note:
A particularly simply ambient space to handle is the smooth and compact normal

3This means that a priori they are half-integer valued vectors of length a. So up to 1
2 we can always

identify them with a divisor class in XΣ. Hence they are not quite canonically isomorphic to
divisor classes of XΣ.

162/277



CHAPTER 16. APPLICATION TO MODEL BUILDING - A TEASER

toric variety CP2 ×CP1 ×CP1. Recall in particular that CPn is a Flag variety. Hence
we know that the cohomology classes of holomorphic line bundles on CP2×CP1×CP1

come equipped with natural tensor structures that we can use to construct the maps
dr with r ≥ 2 in the Koszul spectral sequence, as we described in chapter 14. Let
us therefore exemplify the SU (5) × U (1)X-models presented in section 16.2 on this
particular toric ambient space.

Consequence:
To check for promising models on this ambient space, we should scan over all possible
setups in CP2 ×CP1 ×CP1 and pick the models of interest to us. Our strategy will
be as follows.

Construction 16.3.1 (Finding Candidate Models On CP2 ×CP1 ×CP1):
To find candidate models on CP2 ×CP1 ×CP1 we scan over effective divisor classes
DB3 , DGUT. Then we check if the divisor classes KB3 , 2KB3 −DGUT, 3KB3 − 2DGUT,
4KB3 − 3DGUT, DC10 , DC5m

and DC5H
are all effective as well. If this is found to be

true, we scan over G4-fluxes L̃ = OXΣ (D) and check if the divisor classes D1, D2 and
D3 are well-defined, that is if the Freed-Witten quantisation is satisfied. Given that
this check is also passed we use the Koszul extension of the cohomCalg algorithm to
compute the chiral index of the holomorphic line bundles L1, L2, L3 4. In case we
find

∣χ (L1)∣ = 3 ∧ ∣χ (L2)∣ = 3 ∧ χ (L3) = 0 (16.23)

this setup is a candidate model.

Note (Candidate Models on CP2 ×CP1 ×CP1):
We perform an explicit scan over the following parameter ranges.

• DB3 = (α, β, δ) with 0 ≤ α ≤ 3 and 0 ≤ β, δ ≤ 2.
• DGUT = (µ, ν, γ) with 0 ≤ µ ≤ 3 and 0 ≤ ν, γ ≤ 2.
• D = 1

2 (a, b, c) with −20 ≤ a ≤ 0 and −20 ≤ b, c ≤ 20.
This scan therefore checks roughly 45.8 ⋅ 106 configurations. It yields a number of
only 20 disctinct candidate-models which we list in Table 16.1.

Remark:
Of course on each of these candidate models more checks need to be performed - we
should check that all subvarieties are smooth and of the correct codimension and we
should also compute the pullback cohomologies by use of the pullback-cohomology-
computation-technology developed in this thesis.
The codimension checks are always easily performed in Sage [51]. Unfortunately
however the polynomials defining the curves Ci grow large very fast. Even if we
choose numerical prefactors to replace the complex valued coefficients Ci that encode

4As this task can be phrased as the calculation of certain intersection numbers, the performance
of the scan can be increased by replacing the use of the Koszul extension of cohomCalg by use
of some software that can compute intersection numbers in toric varieties, such as Sage [51].
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a redundant description of the complex structure of Ci, Sage [51] has to work very
hard and long to check for smoothness. Therefore we were so-far only able to perform
the smoothness checks on B3, GUT and C10 in a timely fashion, whilst C5m and C5H

usually take many days to be checked.
Similarly also the computation of the pullback cohomologies proves very hard in
practice. This is for essentially two reasons.

• The cohomology classes on the E1-sheet grow rapidely. In many of the candi-
date models that we will present, those cohomology groups reach dimensions
of thousands to hundreds of thousands. Even though the performance of our
Mathematica notebook was increased by a factor of 100, it still takes days to
work out only the E1-sheet for such big cohomology groups.

• The Koszul spectral sequences are to be worked out for codimension 3 loci.
These spectral sequences do not converge on the E1-sheet but the E3-sheet.
Under fortunate circumstances of course it can happen that the sequences con-
verges on the E1-sheet, but in general this is not the case. As we have not
yet implemented a construction of the maps dr with r ≥ 2 into our notebook
such computations need to be done by hand. This however is impractial even
for cohomology classes of dimensions of 50 - 100, not to mention hundreds,
thousands or hundreds of thousands. Therefore the current state of our Math-
ematica notebook allows only to find estimates for the cohomology classes from
the computation of the E1-sheet.

It is left for future work to overcome these limitations.

Note:
It is readily checked, that model #15 and #17 have h0 (C5H ,L3) ≥ 9, whilst for
model #16 we have h0 (C5H ,L3) ≥ 13. Let us be very restrictive and not allow for
any exotics. Then by these simple means we have just ruled out 3 of the 20 models.
The analysis of the remaining 17 models is harder though. We leave this analysis for
future work and decide to only give a baby-version of the analysis needed. To this
end we have a closer look onto a special representative of model #10.

16.4. A Special Form Of Model #10
Note:
We now investigate the model #10 for a special set of sections s̃B3 , s̃GUT , ãi, ã2, ã3
and ã4. To this end we let Mathematica generate pseudo-random numbers for us,
plug those into the corresponding polynomials and compute the pullback cohomolo-
gies without checking the smoothness conditions. This is what the function Model
presented in subsection 15.2.5 does for us. The source code of this function can be
found in Appendix E.
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Construction 16.4.1 (Base):
We pick the following function.

s̃B3 = 0.989028379852613x1x
2
4x6 + 0.734032360376816x2x

2
4x6

+ 0.938375320175355x3x
2
4x6 + 0.339317919191924x1x4x5x6

+ 0.649822960090401x2x4x5x6 + 0.582373999640213x3x4x5x6

+ 0.353911797094248x1x
2
5x6 + 0.160360451666156x2x

2
5x6

+ 0.267511914379556x3x
2
5x6 + 0.110625148626521x1x

2
4x7

+ 0.117119296015655x2x
2
4x7 + 0.0897198604905047x3x

2
4x7

+ 0.820490527048718x1x4x5x7 + 0.487051129121177x2x4x5x7

+ 0.392781180105981x3x4x5x7 + 0.839333450337773x1x
2
5x7

+ 0.753182202403554x2x
2
5x7 + 0.519756066830027x3x

2
5x7

(16.24)

It is checked via Sage [51] that the base is smooth and of the correct codimension.

Construction 16.4.2 (GUT):
We pick

s̃GUT = 0.241742543419595x1x6 + 0.801228849161860x2x6

+ 0.432085830206161x3x6 + 0.300089241240703x1x7

+ 0.286717978324859x2x7 + 0.807949402715996x3x7

(16.25)

Sage [51] confirmed that the GUT is smooth and of the correct codimension.

Construction 16.4.3 (The elliptic fibration):
For the elliptic fibration we pick the following functions.

a1 = 0.665801789799261x2
1x6 + 0.669664904120052x1x2x6

+ 0.318435395893956x2
2x6 + 0.829533654639629x1x3x6

+ 0.865654510031526x2x3x6 + 0.0341480184712135x2
3x6

+ 0.580463865504795x2
1x7 + 0.500320022518483x1x2x7

+ 0.208509205382034x2
2x7 + 0.441200276585968x1x3x7

+ 0.0552895324802994x2x3x7 + 0.969710856811344x2
3x7

a2,1 = 0.788002465577774x3
1x6 + 0.439069680539317x2

1x2x6

+ 0.137986051013561x1x
2
2x6 + 0.874619184264689x3

2x6

+ 0.562300489147410x2
1x3x6 + 0.329839199646780x1x2x3x6

+ 0.801050951715531x2
2x3x6 + 0.523939295616758x1x

2
3x6

+ 0.203937616308565x2x
2
3x6 + 0.502034849368105x3

3x6

+ 0.298737666994317x3
1x7 + 0.496643608788407x2

1x2x7

+ 0.912400586812497x1x
2
2x7 + 0.852814225518237x3

2x7

+ 0.248915975392212x2
1x3x7 + 0.865092973825429x1x2x3x7
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+ 0.690062985617382x2
2x3x7 + 0.897542003372793x1x

2
3x7

+ 0.0822689553271077x2x
2
3x7 + 0.484256802362263x3

3x7

a3,2 = 0.686598371466560x4
1x6 + 0.736877098213456x3

1x2x6

+ 0.519887608005832x2
1x

2
2x6 + 0.631121503597466x1x

3
2x6

+ 0.523916095921866x4
2x6 + 0.540171387853479x3

1x3x6

+ 0.774177382238416x2
1x2x3x6 + 0.478051853456718x1x

2
2x3x6

+ 0.489079773624477x3
2x3x6 + 0.966896920963908x2

1x
2
3x6

+ 0.337380994053327x1x2x
2
3x6 + 0.487462632081411x2

2x
2
3x6

+ 0.578893438222033x1x
3
3x6 + 0.175482030248971x2x

3
3x6

+ 0.0719383254616413x4
3x6 + 0.382073262023434x4

1x7

+ 0.692613178728784x3
1x2x7 + 0.373915048972292x2

1x
2
2x7

+ 0.593037827943180x1x
3
2x7 + 0.0579722711581433x4

2x7

+ 0.257991537789341x3
1x3x7 + 0.960658931792121x2

1x2x3x7

+ 0.452926172891729x1x
2
2x3x7 + 0.267573462371527x3

2x3x7

+ 0.566377266632345x2
1x

2
3x7 + 0.0828467155289336x1x2x

2
3x7

+ 0.865574210986096x2
2x

2
3x7 + 0.544972262424058x1x

3
3x7

+ 0.0372063843633103x2x
3
3x7 + 0.203286716867415x4

3x7

a4,3 = 0.200390298762100x5
1x6 + 0.686140096451894x4

1x2x6

+ 0.739728976539899x3
1x

2
2x6 + 0.803247432595487x2

1x
3
2x6

+ 0.504703388119129x1x
4
2x6 + 0.557865317402868x5

2x6

+ 0.225701312612143x4
1x3x6 + 0.0464734863833506x3

1x2x3x6

+ 0.259250756947604x2
1x

2
2x3x6 + 0.858641538134234x1x

3
2x3x6

+ 0.0748948037831674x4
2x3x6 + 0.416652723219461x3

1x
2
3x6

+ 0.971655475179566x2
1x2x

2
3x6 + 0.965112632872295x1x

2
2x

2
3x6

+ 0.874558662460118x3
2x

2
3x6 + 0.890657311506406x2

1x
3
3x6

+ 0.706627228635256x1x2x
3
3x6 + 0.131047290866268x2

2x
3
3x6

+ 0.208293062208944x1x
4
3x6 + 0.576212693410161x2x

4
3x6

+ 0.967416113084352x5
3x6 + 0.190152053193513x5

1x7

+ 0.991630829448392x4
1x2x7 + 0.352306555543267x3

1x
2
2x7

+ 0.993527895225648x2
1x

3
2x7 + 0.788179133456002x1x

4
2x7

+ 0.685392463899916x5
2x7 + 0.958791956684563x4

1x3x7

+ 0.680943123824964x3
1x2x3x7 + 0.540208674830397x2

1x
2
2x3x7

+ 0.124729049492497x1x
3
2x3x7 + 0.200958170773620x4

2x3x7

+ 0.356803465628049x3
1x

2
3x7 + 0.0958530600359767x2

1x2x
2
3x7

+ 0.819356258009017x1x
2
2x

2
3x7 + 0.268023672600283x3

2x
2
3x7

+ 0.595208783195890x2
1x

3
3x7 + 0.777925884306606x1x2x

3
3x7
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L′ 0 0 6 0 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0 15 45 0 0
↓ ↓ ↓ ↓ ↓ ↓
V1 0 64 40 0 0
↓ ↓ ↓ ↓ ↓ ↓
L1 0 45 0 0 0

H0 H1 H2 H3 H4

L′ 0 0 0 0 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0 0 0 0 0
↓ ↓ ↓ ↓ ↓ ↓
V1 0 4 1 0 0
↓ ↓ ↓ ↓ ↓ ↓
L1 0 0 0 0 0

H0 H1 H2 H3 H4

Table 16.2.: The E1- and E2-sheet in the calculation of hi (C10,L1) in model #10 on
the toric ambient space CP2 ×CP1 ×CP1.

+ 0.736419813783850x2
2x

3
3x7 + 0.862244928722523x1x

4
3x7

+ 0.794027013298842x2x
4
3x7 + 0.996627270641613x5

3x7

a6 = 0

Sage [51] verifies that all curves C10, C5m and C5H are of the correct codimension.
In addition we checked that C10 is smooth. The corresponding smoothness checks
for C5m and C5H were cancelled after two days of running Sage [51] on a Windows
7 system with i7 quad-core processor in a virtual machine equipped with 3GB RAM
and 1 CPU.

Consequence:
The above-presented sections describe a special representative geometry of model
#10. We can thus proceed by computing the cohomologies of L1, L2 and L3. To this
end we use our Mathematica notebook as presented in Appendix E to compute the
E2-sheet. We display the E1-sheets as well as the generic E2-sheets in Table 16.2,
Table 16.3 and Table 16.4. From this we conclude

• h0 (C10, L̃1) = 4 and h1 (C10, L̃1) = 1

• h0 (C5m, L̃2) = 6 and h1 (C5m, L̃2) = 3

• h0 (C5H , L̃3) = 9 and h1 (C5H , L̃3) = 9
So this special representative of model #10 is ruled out if we allow for no exotics.

Remark:
A question that we have to leave open here is the following.

Is it possible to choose other sections such that the cohomology groups on
C10, C5m and C5H are tuned to the desired values?

Let us mention though, that in principle this question is answered by the technology
presented here. Answering it only hinges on sufficient computational power.
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L′ 0 0 0 1092 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0 0 1014 1599 0
↓ ↓ ↓ ↓ ↓ ↓
V1 0 0 1428 504 0
↓ ↓ ↓ ↓ ↓ ↓
L1 0 0 420 0 0

H0 H1 H2 H3 H4

L′ 0 0 0 0 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0 0 6 3 0
↓ ↓ ↓ ↓ ↓ ↓
V1 0 0 0 0 0
↓ ↓ ↓ ↓ ↓ ↓
L1 0 0 0 0 0

H0 H1 H2 H3 H4

Table 16.3.: The E1- and E2-sheet in the computation of hi (C5m,L2) in model #10
on the toric ambient space CP2 ×CP1 ×CP1.

L′ 0 0 0 462 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0 0 440 530 0
↓ ↓ ↓ ↓ ↓ ↓
V1 0 0 465 60 0
↓ ↓ ↓ ↓ ↓ ↓
L1 0 0 33 0 0

H0 H1 H2 H3 H4

L′ 0 0 0 0 0
↓ ↓ ↓ ↓ ↓ ↓
V2 0 0 9 8 0
↓ ↓ ↓ ↓ ↓ ↓
V1 0 0 1 0 0
↓ ↓ ↓ ↓ ↓ ↓
L1 0 0 0 0 0

H0 H1 H2 H3 H4

Table 16.4.: The E1- and E2-sheet in the calculation of hi (C5H ,L3) in model #10 on
the toric ambient space CP2 ×CP1 ×CP1.
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17. Conclusion And Outlook

Conclusions And Outlook
In type IIB and F-theory model building one wishes to compute the spectrum of
massless string zero modes. This task leads under simplified assumptions to the
computation of cohomology groups of pullback line bundles. In many applications
to physics, the geometry is build from toric varieties. This is because toric vari-
eties are mathematically well-understood and easy to handle. In particular one can
write computer programs that compute intersection numbers, Chern classes, indices,
. . . . A prominent example of such a software is Sage [51]. Consequently computing
the spectrum in many model building applications boils down to understanding the
answer to the following question.

Given a smooth and compact normal toric variety X, a holomorphic line
bundle L on X and C ⊂ X a submanifold. How does one compute the
cohomologies of L∣C?

This is the question that we adressed in this thesis. Let us briefly recall the answer.
1. For every holomorphic line bundle L on XΣ there exists a divisor class D ∈

Cl (XΣ) with L = OXΣ (D).
2. Every analytic submanifold C ⊂XΣ turned out to be even an algebraic subman-

ifold, i.e. cut out by a finite number of polynomials Q1, . . . , Qn.
3. The cohomologies of L∣C are then related to the cohomologies of certain line

bundles on XΣ via the sheaf exact Koszul sequence

0→ L′ → Vn−1 → ⋅ ⋅ ⋅→ V1 → L→ L∣C → 0 (17.1)

The ambient space cohomologies can be computed via the fast cohomCalg al-
gorithm. Then a novel approach to computing the pullback cohomologies from
this sequence is the use of exactness. This is implemented in [53]. We pointed
out in chapter 9 that in general however, exactness is not enough to determine
the pullback cohomologies.

4. The core of this thesis was then to go beyond these exactness calculations. To
this end we presented in Part IV the Koszul spectral sequence and established
it as the optimal approach to computing pullback cohomologies. In particular
we present all the information that is needed to perform these computations in
principle.
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For practical applications in the model building, this principle knowledge is not
enough. It must be possible to handle this computation even when the cohomology
classes are hugh and one wishes to obtain the result in a timely fashion.
In a first attempt to achieve this goal we present a Mathematica notebook that
enables us to compute the E1-sheet of the Koszul spectral sequence. The source code
is displayed in Appendix E and we present a brief manual in chapter 15.
Whilst this notebook enables us to compute a first approximation of the pullback
cohomology groups it is not yet a full practical answer to the given question. Rather
it needs to be extended such that is can also compute the higher sheets in the Koszul
spectral sequence. For most model building applications it would even be sufficient
to implement this functionality only up to the E3-sheet. Unfortunately this extension
faces the following two problems.

• On the one hand we could use the standard construction in order to obtain the
dr-maps with r ≥ 2. This construction was described in section 13.2. In par-
ticular we pointed out that for this approach to work we need the information
about the E0-sheet. This information unfortunately is not accessible from the
fast cohomCalg algorithm but needs to make use of the chamber counting.
In conclusion this way of constructing the maps is certainly possible to imple-
ment in a computer. The calculation that we presented in section 13.4 should
however motivate that implementing this functionality will take quite some time.
In addition, based on the fact that the performance of the chamber counting
algorithm presented in[61] performs slower than cohomCalg, one should expect
that the so- obtained program would perform slowly too.

• In principle a slow program is not a problem, in practice however it is. So one
would hope to find a faster algorithm. A hint towards such a faster construction
is given in the mathematics literature where it reads that the maps dr with r ≥ 2
are ’natural’. But of course ’naturalness’ is not accessible for a computer and
one has to look more carefully into the construction to determine what ’natural’
is suppose to mean.
Given that we work on a toric variety XΣ which is a generalised Flag variety at
the same time, we know from the Bott-Borel-Weil theorem that the cohomology
classes of holomorphic line bundles are labeled by representations of certain Lie
groups. Intuitively this means that the cohomology groups come equipped with
a tensor structure. In this context ’natural’ then means, among others, that
these tensor structures are to be respected.
In [58] model building on direct products of CPn have been performed. Such
toric varieties are known to form generalised Flag varieties. Therefore a ’natural’
construction for the maps dr with r ≥ 2 arises from the demand to respect the
tensor structures.
For model building however, a freedom in choice of ambient toric variety is
desirable. Therefore one can ask the following question.

Is a smooth and compact normal toric variety XΣ a generalised Flag
variety?
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Our proposition is that the answer to this question is affirmative and we for-
mulate a proposition for a simplified construction of the maps dr with r ≥ 2 in
chapter 14.

Let us emphasise that these are propositions. Turning these propositions into solid
statements is left for future work. In particular extending the Mathematica notebook
to give a full practical answer to the computation of pullback cohomologies is left for
future work.
Whilst the Mathematica notebook is to date not yet complete in the above sense,
it can be used to go one step beyond the Koszul extension of cohomCalg [53]. We
exemplified such an application in chapter 16. A particularly interesting application
would be to exploit the proposal to understand the G4-flux in F-theory from Chow
groups and Deligne cohomology [37]. Such applications are reserved for future work.

Acknowledgements
The author thanks all members of the String Theory and Physics Beyond the Stan-
dard Model research group at Heidelberg university for the many useful discussions.
Special thanks go to Christoph Mayrhofer for his expertise in toric geometry and
Sage [51], Stefan Sjörs for discussions of holomorphic line bundle on C1,τ , Lara Brian
Anderson for a discussion of the higher differential maps in the Koszul spectral se-
quence and Eberhard Freitag, whose lectures on Riemann surfaces and complex spaces
proved a perfect supplement to the topic of my thesis.
Finally I would like to thank my supervisor Timo Weigand for his endless patience,
the many discussions, encouragements and helpful advices.

173/277



A. Line Bundles, Divisors And
Chern Classes

A.1. (Pre-) Sheaves And Sheaf Cohomology

A.1.1. Introduction
We now give a brief introduction to the topic of sheaves. For alternative brief in-
troductions consult [67, 38]. For a more careful treatment the interested reader is
refered to [44, 66, 45, 71].

A.1.2. Presheaves
Definition A.1.1 (Presheaf):
A presheaf F of Abelian groups on a topological space M is a map which assigns to
every open subset U ⊂ X an Abelian group F (U) and to every pair U, V of open
subsets of M with the property V ⊂ U a group homomorphism

rU
V ∶F (U)→ F (V ) (A.1)

such that

• rU
U = id for all U ⊂M open

• for any three open subsets W ⊂ V ⊂ U of M it holds rU
W = rV

W ○ rU
V

Remark:
The notion of a presheaf can be defined on a given category with values in a second
category. Whilst this point of view if far more general than the one given in the above
definition, for our purposes though, it will suffice to work with the above definition.

Example A.1.1:
Consider a topolgical space M . Then define for U ⊂M open

F (U) ∶= {f ∶U → C , f is constant} (A.2)

Any such set F (U) forms an Abelian group. As restriction maps we pick the ordinary
restriction of functions. Then this structure forms a presheaf.
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Definition A.1.2 (Presheaf Homomorphsm):
Let M a topological space and F, G presheaves on M . Then we define that a presheaf
homomorphism f ∶F → G is a collection

{fU ∶F (U)→ G (U) , U ⊂M open } (A.3)

of group homomorphisms, such that for any two V ⊂ U ⊂ M open, the following
diagram commutes.

..
..F (U) ..G (U)

..F (V ) ..G (V )
.

fU

.
fV

.(rF )UV . (rG)UV

Note:
There are natural notions of kernel, image and cokernel of a presheaf homomorphism.
All of them are presheaves. In particular this allows to define the notion of a complex
of presheaves.

Lemma A.1.1:
A sequence 0 → F → G → H → 0 of presheaves F, G, H on a topological space M is
presheaf exact precisely if for any U ⊂M open, the induced sequence

0→ F (U)→ G (U)→H (U)→ 0 (A.4)

is exact.

A.1.3. Sheaves
Definition A.1.3 (Sheaf):
A sheaf F of Abelian groups on a topological space M is a presheaf of Abelian groups,
which satisfies in addition the following three conditions.

(S1) Let U = {Ui}i∈I an open cover of U ⊂M open and s, t ∈ F (U) with the property

s∣Ui
= t∣Ui

∀i ∈ I (A.5)

Then it holds s = t.

(S2) Let U = {Ui}i∈I an open cover of U ⊂M open and {si ∈ F (Ui)}i∈I a family with
the property

si∣Ui∩Uj
= sj ∣Ui∩Uj

∀i, j ∈ I (A.6)

Then there exists s ∈ F (U) with s∣Ui
= si for all i ∈ I.

(S3) F (∅) is the zero group.
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Example A.1.2:
We first give an example of a presheaf that is not a sheaf. To this end let M a
topological space which is not connected. Then the constant functions on M with
the ordinary restriction of functions form a presheaf. However they do not form a
sheaf. This can be seen as follows.
For simplicity let us assume M = U ∪ V with U ∩ V = ∅ but U, V both connected.
Then we consider the functions

s0∶U → C , z ↦ 0, s1∶V → C , z ↦ 1 (A.7)

Consequently s0 ∈ F (U) and s1 ∈ F (V ). This setup now satisfies the requirements
for (S2) since U ∩ V = ∅. However there does not exist a constant function

s∶M → C , z ↦ c, c ∈ C constant (A.8)

with the property
s∣U0
= s0, s∣U1

= s1 (A.9)

since 0 ≠ 1. Thus (S2) is not satisfied and the constant functions on M do not form
a sheaf.

Remark:
If we replace the constant functions in the preceeding example by the locally constant
functions with ordinary restriction of functions, then this structure does form a sheaf
on M . This is a manifestation of the more general rule

Sheafifying means to make properties local.

Consequently the continous, the differentiable, the smooth and the holomorphic func-
tions on M with ordinary restriction of functions do form sheaves on M as all these
properties are local properties.

Notation:
Let M a complex manifold. Then OM is the sheaf of holomorphic functions, O∗M
the sheaf of non-vanishing holomorphic functions andM∗

M the sheaf of meromorphic
function on M which are not identically zero on any connected component of M . 1

Definition A.1.4 (Sheaf Homomorphism):
Let M a topological space and F, G two sheaves on M . Then a sheaf homomorphism

f ∶F → G (A.10)

is a homomorphism of presheaves.
1The symbol O is used to represent holomorphic functions in order to honour the great achieve-

ments of the japanese mathematician Kiyoshi Oka in complex analysis.
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Note:
Let M a topological space, F , G two presheaves on M and f ∶F → G a presheaf
homomorphism. Then there are natural notions of kernel, image and cokernel of f
and all of them are presheaves. Given that F is a sheaf it turns out that ker (f) is
a sheaf also. However, even if F and G are both sheaves, then the presheaf image
need not be a sheaf.

Example A.1.3:
To illustrate this fact let us consider M = C and the sheaf homomorphism

O → O∗ , f ↦ exp (2πif) (A.11)

Let us then consider the open subset

U ∶= {z ∈ C , ∣z∣ > 1} (A.12)

which we cover by

U1 ∶= {z ∈ U , Re (z) < 1
2
} , U2 ∶= {z ∈ U , Re (z) > −1

2
} (A.13)

This is illustrated in Figure A.1. Now we consider the functions

f1∶U1 → C∗ , z ↦ 1
z

, f2∶U2 → C∗ , z ↦ 1
z

, (A.14)

Note that both functions agree on U1 ∩ U2 and that both admit a holomorphic log-
arithm since U1, U2 are both simply connected. Therefore f1, f2 are in the image of
the above sheaf homomorphism.
If the presheaf image was a sheaf, it would satisfy property (S2), i.e. since f1, f2 are
local sections in the presheaf image there would exist a function f ∶U → C∗ with the
properties

• f ∣Ui = fi

• f admits a holomorphic logarithm
The first requirement implies f ∶U → C∗ , z ↦ 1

z . This function however is known not
to admit a holomorphic logarithm since U is not simply connected.

Lemma A.1.2 (Generated Sheaf):
Let M a topological space and F a presheaf on M . Then there exists a smallest sheaf
F̂ on M which contains F as a subpresheaf. F̂ is known as the generated sheaf.

Consequence:
One thus defines that for two sheaves F, G on a topological space M and a sheaf
homomorphism f ∶F → G one has

• The sheaf image of f is the generated sheaf f̂ (F ).
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..
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. x.

U1

.

U2

Figure A.1.: Subsets U1, U2 ⊂ C used to illustrate that the presheaf image need not
be a sheaf in general.

• The sheaf cokernel of f is the generated sheaf ̂coker (f).

Note:
This notion now allows for the defintion of complexes of sheaves.

Lemma A.1.3:
A sequence 0→ F1 → F2 → F3 → 0 of sheaves on a topological space M is sheaf exact
precisely if induced sequence of stalks

0→ (F1)p → (F2)p → (F3)p → 0 (A.15)

is exact at every point p ∈M .

Remark:
The above lemma is quite important in that it shows that sheaf exactness is a local
property.

Sheaf exactness can be checked stalkwise.

A.1.4. Sheaf Cohomology
Lemma A.1.4 (Godement Resolution):
Let F a sheaf of Abelian groups on a topological space M . Then F admits a Gode-
ment resolution, that is there exist a sheaf exact sequence

0→ F → F (0) → F (1) → F (2) → . . . (A.16)

where the sheaves F (i) are all flabby and F (0) is the Godement sheaf of F . This
resolution is known as the Godement resolution or the canonical flabby resolution.
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Definition A.1.5 (Sheaf Cohomology):
By application of the global section functor Γ one can obtain a long sequence from
the Godement resolution

0→ ΓF (0) → ΓF (1) → ΓF (2) → . . . (A.17)

which is no longer exact. One now defines the cohomology of the sheaf F as the
cohomology of this long sequence and denotes it by H i (M, F ).

Remark:
It holds H0 (M, F ) ≅ ΓF = F (M).

Definition A.1.6 (Acyclic Sheaf):
A sheaf F of Abelian groups on a topological space M is acyclic precisely if

Hn (M, F ) = 0 ∀n ≥ 0 (A.18)

Definition A.1.7 (Acyclic Resolution):
Let F a sheaf of Abelian groups on a topological space M . An acyclic resolution of
F is a long sheaf exact sequence

0→ F → F0 → F1 → F2 → . . . (A.19)

where the sheaves Fi are acyclic.

Remark:
The cohomology of a sheaf F of Abelian groups on a topological space M can be
computed from any acyclic resolution of F .

Note:
In general the computation of the cohomology groups of a sheaf is involved. How-
ever, under certain nice conditions, one can compute sheaf cohomology from Čech
cohomology. Let us emphasise though, that Čech cohomology and sheaf cohomology
are by no means the same, but completely different structures that happen to give
the same answer under special circumstances.

A.2. Čech Cohomology

A.2.1. Introduction
In this section we will introduce the notion of Čech cohomology. For alternative brief
introductions to the topic we refer the intersted reader to [67] and [38]. More careful
treatments are to be found in [44], [66], [45] and [71].
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A.2.2. Čech Cohomology - Definitions
Definition A.2.1 (Čech Cochain):
Let M a complex manifold and U = {Uα}α∈I an open cover of M . We consider the
sheaf O∗M on M and introduce the notion of Čech cohomology for that sheaf. To this
end we make the following definitions.

• Uα0,...,αp ∶= Uα0 ∩ ⋅ ⋅ ⋅ ∩Uαp . This set is open by the definition of topology since all
sets Uα are open.

• For p ∈ N ∪ {0} we define Ip ∶= {(α0, . . . , αp) ∈ Ip+1 , αi ≠ αj∀i, j ∈ {0, . . . , p}}.
• Now we set

ˇ̃Cp (U ,O∗M) ∶= ∏
(α0,...,αp)∈Ip

O∗M (Uα0,...,αp) (A.20)

An element in ˇ̃Cp (U ,O∗M) is thus a family (sα0,...,αp ∈ O∗M (Uα0,...,αp))(α0,...,αp)∈Ip .
Still we want to impose the additional requirement of total antisymmetry, by
which we mean here

sα0,...,αi,...,αj ,...,αp =
1

sα0,...,αj ,...,αi,...,αp

(A.21)

We denote the so-obtained families by Čp (U ,O∗M).

• If the indexing set I is finite, then we define Čp (U ,O∗M) to be the trivial group
for p ≥ ∣I ∣.

Example A.2.1:
Let M a complex manifold with open cover U = {U0}. Then we have

• Č0 (U ,O∗M) = O∗M (U0) since the total antisymmetry is trivially satisfied in this
case.

• Čp (U ,O∗M) is the trivial group for p ≥ 1.

Example A.2.2:
Let M a complex manifold with open cover U = {U0, U1}. Then we have

• Č0 (U ,O∗M) = O∗M (U0) ×O∗M (U1). Thus to describe an element x ∈ Č0 (U ,O∗M)
we pick two holomorphic functions

f0∶U0 → C∗, f1∶U1 → C∗ (A.22)

and obtain x = (f0, f1). Note that x = xα has just one index, namely α, and that
this index can take two different values, namely 0, 1. The antisymmetrisation
condition that we impose does not operate on these different values that α can
take but on different indices. Since x has just a single index, namely α, the
antisymmetrisation condition is still trivial.

180/277



APPENDIX A. LINE BUNDLES, DIVISORS AND CHERN CLASSES

• ˇ̃C1 (U ,O∗M) = O∗M (U0 ∩U1) ×O∗M (U1 ∩U0). Following the above procedure we
describe an element y = yα,β ∈ ˇ̃C1 (U ,O∗M) by picking holomorphic functions

f, g∶U0 ∩U1 → C∗ (A.23)

so that y01 = f and y10 = g. To finally obtain and element in Č1 (U ,O∗M) we
impose in addition the total antisymmetry, i.e. we enforce

yαβ =
1

yβα

(A.24)

Thus we have to require y00 = y11 = 0. In addition we have y01 = 1
y10

, or equiva-
lently f = 1

g . Consequently we can write

y = (y00, y01, y10, y11) = (0, f,
1
f

, 0) ∈ Č1 (U ,O∗M) (A.25)

for f ∈ O∗M (U0 ∩U1), or in a more condensed notation

y = (f,
1
f
) ∈ Č1 (U ,O∗M) (A.26)

• All higher Čech cochain groups are trivial.

Definition A.2.2 (Boundary Operator):
We wish to define a map

δp∶ Čp (U ,O∗M)→ Čp+1 (U ,O∗M) (A.27)

To this end recall that an element a ∈ Čp (U ,O∗M) is a tuple with one entry aα0,...,αp

for each p-tuple (α0, . . . , αp) ∈ Ip and the total antisymmetry imposed. Also recall
that

aα0,...,αp ∈ O∗M (Uα0,...,αp) (A.28)

Then we define

δp [(aα0,...,αp)(α0,...,αp)∈Ip+1] ∶= (
p+1

∏
k=0

a
(−1)k
α0,...,α̂k,...,αp+1

∣
Uα0,...,αp+1

)
(α0,...,αp+1)∈Ip+2

(A.29)

This family forms an element of Čp+1 (U ,O∗M) as is readily checked.

Remark:
We will supress the index p on δp and simply write δ instead.

Example A.2.3:
Let us consider a complex manifold M .
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• Let U = {U0} an open cover of M . Then by our earlier findings we know
a = (f0) ∈ Č0 (U ,O∗M) for f0 ∈ O∗M (U0). Then

δa = (aα1 ⋅ a−1
α0 ∣Uα0,α1

, aα0 ⋅ a−1
α1 ∣Uα0,α1

)
(α0,α1)∈I2

(A.30)

We see that the antisymmetry is taken care of automatically. Now note that
since I = {0} we must have α0 = α1 = 0. So

δa = (1, 1) (A.31)

which is the identity in the multiplicative group of pairs of nowhere vanishing
holomorphic functions. Thus δa is trivial. This matches our earlier finding that
for U = {U0} the Čech cochains Čp (U ,O∗M) are trivial for p ≥ 1.

• Now let us consider another open cover of M , namely U = {U0, U1}. In this case
we have

a = (f0, f1) ∈ Č0 (U ,O∗M) (A.32)
where fi ∈ O∗M (Ui). Following the above logic we then find

(δa) = ( f1

f0
∣
U0,1

,
f0

f1
∣
U0,1

) (A.33)

In general this is non-trivial as opposed to the case U = {U0}. Still the higher
Čech cochain-groups are trivial again.

Remark:

• Note that δ2 = 0, as is readily checked.
• By means of the coboundary maps δ we obtain the Čech complex for the open

cover U given by

0→ Č0 (U ,O∗M)
δ→ Č1 (U ,O∗M)

δ→ Č2 (U ,O∗M)
δ→ . . . (A.34)

Definition A.2.3 (Cocycles and Coboundaries):
Let M a complex manifold and U an open cover of M . Then we define

• The cocycles are given by 2

Zk (U ,O∗M) ∶= {a ∈ Čk (U ,O∗M) ; δa = 1} (A.35)

• The coboundaries are given by

Bk (U ,O∗M) ∶= {a ∈ Čk (U ,O∗M) ; ∃b ∈ Čk−1 (U ,O∗M) such that a = δb} (A.36)

Remark:
We define that B0 (U ,O∗M) is trivial.

2Recall that O∗M is a multiplicative group with identity 1.
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Example A.2.4:
For U = {U0, U1} we have by our ealier considerations

• Z1 (U ,O∗M) = Č1 (U ,O∗M)

• B1 (U ,O∗M) = {(
f1
f0
∣
U0,1

, f0
f1
∣
U0,1
) , fi ∈ O∗M (Ui)}

Definition A.2.4 (Čech Cohomology Group):
We define the Čech Cohomology groups as the following quotient groups

Ȟk (U ,O∗M) ∶= Zk (U ,O∗M) /Bk (U ,O∗M) (A.37)

or equivalently as the cohomologies of the Čech complex

0→ Č0 (U ,O∗M)
δ→ Č1 (U ,O∗M)

δ→ Č2 (U ,O∗M)
δ→ . . . (A.38)

Note:
The Čech cohomology groups are coset spaces, i.e. objects differing by a coboundary
are considered the same, which in addition carries the structure of an Abelian group.

Example A.2.5:
Let U = {U0, U1}. Then we have

• Ȟ0 (U ,O∗M) = Z0 (U ,O∗M) since B0 (U ,O∗M) is trivial.

• Ȟ1 (U ,O∗M) = {[(f01,
1

f01
)] , f01 ∈ O∗M (U0 ∩U1)} where (f01,

1
f01
) ∼ (g01,

1
g01
) iff

there exist f0 ∈ O∗M (U0) and f1 ∈ O∗M (U1) such that

g01 (z) =
f0 (z)
f1 (z)

⋅ f01 (z) ∀z ∈ U01 (A.39)

Remark:
Although we have introduced Čech cohomology for the sheaf O∗M only, it should be
clear that this construction generalises to any sheaf of Abelian groups on a topological
space M .

Definition A.2.5 (Leray Cover):
Let M a complex manifold and U an open cover of M . The open cover U is a Leray
cover precisely if for any sheaf F on M it holds

H i (M, F ) ≅ Ȟ i (U ,F) (A.40)

Remark:
We will make use of the fact that the affine open cover of a smooth and compact
normal toric variety is known to be a Leray cover in the later parts of this thesis. In
the first part we will one make moderate use of such covers.
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A.3. Holomorphic Line Bundles Cohomologically
And The Picard Group

A.3.1. Holomorphic Line Bundles Cohomologically
Definition A.3.1:
Let M a complex manifold and U an open cover of M . Then we introduce the
following terminology.

• The elements of H1 (M,O∗M) are holomorphic line bundles.
• The elements of Ȟ1 (U ,O∗M) are holomorphic coordinate line bundles with re-

spect to the open cover U .

Consequence:
Thus a holomorphic coordinate line bundle with respect to an open cover U = {Uα}α∈I
of a complex manifold M can be represented by a family G = {gαβ ∈ O∗M (Uαβ)}α,β∈I
such that

• gαβ (z) = 1
gβα(z) for all z ∈ Uαβ

• gαβ (z) gβγ (z) = gαγ (z) for all z ∈ Uαβγ

This family however is not unique, since it only has to represent an element of
Ȟ1 (U ,O∗M). So if we pick a family S = {fα ∈ O∗M (Uα)}α∈I and construct from it

G′ = {g′αβ =
fβ

fα

∣
Uαβ

⋅ gαβ ∈ O∗M (Uαβ)}
α,β∈I

(A.41)

then G′ represents the same coordinate line bundle.

Definition A.3.2 (Equivalent Holomorphic Coordinate Line Bundles):
Let M a complex manifold. We consider two open covers U = {Uα}α∈I and V = {Vµ}µ∈J
for I, J suitable indexing sets. Then consider two holomorphic coordinate line bundles
L and L′ with respect to U and V. Let them be represented by the families

G = {gαβ ∈ O∗ (Uα ∩Uβ)}α,β∈I , H = {hµν ∈ O∗ (Vα ∩ Vβ)}µ,ν∈J (A.42)

Now we construct a new open cover of M as

W ∶= {Uα ∩ Vµ}α,µ ∶= {Wκ}κ∈I×J (A.43)

In particular we can restrict the functions gαβ and hµν to intersections Wκ∩Wλ. This
gives

G̃ = {g̃κ,λ ∈ O∗ (Wκ ∩Wλ)}κ,λ∈I×J , H̃ ∶= {hκλ ∈ O∗ (Wκ ∩Wλ)}κ,λ∈I×J (A.44)

These families now represent holomorphic coordinate line bundles with respect to the
same open cover W .
We now define that L and L′ are equivalent holomorphic coordinate line bundles pre-
cisely if the holomorphic coordinate line bundles represented by G̃ and H̃ respectively,
are equivalent in the sense that they lie in the same class in Ȟ1 (W ,O∗M).
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Remark:
This definition is independent of the chosen representative families G, H for L and
L′ respectively.

Note:
Given a complex manifold M with Leray cover U . Then we can represent a holomor-
phic line bundle by a holomorphic coordinate line bundle with respect to the Leray
cover U .

A.3.2. The Picard Group
Note:
Let M a complex manifold. The holomorphic line bundles on M are the elements
of H1 (X,O∗M). Given that U is a Leray cover we can represent holomorphic line
bundles by holomorphic coordinate line bundles since we then have an isomorphism

H1 (X,O∗M) ≅ Ȟ1 (U ,O∗M) (A.45)

Remark:
H1 (U ,O∗M) corresponds to the coordinate line bundles of the open cover U of the
complex manifold M . We can represent the elements of H1 (U ,O∗M) by a Čech
cochain. In particular we can define a group action between Čech cochains as

• {gαβ} + {g′αβ} ∶= {gαβ ⋅ g′αβ}

• {gαβ}−1 = {g−1
αβ}

Thereby H1 (U ,O∗M) becomes an abelian group.

Note:
One can show that this group action carries over to H1 (M,O∗M) giving it a structure
of a group - the so-called Picard group. It is denoted as

Pic (M) ∶=H1 (M,O∗) (A.46)

Let us mention that the above mentioned group operation of Čech cochains become
tensor product and dual bundle construction at the level of sheaf cohomology.

A.4. Holomorphic Line Bundles Topologically
Comment:
Not only can one define holomorphic line bundles, but also continous, differential,
smooth line bundles. The latter are in principle accesible via the topological definition
that we will give momentarily. However as we are not interested in just any line
bundles but holomorphic line bundles, we give the definition of a holomorphic line
bundle from a topological perspective. To obtain e.g. a smooth line bundle one has
to replace the word holomorphic everywhere in the following definition by smooth.
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Definition A.4.1 (Representative Of A Holomorphic Coordinate Line Bundle):
Let M a complex manifold. Then a representative of a holomorphic coordinate
bundle L is a collection of data (L, π,U = {Uα}α∈I ,{φα}α∈I) as follows

• L is a complex manifold with dimC (L) = dimC (M) + 1.
• The map π∶L→M is holomorphic and satisfies

π−1 (p) ≅ C, ∀p ∈M (A.47)

• U is an open cover of M .
• The maps φα∶Uα ×C→ π−1 (Uα) are biholomorphisms.

Remark (Transition Functions):
Let us consider a representative of a holomorphic coordinate line bundle on a complex
manifold M given by the data (L, π,U = {Uα}α∈I ,{φα}α∈I). Recall that the maps

φα∶Uα ×C→ π−1 (Uα) (A.48)

are biholomorphisms. We consider now p ∈ Uα ∩Uβ and define the maps

φα∣{p}×C ∶{p} ×C→ π−1 (p) ≅ C, φβ ∣{p}×C ∶{p} ×C→ π−1 (p) ≅ C (A.49)

These maps are invertible since φα and φβ are biholomorphisms. Consequently we
can consider the map

φ−1
β ∣{p}×C ○ φα∣{p}×C ∶{p} ×C→ {p} ×C , (p, x)↦ (p, gαβ (p) ⋅ x) (A.50)

where gαβ (p) ∈ C∗.
We can repeat this construction for every p ∈ Uα ∩ Uβ. Thereby we obtain a map
gαβ ∈ O∗M (Uα ∩Uβ). The collection of all these functions we term the transition
functions for the holomorphic coordinate line bundle (L, π,U = {Uα}α∈I ,{φα}α∈I).

Consequence (Properties Of The Transition Functions):
By construction, the transition functions have the following properties.

• gαβ ∈ O∗M (Uα ∩Uβ)
• gαβ (p) ⋅ gβα (p) = 1 for all p ∈ Uα ∩Uβ

• gαβ (p) gβγ (p) gγα (p) = 1 for all p ∈ Uα ∩Uβ ∩Uγ

Construction A.4.1 (Minimal Defining Data):
Let M a complex manifold and U = {Uα}α∈I an open cover of M . Moreover let us
consider the family G = {gαβ ∈ O∗M (Uα ∩Uβ)}α,β∈I such that

• gαβ (p) gβα (p) = 1 for all p ∈ Uα ∩Uβ

• gαβ (p) gβγ (p) gγα (p) = 1 for all p ∈ Uα ∩Uβ ∩Uγ
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We claim that from this data we can reconstruct a representative of a holomorphic
coordinate line bundle in the sense presented above. We outline the steps to achieve
this.

1. Construct the space S ∶= ⋃α∈I Uα ×C.
2. Now define an equivalence relation on S as follows. For (p, x) ∈ Uα × C and
(q, y) ∈ Uβ ×C define

(p, x) ∼ (q, y)⇔ p = q and x = gαβ (p) ⋅ y (A.51)

3. Now construct L ∶= S/ ∼. Note that S carries the product topology and L the
quotient topology. In particular both S and L become complex manifolds.

4. Now we define the projection map as

π∶L→M , [(p, x)]↦ p (A.52)

5. Finally we construct the trivialisations φα as

φα∶Uα ×C→ π−1 (Uα) , (p, x)↦ [(p, x)] (A.53)

Definition A.4.2 (Equivalence Of Representants):
Let M a complex manifold and U = {Uα}α∈I an open cover of M . We consider
the families G = {gαβ ∈ O∗M (Uα ∩Uβ)}α,β∈I and G′ = {g′αβ ∈ O∗M (Uα ∩Uβ)}α,β∈I

. We
assume that

• gαβ (p) gβα (p) = g′αβ (p) g′βα (p) = 1 for all p ∈ Uα ∩Uβ

• gαβ (p) gβγ (p) gγα (p) = g′αβ (p) g′βγ (p) g′γα (p) = 1 for all p ∈ Uα ∩Uβ ∩Uγ

From the above we know that the families G and G′ thus describe a representative of
possibly different holomorphic coordinate line bundles. We define that G and G′ are
equivalent iff there exists a family S = {fα ∈ O∗M (Uα)}α∈I such that for all p ∈ Uα∩Uβ

it holds
gαβ (p) =

fα

fβ

∣
Uα∩Uβ

(p) g′αβ (p) (A.54)

Definition A.4.3 (Holomorphic Coordinate Line Bundle):
Let M a complex manifold. An equivalence class of representants of holomorphic
coordinate line bundles according to the above definition is a holomorphic coordinate
line bundle.

Remark:
From this it is now apparent that we can also say that a holomorphic coordinate
line bundle on a complex manifold M with respect to an open cover U is an element
of Ȟ1 (U ,O∗M), just as we defined in section A.3. Thereby we made the connection
between the topological and cohomological perspective of holomorphic line bundles.
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A.5. Divisors, Holomorphic Line Bundles And
Chern Classes

A.5.1. Divisors On Complex Manifolds
Definition A.5.1 (Analytic Variety):
Let M a complex manifold. A subset V ⊂ M is an analytic variety precisely if for
every p ∈ V there exists p ∈ Up ⊂M open and a finite number of holomorphic functions
f1, . . . , fnp ∈ OM (U (p)) such that

V ∩Up = {z ∈ Up , f1 (z) = ⋅ ⋅ ⋅ = fnp (z) = 0} (A.55)

Remark (Analytic Hypersurface):
An analytic variety V ⊂M of a complex manifold is termed an analytic hypersurface,
if it is locally given by the vanishing of a single holomorphic function.

Note:
An analytic variety is not a manifold as it can have singular loci. For an example of
this consider the manifold M = C2 and consider the analytic hypersurface

V ∶= {(z1, z2) ∈ C2 , z1 ⋅ z2 = 0} (A.56)

It is not hard to verify that V has a singularity at (z1, z2) = (0, 0). 3

Definition A.5.2 (Irreducibility):
An alaytic variety V ⊂M of a complex manifold is irreducible precisely if it cannot
be written as the union V = V1 ∪ V2 of two analytic varieties V1, V2 such that neither
V1 = V nor V2 = V .

Note:
Here are a few facts about analytic varieties V ⊂M of a complex manifold M .

• There exists U ⊂ M open with V ⊂ U such that V is closed in the induced
topology on U .

• V has only a finite number of connected components V ∗1 , . . . , V ∗m and it holds

V =
m

⋃
i=1

V ∗i (A.57)

• V is irreducible precisely if its smooth locus is connected.

Consequence:
Any analytic hypersurface V ⊂M of a complex manifold can be written as the union

V =
m

⋃
i=1

V ∗i (A.58)

3For this reason analytic varieties play a crucial role in the construction of complex spaces, which
generalise the notion of complex manifolds to ’complex manifolds with singularities’.
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where the V ∗i are the connected components of V . Moreover the sets V ∗i are irre-
ducible, that is we have a decomposition of an analytic hypersurface in its irreducible
components.

Definition A.5.3 (Divisor):
Let M a complex manifold. A divisor D on M is a locally finite formal linear
combination

D =∑
i∈I

aiVi, ai ∈ Z (A.59)

of irreducible analytic hypersurfaces Vi of M .

Remark:
Locally finite in the above definition means, that for any p ∈M there exists an open
neighbourhood p ∈ Up ⊂M such that Up ∩ Vi ≠ ∅ only for finitely many i ∈ I.

Consequence:
If M is a compact complex manifold, then any divisor on M is of the form D =

N

∑
i=1

aiVi

with ai ∈ Z.

Remark (Divisor Group):
Divisors on M naturally form a group under addition induced by (Z,+). This group
is termed the divisor group on M and is denoted Div (M).

A.5.2. Holomorphic And Meromorphic Functions On
Irreducible Analytic Hypersurfaces

Definition A.5.4 (Vanishing Order):
Let M a complex manifold and V ⊂M an irreducible analytic hypersurface. Consider
p ∈ V . Then there exists an open neighbourhood p ∈ Up ⊂M such that V ∩Up is the
zero locus of fp ∈ OM (Up).
Now consider g ∈ OM (M). Then there exists a ∈ Z and h ∈ O∗M (Up) such that

g∣Up
= fa ⋅ h (A.60)

One can thus define

ordV,p (g) ∶=max{a ∈ Z , g∣Up
= fa ⋅ h} (A.61)

Consequence:
It can be shown that ordV,p (g) is independent of p. The proof strongly relies on the
fact that V is taken as irreducible here, as this implies that the smooth locus V ∗ is
connected, as we pointed out earlier. We leave the details to [44] and just note that
it thus makes sense to write ordV (g). Moreover it holds for any two g1, g2 ∈ OM (M)

ordV (g1 ⋅ g2) = ordV (g1) + ordV (g2) (A.62)
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Remark:
Let M a complex manifold and f ∈M∗

M (M). Then the poles and zeros of f form a
discrete subset of M .

Definition A.5.5 (Vanishing Order II):
Let M a complex manifold and f ∈M∗

M (M), that is f is a meromorphic function on
M that does not vanish identically. Let V ⊂M an irreducible analytic hypersurface.
We consider p ∈ V . In particular there exists an open neighbourhood p ∈ Up ⊂M such
that

f ∣Up
= g

h
(A.63)

with g, h ∈ OM (Up) relatively prime in OM (Up). In particular we can define

ordV (f) ∶= ordV (g) − ordV (h) (A.64)

Definition A.5.6 (Principal Divisor):
Let M a complex manifold and f ∈M∗

M (M). Then we define

(f) ∶=∑
V

ordV (f) ⋅ V ∈ Div (M) (A.65)

Divisors of this form are termed principal divisors.

Remark:

• The principal divisors (f) can uniquely be split as (f) = (f)0 − (f)∞ such that
(f)0 is the divisor of the zeros of f and (f)∞ the divisor of its poles.

• In the definition of (f), the sum runs over all irreducible analytic hypersurfaces
V ⊂M . 4

A.5.3. Divisors Sheaf-Theoretically
Remark:
Let M a complex manifold and U an open cover of M . Let F a sheaf of abelian
groups on M . Then there always exists a canonical isomorphism

H0 (M, F ) ≅ Ȟ0 (U , F ) (A.66)

We will make use of this in the following prove.

Claim:
Let M a complex manifold. Then there is a one-to-one correspondance between
divisor D ∈ Div (M) and global section of the quotient sheaf M∗

M/O∗M .
4The branch of mathematical logic teaches to only allow sets as indices. We are thus lead to

question if the collection of all irreducible analytic hypersurfaces does form a set for an arbitary
complex manifold. This in fact is not clear, but rather leads to the concept of categories which
we will not touch here. However, let us note that the situation is much better when M is compact
and that this will be the situation that we will focus on.
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Proof

(⇒) Let D ∈ Div (M) be given by

D =∑
i∈I

aiVi, ai ∈ Z (A.67)

We pick an open cover {Uα}α∈I of M such that every Vi appearing in D has a
locally defining function giα ∈ OM (Uα). Then set

fα =∏
i

(giα)ai ∈M∗
M (Uα) (A.68)

from which one obtains a global section ofM∗
M/O∗M according to the preceeding

remark.
(⇐) Let f ∈ (M∗

M/O∗M) (M). Then, again by the preceeding remark, we can pick an
open cover U = {Uα}α∈I of M and represent f by a family {fα ∈M∗

M (Uα)}α∈I
such that on all intersections Uαβ it holds

fα

fβ

∈ O∗M (Uα ∩Uβ) (A.69)

Then for any irreducible analytic hypersurface V ⊂ Uα ∩Uβ we also have

ordV (fα) = ordV (fβ) (A.70)

Thus we can associate to f the divisor

D =∑
V

ordV (fα) ⋅ V (A.71)

where for each irreducible analytic hypersurface V that the sum runs over, we
choose α ∈ I such that V ∩Uα ≠ ∅ and thus ordV (fα) is defined.

∎

Consequence:
Let M a complex manifold. Then Div (M) ≅H0 (M,M∗

M/O∗M).

A.5.4. Divisors And Holomorphic Line Bundles
Remark:
Let M a complex manifold. Then we consider the sheaves O∗M and M∗

M . Then the
canonical inclusion

O∗M ↪M∗
M (A.72)

is a sheaf homomorphism. By considering the quotient sheafM∗
M/O∗M we then obtain

a short sheaf exact sequence

0→ O∗M →M∗
M →M∗

M/O∗M → 0 (A.73)
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The associated long exact sequence in sheaf cohomology then induces a map

[⋅] ∶H0 (M,M∗
M/O∗M)→H1 (M,O∗M) (A.74)

by which we can associate to a divisor a holomorphic line bundle.

Note:
Whilst this might look quite abstract at this stage, we will make this map quite ex-
plicit when we discuss holomorphic line bundles from the sheaf-theoretical perspective
in section A.6.

Definition A.5.7:
Let M a complex manifold and D ∈ Div (M) = H0 (M,M∗

M/O∗M). Then we term
[D] ∈H1 (M,O∗M) the line bundle associated to the divisor D.

Remark:
Recall that for M a complex manifold, both Div (M) and Pic (M) carry the structure
of an Abelian group. In fact this structure is respected by [⋅], i.e. the sheaf homo-
morphism [⋅] is also a group homomorphism. In more concrete terms this means that
for any two D, D′ ∈ Div (M) it holds

[D +D′] = [D]⊗ [D′] (A.75)

Moreover the inverse holomorphic line bundle associated to [D] is [−D]. This inverse
bundle in addition happens to be the dual bundle in the case of holomorphic line
bundles.

Definition A.5.8:
A holomorphic line bundle L ∈H1 (M,O∗M) is trivial iff in any associated holomorphic
coordinate line bundle the transition functions can be taken to be one, i.e. gαβ (p) = 1
for all p ∈ Uα ∩Uβ.

Claim:
Let M a complex manifold. Then there is a one-to-one correspondance between
trivial holomorphic line bundles and principal divisors on M .

Proof

• Let D a principal divisor on M , that is D = (f) for f ∈M∗
M (M). We pick as

local defining data of D the restrictions of the function f , so have {f ∣Uα} for
an open cover U = {Uα} of M . In particular this implies that on Uα∩Uβ it holds

gαβ =
fα

fβ

∣
Uα∩Uβ

= 1 (A.76)

Since however, this holds for any open cover U , the holomorphic line bundle [D]
is trivial.
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• Conversely let [D] a trivial holomorphic line bundle. Then we pick an open
cover U of M and choose as representative of D a family {fα ∈M∗

M (Uα)}α∈I
with the property

fα

fβ

∣
Uα∩Uβ

= gαβ (A.77)

We also know that an equivalent holomorphic line bundle is obtained by picking
a family {hα ∈ O∗M (Uα)}α∈I and setting

g′αβ =
hα

hβ

∣
Uα∩Uβ

⋅ gαβ (A.78)

But since [D] is trivial, we can pick the functions hα such that

g′αβ = 1 (A.79)

This then implies

fα

fβ

∣
Uα∩Uβ

= gαβ =
hβ

hα

∣
Uα∩Uβ

⇒ fα ⋅ hα∣Uα∩Uβ
= fβ ⋅ hβ ∣Uα∩Uβ

(A.80)

But since M∗
M is a sheaf, there now exists by property (S2) a meromorphic

function g ∈M∗
M (M) with

g∣Uα
= fα ⋅ hα (A.81)

Consequently D = (g). Since this argument holds true for any representative of
D, the statement follows.

∎

Definition A.5.9:
Let M a complex manifold and D, D′ ∈ Div (M). Then we define the relation

D ∼D′ ⇐⇒ ∃f ∈M∗
M (M) ∶D =D′ + (f) (A.82)

Remark:
An important question is under which conditions divisor classes and holomorphic
line bundles are in one-to-one correspondance. To this end we state the following
theorem [72].

Theorem A.5.1:
Let M a projective algebraic manifold. Then the sequence

0→H0 (M,M∗
M)→H0 (M,M∗

M/O∗)→H1 (M,O∗M)→ 0 (A.83)

is exact.
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Consequence:
Exactness implies that the map

[⋅] ∶H0 (M,M∗
M/O∗)→H1 (M,O∗M) (A.84)

is surjective. So any holomorphic line bundle L is of the form

L = [D] (A.85)

for a suitable D ∈ Div (M). But since a holomorphic line bundle stemming from a
divisor is trivial precisely if that divisor is a principal divisor we learn that the map
[⋅] is also injective. So we conclude that on any projective algebraic manifold divisor
classes and holomorphic line bundles are in a one-to-one relationship.
Remark:
This statement also holds true for compact Riemann surfaces [45].

A.5.5. The Chern Class Of A Holomorphic Line Bundle
Remark:
Let M a compact and complex manifold of complex dimension n. Then the sequence

0→ Z→ O exp→ O∗ → 0 (A.86)

is sheaf-exact 5. This sequence induces a long exact sequence in sheaf cohomology,
thereby giving us the connecting homomorphism

δ∶H1 (M,O∗)→H2 (M,Z) (A.87)

Definition A.5.10 (Chern Class Of Line Bundle):
Let M a compact and complex manifold. Then we know already

Pic (M) =H1 (M,O∗) (A.88)

Consequently a line bundle L is an element of H1 (M,O∗). This allows for the
definition

c1 (L) ∶= δ (L) ∈H2 (M,Z) (A.89)
We term this the first Chern class of the line bundle L.
Note:
There is a natural map H2 (M,Z)→H2

D.R. (M), so that in an abuse of notation one
sometimes writes c1 (L) ∈H2

D.R. (M).
Remark:
It holds

• c1 (L⊗L′) = c1 (L) + c1 (L′)
• c1 (L∨) = −c1 (L)

5Recall that the existence of a holomorphic logarithm is locally secured, whilst global obstructions
can hinder the existence. This however is not a problem for sheaf exactness, since the latter is
a local property.
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A.5.6. Determining Holomorphic Line Bundles By Their
Chern Class

Remark:
It is also possible to consider smooth line bundles. To this end let us introduce the
following two sheaves

• CM is the sheaf of C∞ functions on M .
• C∗M is the sheaf of C∞ functions on M which do not vanish.

Then a smooth line bundle on M is given by an element in H1 (M,C∗M).

Note:
Let M a compact complex manifold. Then there is a sheaf exact sequence

0→ Z→ CM → C∗M (A.90)

which allows us to define the Chern class of smooth line bundles in just the same
fashion as we did for holomorphic line bundles.

Consequence:
Let M a compact complex manifold. Then there is a commutative diagram

..
..H1 (M,CM) ..H1 (M,C∗M) ..H2 (M,Z)

..H1 (M,OM) ..H1 (M,O∗M) ..H2 (M,Z)
.

δ

.
δ

.ι . ι

where both rows are exact and the map in the last column is an isomorphism. Note
that H1 (M,CM) = 0 since CM is flabby. This implies

Holomorphic line bundles are determined by their Chern class up to C∞
isomorphism.

Lemma A.5.1:
On the complex projective space CPn, the sequence

H1 (CPn,OCPn)→H1 (CPn,O∗CPn)→H2 (CPn,Z) (A.91)

is exact and it holds H1 (CPn,OCPn) = 0 since OCPn is flabby. From this one concludes
that every holomorphic line bundle on CPn is uniquely determined by its Chern class,
that is we have

Pic (CPn) ≅ Z (A.92)

Note:
The above is just one example of a more general statement. We will later find that on
smooth and compact normal toric varieties, every holomorphic line bundle is uniquely
determined by its Chern class. This we will heavily use.
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A.6. Holomorphic Line Bundles
Sheaf-Theoretically

A.6.1. Definitions
Definition A.6.1 (OM -Module):
Let M a complex manifold. Then we have the notion of holomorphic functions on
M , which gives us the sheaf OM of holomorphic functions on M . An OM -module V
on M is a sheaf of Abelian groups, such that

• for each U ⊂ M open, the Abelian group V (U) carries the structure of an
OM (U)-module.

• for V ⊂ U ⊂M any two open subsets of M the restriction maps of the sheaf V
are compatible with the module-structure, i.e. are module-homomorphisms.

Definition A.6.2 (Finitely Generated Free OM -Modules):
Let M a complex manifold. An OX-module V on M is finitely generated free iff there
exists n ∈ N such that V is isomorphic to On

M .

Definition A.6.3 (Holomorphic Vector Bundle):
A holomorphic vector bundle V on a complex manifold M is a locally free OM -module,
i.e. an OM -module such that every point admits an open neighbourhood U such that
V ∣U is isomorphic to (OM ∣U)

n for some integer n ≥ 0.

Remark:
The integer n need not be the same for all U ⊂M open. For example this can happen
if M is not connected.

Definition A.6.4 (Rank Of A Vector Bundle):
Let M a complex manifold and V a holomorphic vector bundle on M . If there exists
N ∈ M such that V is at every point p ∈ M locally isomorphic to ON

M , then N is
termed the rank of V.

Definition A.6.5 (Holomorphic Line Bundle):
Let M a complex manifold. A holomorphic vector bundle V on M of rank 1 is a
holomorphic line bundle.

A.6.2. Associating A Holomorphic Line Bundle To A Divisor
Let M a compact Riemann surface, i.e. a complex manifold of complex dimension
one which is compact. Then divisors on M are finite sums of points

D = ∑
a∈M

D (a) ⋅ [a] (A.93)

One can then define for every U ⊂M open

LD (U) ∶= {f ∶U → C meromorphic , (f) ≥ −D} (A.94)
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It is not too hard to see that this forms a holomorphic line bundle in the sense defined
in the previous subsection [45]. This exemplifies the map

[⋅] ∶H0 (M,M∗
M/O∗M)→H1 (M,O∗M) (A.95)

discussed in subsection A.5.4. Let us note two important properties of this mapping.
• H0 (M,LD) ≅ {f ∶M → C meromorphic , (f) ≥ −D}
• All holomorphic line bundles on compact Riemann surfaces can be obtained in

this way, since there is an isomorphism from the divisors classes on M to the
Picard group of M .

A.6.3. Making Connection With The Cohomological And
Topological Picture Of Holomorphic Line Bundles

Remark:
Let M a complex manifold and L a holomorphic line bundle on M . Consider in
addition an open cover U = {Uα}α∈I of M . In particular we can consider the sets
L (Uα) of local holomorphic sections of L.
It is not hard to verify that there exist functions gαβ ∈ O∗M (Uα ∩Uβ) with the property
that the maps

φαβ ∶ L (Uα)∣Uαβ
→ L (Uβ)∣Uαβ

, f ↦ gαβ ⋅ f (A.96)

are isomorphisms.
The collection {gαβ ∈ O∗M (Uαβ)}α,β∈I does then form the transition function of L.

Consequence:
The sheaf-theoretic picture of line bundles is completely equivalent to the cohomo-
logical and topological picture. We can thus fluently switch between them.
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B. Line Bundles On Compact
Riemann Surfaces

We will now familiarise ourselves with the concepts introduced in Appendix A. To
keep matters as simple as possible we pick the simplest complex manifolds, namely
compact and connected complex manifolds of complex dimension one. These are
known as compact Riemann surfaces.
In this chapter we summarise classical results about holomorphic line bundles on
compact Riemann surfaces. As this is a well-known topic there are many good ref-
erences. Historical references include [73] and [74]. Of the many available textbooks
we would like to highlight [75], [76] and [45] for information on vector bundles on
compact Riemann surfaces. Background on Riemann surfaces is given in [77]. In
addition there are many good lecture notes available on the topic of vector bundles
on Riemann surfaces. Of the many we point the interested reader to [78] for a dis-
cussion of vector bundles on Riemann surfaces and to [79] for more background on
Riemann surfaces.
Finally we mention that a topological classification of compact, connected Riemann
surfaces is given by their genus g ∈ N≥0. A proof of this can be found in [77]. Through-
out this chapter Mg represents a compact, connected Riemann surface of genus g.

B.1. General Facts And Theorems
Theorem B.1.1 (Finiteness Theorem):
Let L a holomorphic line bundle on Mg. Then it holds

• H i (Mg,L) = 0 for i ≥ 2
• H0 (Mg,L) and H1 (Mg,L) are finite-dimensional complex vector spaces

Remark (Convention):
Consequently we can introduce for a holomorphic line bundle L on Mg the notion

hi (Mg,L) ∶= dimC (H i (Mg,L)) (B.1)

Theorem B.1.2 (Divisor Classes And Holomorphic Line Bundles):
The divisor class group Div (Mg) is isomorphic to Pic (Mg) = H1 (Mg,O∗Mg

). There
is thus a one-to-one relation between divisor classes and isomorphism classes of holo-
morphic line bundles on Mg.
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Definition B.1.1 (Degree Of A Holomorphic Line Bundle):
Let L a holomorphic line bundle on Mg. Then we know from the above isomorphism
that there exists D ∈ Div (Mg) such that L ≅ LD. We then define

deg (L) ∶= deg (D) (B.2)
Remark (Welldefinedness):
The divisor D ∈ Div (Mg) in the above definition is only defined up to linear equiva-
lence, that is up to the addition of a principal divisor. But the degree of a principal
divisor vanishes. Consequently deg (L) is well-defined.
Theorem B.1.3 (Riemann-Roch):
For a holomorphic line bundle L over Mg it holds

h0 (Mg,L) − h1 (Mg,L) = deg (L) + 1 − g (B.3)
Remark:
This statement holds more generally for coherent sheaves. Note also that the Euler-
Characteristic of L is defined via

χ (L) ∶= h0 (Mg,L) − h1 (Mg,L) (B.4)
In the physics literature this quantity is often refered to as the chiral index.
Theorem B.1.4:
All compact Riemann surfaces of genus g admits a non-trivial meromorphic 1-form
ω.
Remark:
One can define the divisor for a meromorphic 1-form in a natural way.
Definition B.1.2 (The Canonical Line Bundle):
A holomorphic line bundle on Mg is termed canonical precisely if there exists a non-
trivial meromorphic 1-form ω on Mg such that L ≅ LDω . We denote the canonical
bundle on Mg by K.
Note:
If Mg admits more than one non-trivial meromorphic 1-form, then their divisors are
linearly equivalent. Thus the canonical line bundle is well-defined.
Theorem B.1.5 (Duality Theorem):
Let L a holomorphic line bundle on Mg, then it holds

h1 (Mg,L) = h0 (Mg,K ⊗L∨) (B.5)
Remark:
This is a special form of Serre duality.
Theorem B.1.6:
Let L ≅ LD a holomorphic line bundle on Mg with curvature form Ω and D ∈ Div (Mg).
Then it holds [44]

i

2π ∫
Mg

Ω = deg (D) = deg (L) (B.6)
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B.2. Simple Consequences
Remark:
By means of the duality theorem, we can rephrase the Riemann-Roch theorem for a
holomorphic line bundle L on Mg as

h0 (Mg,L) − h0 (Mg,K ⊗L∨) = deg (L) + 1 − g (B.7)

Claim:
It holds h0 (Mg,K) = g.

Proof

• Let D ∈ Div (Mg) the trivial divisor. We note that this is the divisor of a non-
zero constant function on Mg. But since the non- zero constant functions are
trivially meromorphic, we learn that the divisor D is a principal divisor. The
holomorphic line bundle LD is consequently the trivial holomorphic line bundle
L0 over Mg.

• Let us apply the Riemann-Roch theorem to the trivial bundle L0 on Mg. From
the above we conclude

h0 (Mg,L0) − h0 (Mg,K) = deg (L0) + 1 − g = 1 − g (B.8)

where we used that the trivial holomorphic line bundle L0 has the degree of the
trivial divisor, which is zero.

• We can describe H0 (Mg,L0) explicitely as

H0 (Mg,L0) = {f ∶Mg → C meromorphic , (f) ≥ 0} (B.9)

But since Mg is compact it follows from the maximum modulus principle that
these are the constant functions and the constant functions only 1. Thus

H0 (Mg,L0) ≅ C (B.10)

Putting all the pieces together we find h0 (Mg,K) = g. ∎

Claim:
It holds deg (K) = 2g − 2.

Proof
Let us apply the Riemann-Roch theorem to K. Then we find

h0 (Mg,K) − h0 (Mg,L0) = deg (K) − g + 1 (B.11)

From the previous result it follows immediately g−1 = deg (K)−g+1 which concludes
the proof. ∎

1By convention the function f ≡ 0 satisfies (f) ≥D for any divisor D ∈ Div (Mg).
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Claim:
Let L a holomorphic line bundle with deg (L) < 0, then h0 (Mg,L) = 0.

Proof
Let D ∈ Div (Mg) be the divisor of L. Then we know

H0 (Mg,L) = {f ∶Mg → C meromorphic , (f) ≥ −D} (B.12)

But deg (D) < 0. We are thus looking for meromorphic functions on Mg with positive
degree. But this can only apply to functions that are holomorphic on the entire
Mg, since all other meromorphic functions have a divisor of vanshing degree. Yet
holomorphic functions on all of Mg are constant by the maximum modulus principle.
Finally, since deg (f) > 0 they must have at least one zero of order one. But then
these functions are identically zero on all of Mg. Thus

H0 (Mg,L) = {f ∶Mg → C , z ↦ 0} (B.13)

This concludes the proof. ∎

Theorem B.2.1 (Vanishing Theorem of Kodaira):
Let L a holomorphic line bundle on Mg with deg (L) ≥ 2g − 1. Then h1 (Mg,L) = 0.

Proof
By the duality theorem

h1 (Mg,L) = h0 (Mg,K ⊗L∨) (B.14)

But deg (K ⊗L∨) = deg (K) − deg (L) = 2g − 2 − deg (L) < 0. The statement now
follows from the preceeding one. ∎

Claim:
Let L a holomorphic line bundle on Mg with deg (L) = 0. Then it holds

• h0 (Mg,L) = 1 ⇐⇒ L ≅ L0.
• h0 (Mg,L) = 0 ⇐⇒ L /≅ L0.

Proof
We first pick D ∈ Div (Mg) such that L ≅ LD.

• Let us first consider the case of L ≅ L0. But it holds

L ≅ L0 ⇔ ∃f ∈M∗
Mg
(Mg) ∶D = (f) (B.15)

Consequently this is the case iff there exists f ∈M∗
Mg
(Mg) such that

H0 (Mg,L) = {g ∈M∗
Mg
(Mg) , (g) ≥ (f)} (B.16)

Now it is easy to see that g = f ⋅ h with h ∈ OMg (Mg) which in addition gives
an isomorphism. So we conclude

L ≅ L0 ⇔H0 (Mg,L) ≅ OMg (Mg) ≅ C (B.17)

where in the last step the maximum modulus principle was applied.
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• Now we consider the case of L /≅ L0. But we know

L /≅ L0 ⇔/∃ f ∈M∗
Mg
(Mg) ∶D = (f) (B.18)

Consequently D is not linearly equivalent to any principal divisor. Then we
recall

H0 (Mg,L) = {g ∈M∗
Mg
(Mg) , (g) ≥ −D} (B.19)

Now it is easy to see that since D is not the divisor of meromorphic function,
all elements in H0 are functions that are holomorphic on all of Mg. But since
Mg is compact, these functions have to be constant. Since D is not a principal
divisor (and thus not linearly equivalent to the trivial divisor), D includes at
least one pole. This forces all elements in H0 (Mg,L) to have at least one zero.
Putting everything together we conclude

L /≅ L0 ⇔ h0 (Mg,L) = 0 (B.20)

This concludes the proof. ∎

B.3. Spin Bundles
Remark:
The first two Stiefel-Whitney classes vanish on compact and connected Riemann
surfaces. Thus compact and connected Riemann surfaces are orientable (as is any
complex manifold) and in addition admit spin structures [80].

Definition B.3.1 (Spin Divisor And Spin Bundle):
Let DK the canonical divisor on Mg. Then we define

• D ∈ Div (Mg) is a spin divisor precisely if 2D =DK.
• A holomorphic line bundle L on Mg with L ≅ LD is a spin bundle precisely if

D ∈ Div (Mg) a linearly equivalent to a spin divisor.

Remark:
Michael Atiyah proved in [43] that on Mg there exist 22g linearly independent spin
divisors. Consequently there are 22g different spin-bundles on Mg. The choice of a
spin-structure on Mg is thus far from unique. Moreover he pointed out that

• 2g−1 ⋅ (2g − 1) spin structures have at least one non-trivial section.
• 2g−1 ⋅(2g + 1) spin structures either have no or at least two (linearly independent)

non-trivial sections.
The same statements were also proven by David Mumford in [81].

Note (Open Question):
Let L a holomorphic line bundle on Mg that describes a bosonic theory. To add
fermionic degrees of freedom to that theory one considers the bundle L ⊗ S with
a spin bundle S chosen from the 22g possible ones. Subsequently one makes the
following identification
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• H0 (Mg,L⊗ S) are the chiral fields in the theory.

• H1 (Mg,L⊗ S) are the anti-chiral fields in the theory.

Minimal information on the chiral and antichiral fields in the theory is the number
of their generators. Thus we are asking for knowledge about h0 (Mg,L⊗ S) and
h1 (Mg,L⊗ S). By the vanishing theorems presented in the previous section we can
deduce the answer from the Riemann-Roch theorem for the following cases.

1. deg (L⊗ S) < 0:
This implies h0 (Mg,L⊗ S) = 0 and h1 (Mg,L⊗ S) = g − 1 − deg (L⊗ S)

2. deg (L⊗ S) ≥ 2g − 1:
This implies h0 (Mg,L⊗ S) = deg (L⊗ S) − g + 1 and h1 (Mg,L⊗ S) = 0

This leaves unanswered the cases 0 ≤ deg (L⊗ S) < 2g−1. Making use of deg (S) = g−1
we find that the holomorphic line bundles L to be studied in more detail are the ones
that satisfy

1 − g ≤ deg (L) < g (B.21)

In fact, determining h0 and h1 for these bundles and for arbitary genus g is very hard
and to this day remains an open question in mathematical research. What we can
do easily however, is to close this gap for g = 0 and g = 1. This we will outline in the
preceeding sections.

Remark:
Before we do this, we would like to say one more word on the ambiguity of choosing
the spin bundle. In many situation there are additional constraints on the spin
bundle to be satisfied and those constraints can under certain circumstances fix the
spin bundle uniquely. In fact in any good physical situation they should do so. An
example of such constraints and how they fix the spin bundle can be found in [19,
pp. 58].

B.4. Line Bundles For g = 0 And g = 1
Example B.4.1 (g = 0: The Riemann Sphere):
Let us consider a holomorphic line bundle L on a compact Riemann surface of genus
g = 0. To this end let deg (L) =m. Then an easy analysis shows

h0 (Mg,L) =
⎧⎪⎪⎨⎪⎪⎩

m + 1 m ≥ 0
0 m < 0

, h1 (Mg,L) =
⎧⎪⎪⎨⎪⎪⎩

0 m ≥ 0
−(m + 1) m < 0

(B.22)

Note in particular that the left-open cases as mentioned in section B.3 cannot occure
in the case g = 0. We thus conclude that on the Riemann sphere one can only
have either non-trivial holomorphic or non-trivial antiholomorphic sections, but never
both.
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Example B.4.2 (g = 1: The Complex 2-Torus):
In this case one finds from the preceeding results

h0 (Mg,L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m m > 0
1 m = 0 and L ≅ L0

0 m = 0 and L /≅ L0

0 m < 0

, h1 (Mg,L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 m > 0
1 m = 0 and L ≅ L0

0 m = 0 and L /≅ L0

−m m < 0
(B.23)

where m = deg (L). Note that the case m = 0 corresponds to the left-open cases
mentioned in section B.3. With the results on degree zero bundles, we are however
able to solve this case. From the above result we read off that on the 2-torus one can
in fact have both chiral and antichiral fields - namely for the trivial bundle.

Remark:
For any divisor D of degree 0 which is not the trivial divisor it holds h0 (M1,L) =
h1 (M1,L). Still if D is the trivial divisor both dimensions jump by one. Therefore
the above example shows that the dimension of the cohomology classes can jump as
we vary the divisor D.

B.5. Comparing Holomorphic Line Bundles Of
Different Degree

Remark:
Our task is now to compare holomorphic line bundles of different degree on compact,
connected Riemann surfaces. We will make use of the following definition.

Definition B.5.1:
Let Mg a compact connected Riemann surface of genus g. Then we define for d ∈ Z

Divd (Mg) ∶= {D ∈ Div (Mg) , deg (D) = d} (B.24)

Claim:
Be D̃ ∈ Divd (Mg) arbitary but fixed. Then the following map

φ∶Div0 (Mg)→ Divd (Mg) , D ↦D + D̃ (B.25)

is an isomorphism.

Proof

• Be D′ ∈ Divd (Mg) a divisor. Then we set

D0 ∶=D′ − D̃ ∈ Div0 (Mg) (B.26)

Thus D′ = D̃ +D0 ∈ im (φ). Hence φ is surjective.
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• Let D′, D′′ ∈D0 (Mg) two different divisors. Then we consider

φ (D′) =D′ + D̃, φ (D′′) =D′′ + D̃ (B.27)

But from D′ ≠D′′ it follows φ (D′) ≠ φ (D′′), proving that φ is injective.

Consequently φ is an isomorphism. ∎

Consequence:
The map φ induces an isomorphism

φ̃∶Pic0 (Mg)→ Picd (Mg) (B.28)

We thus conclude that there are as many equivalence classes of holomorphic line
bundles of degree d1 as there are equivalence classes of holomorphic line bundles of
degree d2 on any compact and connected Riemann surface Mg of genus g.
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C. The Appell-Humbert Theorem
In this chapter we will be interested in compact, connected and complex Lie groups
X of complex dimension d, i.e. a compact connected complex manifold of dimension
d equipped with a group structure such that the maps

X ×X →X , (x, y)↦ x ⋅ y X →X , x↦ x−1 (C.1)

are holomorphic. Throughout this chapter, X will represent such a structure.
The Appell-Humbert theorem gives a classification of all holomorphic line bundles on
such spaces. In particular the complex 2-torus is therefore covered. After introducing
the Appell-Humbert theorem in its general form we will specialise to the case of
a complex 2-torus to get a better feeling for the interplay between divisors and
holomorphic line bundles.
Finally we mention that this theorem dates back to works of Appell [82] and Humbert
[83] around 1890 and was later generalised by Lefschetz in 1921 [84]. A particularly
nice exposition of this material can be found in [85] to which we will refer for several
proofs.

C.1. Classification Of Holomorphic Line Bundles
On Complex Tori

C.1.1. Complex Tori
Definition C.1.1 (Lattice):
Let V a complex vector space of complex dimension d. Then any basis B of V over
R is made up of 2d elements, i.e.

B = {v1, . . . , v2d} (C.2)

Via the Abelian group structure of V upon addition, the elements of B generate a
group

ΛB ∶= {
2d

∑
i=1

ai ⋅ vi , ai ∈ Z} (C.3)

We term any such group ΛB a lattice in V (of full rank).

Remark:
Let V a complex vector space of complex dimension d. Then any lattice ΛB in V
satisfies Λ ≅ Z2d, since a lattice is a free and finitely generated Abelian group.

206/277



APPENDIX C. THE APPELL-HUMBERT THEOREM

Remark (The Exponential Map):
Let G a connected matrix Lie group and its associated Lie algebra. Consider the
exponential map

g→ G , X ↦ exp X (C.4)
Then first recall the following fact.

For every A ∈ G there exists a finite number of elements in the Lie algebra
X1, . . . , Xm ∈ g such that A = exp X1 ⋅ ⋅ ⋅ ⋅ ⋅ exp Xm.

In particular note that in general for a connected matrix Lie group, the exponential
map is not surjective. To see this consider the non-commutative and simply connected
matrix Lie group SL (2,C). Then we have

A = ( −1 1
0 −1 ) ∈ SL (2,C) (C.5)

Still for every X ∈ sl (2,C) it holds exp X ≠ A. This is pointed out in [86], page 49.
More information on the exponential map can also be found in [86], from where we
quote the following two important facts.

1. If G is a commutative and connected matrix Lie group, then the exponential
map is surjective, i.e. for every A ∈ G there exists X ∈ g such that A = exp X.

2. If G is a compact and connected matrix Lie group, then the exponential map is
surjective.

3. If G is in a simply connected and nilpotent matrix Lie group, then the exponen-
tial map is a homeomorphism.

Theorem C.1.1:
Let X a compact, connected and complex Lie group of complex dimension d and
V ∶= Te (X). Then the following holds true.

• X is commutative. As a consequence of the above remark we thus know that
the exponential map

π∶V →X (C.6)
is a surjective group homomorphism.

• Moreover ker (π) = Λ ⊂ V is a lattice (of full rank). Consequently we have by
means of the exponential map

X ≅ V /Λ ≅ Cd/Λ (C.7)

Proof
The proof can be found in [85]. ∎

Definition C.1.2 (Complex Torus):
Let V a complex vector space of dimension d and Λ ⊂ V a lattice (of full rank). Any
complex manifold X which is biholomorphic to V /Λ is termed a complex torus.
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Consequence:
Any compact, connected and complex Lie group X of dimension d is a complex torus
with X ≅ Cd/Λ.

Remark:
Recall the following two facts.

• Hp (Cd,OCd) = 0 for p ≥ 1.
• Hp (Cd,O∗Cd) = 0 for p ≥ 0.

Consequence:
In Appendix A we identified the elements of H1 (Cd,O∗Cd) with holomorphic line bun-
dles on Cd. Since this cohomology group is trivial, we conclude that all holomorphic
line bundles on Cd are trivial.
A different means to justify this result is to use the homotopy axiom [80] - Cd can
be contracted to a point. This property is termed point-homotopic. The homotopy-
axiom states that on a point-homotopic topological space, every smooth line bundle
is trivial. Applied to Cd we obtain, as special case, that all holomorphic line bundle
on Cd are trivial.

Remark:
Let X a compact, connected and complex Lie group of dimension d. Then we can
consider the surjective homomorphism

π∶V ≅ Cd →X ≅ Cd/Λ (C.8)

Now let L a holomorphic line bundle on X. The pullback line bundle π∗ (L) is a line
bundle on V . From the above observation and V ≅ Cd we conclude, that this bundle
is trivial, i.e.

π∗ (L) ≅ V ×C (C.9)

The important consequence is now, that π induces an isomorphism which allows us
to represent every holomorphic line bundle on X as a space of the form (V ×C) /Λ̂
with a so-called lift action Λ̂ of the lattice Λ ⊂ V . Understanding these lift-actions
is therefore equivalent to understanding all holomorphic line bundles on X. To this
end we first give a brief introduction to the subject of group cohomology.

C.1.2. Disgression - Group Cohomology
Remark:
So far we have introduced sheaf cohomology and sheaf-valued Čech cohomology. In
the next subsection we will however need to make use of a different cohomology, the
so-called group cohomology. Group cohomology can be approached in a manner very
similar to Čech cohomology. For that reason we will introduce it in this fashion. For
more details see [87].
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Definition C.1.3 (G-Module):
A G-Module is an abelian group M together with a action of the group G on M ,
such that every element of G acts as an automorphism of M .

Example C.1.1:
We construct the Z-module R. To this end we define a map

ρ∶Z→ Aut (R) , n↦ [ρn∶R→ R , x↦ x + n] (C.10)

Then (R, ρ) does form a Z-module.

Remark:
The notion of a module is often introduced to mean ring module. This notion we use
when we state that a holomorphic line bundle on X is locally free OX module. Still
it is possible to generalise this notion to mean group module, as we just did. Note
in particular that a field module is a vector space.

Definition C.1.4 (Chains):
Let G a group and M a G-module. Then we define for n ∈ N≥0 the cochains as

Cn (G, M) = {f ∶Gn →M} (C.11)

Note:
The definition of group cochains is much simpler than the notion of a Čech cochain.

Definition C.1.5 (Boundary Operator):
We now define the boundary operator dn∶Cn (G, M) → Cn+1 (G, M) as follows. Let
φ ∈ Cn (G, M), i.e. φ∶Gn →M . Then (dnφ) ∶Gn+1 →M is defined by

(dnφ) (g1, . . . , gn+1) =g1 ○ φ (g2, . . . , gn+1)

+
n

∑
i=1
(−1)i φ (g1, . . . , gi−1, gi ○ gi+1, gi+2, . . . , gn+1)

+ (−1)n+1
φ (g1, . . . , gn)

(C.12)

Remark:

• The term g1 ○ φ (g2, . . . , gn+1) is determined by the action of the group G onto
the G-module M .

• It is easily checked that dn+1 ○ dn = 0. Consequently we have a complex

0→ C0 (G, M) d0

→ C1 (G, M) d1

→ C2 (G, M) d2

→ . . . (C.13)

Definition C.1.6 (Cocycles And Coboundaries):
Let G a group and M a G-module. For n ∈ N≥0 we define

• Zn (G, M) = ker (dn) to be the n-th cocycle group.
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• Bn (G, M) = im (dn−1) to be the n-th coboundary group if n ≥ 1. In addition we
define B0 (G, M) = {0} - the trivial group.

Consequence:
From dn+1 ○ dn = 0 it follows that Bn (G, M) ⊂ Zn (G, M) is a subgroup. This fact
enables us to consider the following quotient groups.

Definition C.1.7 (Group Cohomology Groups):
Let G a group and M a G-module. Then the n-th group cohomology class is defined
by

Hn (G, M) ∶= Zn (G, M) /Bn (G, M) (C.14)

or equivalently as the cohomologies of the complex

0→ C0 (G, M) d0

→ C1 (G, M) d1

→ C2 (G, M) d2

→ . . . (C.15)

Example C.1.2:
We will now give an example of the above strategy which we will use in the next
subsection. Let G = Λ ⊂ C a lattice. Since O∗C (C) is an Abelian group upon multi-
plication, the following Λ-action makes it a Λ-module

φ∶Λ ×O∗C (C)→ O∗C (C) , (u, e)↦ [ẽ∶C→ C∗ , z ↦ f (z + u)] (C.16)

Thus we can consider the group cohomologies Hp (Λ,O∗C (C)). One finds
• C0 (Λ,O∗C (C)) = {e ∈ O∗C (C)}
• Let (e) ∈ C0 (Λ,O∗C (C)). Then its boundary is the function

δ (e) ∶Λ→ OC (C) , u↦ [ẽu∶C→ C∗ , z ↦ e (z + u)] (C.17)

• An element of C1 (Λ,O∗C (C)) can be represented by a collection

E = {eu ∈ O∗C (C)}u∈Λ (C.18)

• In addition it holds E ∈ Z1 (Λ,O∗C (C)) precisely if for all u1, u2 ∈ Λ and z ∈ C it
holds

eu1+u2 (z) = eu1 (z) ⋅ eu2 (z + u1) (C.19)

Consequently an element of H1 (Λ,O∗C (C)) is an equivalence class of collections
{eu ∈ O∗C (C)}u∈Λ such that

• For all u1, u2 ∈ Λ and any z ∈ C it holds eu1+u2 (z) = eu1 (z) ⋅ eu2 (z + u1).
• Two collections {eu ∈ O∗C (C)}u∈Λ and {e′u ∈ O∗C (C)}u∈Λ are equivalent precisely

if there exists h ∈ O∗C (C) such that for all u ∈ Λ and z ∈ C it holds

e′u (z) =
h (z + u)

h (z)
⋅ eu (z) (C.20)
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C.1.3. Pullback Bundles In Group Cohomology
Construction C.1.1 (Complex Structure On X):
Recall that X is a connected, compact and complex Lie group of complex dimension
d. We already found X ≅ V /Λ for Λ ⊂ V a lattice. In particular we have a projection
map

π∶V →X (C.21)

Since X is compact and connected we can find a finite open cover V = {Vi}1≤i≤n of X
in which each Vi is connected. Then note.

• For every Vi ∈ V there exists Wi ⊂ V open and connected such that the following
is a disjoint union

π−1 (Vi) = ⋃
u∈Λ

u +Wi (C.22)

• Let πi = π∣Wi
. Then πi∶Wi → Vi is a biholomorphism.

• If Vi ∩ Vj ≠ ∅, then there exists a unique uij ∈ Λ such that

π−1
j (Vi ∩ Vj) = π−1

i (Vi ∩ Vj) + uij (C.23)

By these means we can related the complex structures on X and V .

Remark (Čech 1-Cocycle On X):
Recall that a Čech 1-cocycle G ∈ Z1 (V,O∗X) is a collection G = {gij ∈ O∗X (Vi ∩ Vj)}1≤i,j≤n
such that

• gij (z) = 1
gji(z) for all z ∈ Vi ∩ Vj

• gij (z) gjk (z) = gik (z) for all z ∈ Vi ∩ Vj ∩ Vk

We found earlier that certain equivalence classes of such Čech 1-cocycles encode
holomorphic line bundles.

Construction C.1.2 (Holomorphic Line Bundles From Group 1-Cycle):
Let E = {eu ∈ O∗V (V )}u∈Λ ∈ Z1 (Λ,O∗V (Cd)) a group 1-cocycle. We will now construct
a Čech 1-cocycle G on X ≅ V /Λ from E.

1. Whenever Vi ∩ Vj ≠ ∅ there is a unique uij ∈ Λ with the property

π−1
j (Vi ∩ Vj) = π−1

i (Vi ∩ Vj) + uij (C.24)

Hence we can use this uniquely determined uij to define a function

gij ∶Vi ∩ Vj → C∗ , x↦ (euij
○ π−1

i ) (x) (C.25)

Especially this implies gij ∈ O∗X (X).

2. Now consider the collection G = {gij}(i,j)∈I2 where I ⊂ {1, . . . , n}2 so that Vi∩Vj ≠
∅. It is not too hard to verify from the cocycle conditions on the group 1-cycle
E, that the following holds true
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• gij (x) gjk (x) = gik (x) for all x ∈ Vi ∩ Vj ∩ Vk

• gij (x) = 1
gji(x) for all x ∈ Vi ∩ Vj

Thus G is a Čech 1-cocycle. In fact more is true, as we will learn momentarily.
Definition C.1.8 (Lift Action):
Let E = {eu ∈ O∗V (V )}u∈Λ ∈ H1 (Λ,O∗V ) a representative of the equivalence class.
Then this representative induces the following Λ̂ lift action

Λ̂∶Λ × (V ×C)↦ (V ×C) , (u, (z, f))↦ (z + u, eu (z) ⋅ f) (C.26)

Remark:
Note that for h ∈ O∗V (V ), the equivalent representative

E′ = {h (z + u)
h (z)

⋅ eu (z) ∈ O∗V (V )}
u∈Λ
∈H1 (Λ,O∗V ) (C.27)

gives a seamingly different lift-action

Λ̂∶Λ × (V ×C)↦ (V ×C) , (u, (z, f))↦ (z + u,
h (z + u)

h (z)
eu (z) ⋅ f) (C.28)

Still this action is well-defined in the following sense.
Theorem C.1.2:
There is a natural isomorphism H1 (Λ,O∗C) ≅H1 (X,O∗X) induced by

{eu ∈ O∗V (V )}u∈Λ ↦ (V ×C) /Λ̂ (C.29)

Proof
A proof can be found in [85]. ∎
Consequence:
Group 1-cocycles on V and Čech 1-cocycles on X are thus equivalent descriptions
for holomorphic (coordinate) line bundles on X. In the following we will prefer to
take the group 1-cocycle perspective. In particular one then terms a group 1-cocycle
{eu ∈ O∗V (V )} a multiplier set for the encoded holomorphic line bundle.

C.2. First Chern-Class From Group 1-Cycle
Remark:
A holomorphic line bundle on X is an element of H1 (X,O∗X). In addition the
sequence

0→ Z→ OX
exp→ O∗X → 0 (C.30)

is sheaf exact and thus induces a long exact sequence of cohomology. In particular
it induces a connecting homomorphism

δ∶H1 (X,O∗X)→H2 (X,Z) (C.31)

which takes a holomorphic line bundle on X to its first Chern class.
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Lemma C.2.1:
Let X ≅ V /Λ a complex torus. Then there is an isomorphism

Ξ1∶H2 (X,Z) ∼→H2 (Λ,Z) (C.32)

Proof
The proof can be found in [85]. ∎

Note:
Let E = {eu ∈ O∗V (V )} ∈ H1 (Λ,O∗V ) a holomorphic line bundle. Recall that V ≅ Cd

and that Cd is simply connected. From complex calculus it then follows that any
eu ∈ O∗V (V ) has a holomorphic logarithm. Thus there exist functions fu ∈ OV (V )
such that

eu (z) = e2πifu(z) , ∀z ∈ V (C.33)

The cocycle condition for eu then implies

fu2 (z + u1) + fu1 (z) − fu1+u2 (z) ∈ Z (C.34)

But the functions fu are holomorphic, so in particular continous. Since V ≅ Cd is
connected, this implies that the above sum is a constant function on all of V . Thus
we can consider the collection

{nu1,u2 ∶= fu2 (u1) + fu1 (0) − fu1+u2 (0)}(u1,u2)∈Λ2 (C.35)

where we arbitarily picked z = 0 for evaluation, whilst we could also have chosen any
other z ∈ V . We claim that this collection gives an element in H2 (Λ,Z).

• First we check that this chain is closed, i.e. is a cocycle. This follows since

(d2n) (u1, u2, u3) = u1 ○ nu2,u3 − nu1+u2,u3 + nu1,u2+u3 − nu1,u2

= fu3 (z + u1 + u2) + fu2 (z + u1) − fu2+u3 (z + u1)
− [fu3 (z + u1 + u2) + fu1+u2 (z) − fu1+u2+u3 (z)]
+ fu2+u3 (z + u1) + fu1 (z) − fu1+u2+u3 (z)
− [fu2 (z + u1) + fu1 (z) − fu1+u2 (z)]
= 0

(C.36)

• Next we have to recall that we can alter this collection by a coboundary. To
this end we pick a 1-chain A = {au ∈ Z}u∈Λ which gives

δA = {au2 + au1 − au1+u2}(u1,u2)∈Λ2 (C.37)

Thus we can alter the above collection to obtain

{n′u1,u2 = nu1,u2 + au2 + au1 − au1+u2}(u1,u2)∈Λ2 (C.38)

Consequently {nu1,u2}(u1,u2)∈Λ2 is a representative of a class in H2 (Λ,Z).
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Lemma C.2.2:
Let X a complex torus and E = {eu ∈ O∗V (V )}u∈Λ ∈ H1 (Λ,O∗V ) a holomorphic line
bundle on X. Then we can find fu ∈ OV (V ) with

eu (z) = e2πifu(z) , ∀z ∈ V (C.39)

and via the isomorphism Ξ∶H2 (X,Z) ∼→ H2 (Λ,Z) the first Chern class of the line
bundle given by E is mapped to the class

{nu1,u2 ∶= fu2 (u1) + fu1 (0) − fu1+u2 (0)}(u1,u2)∈Λ2 ∈H2 (Λ,Z) (C.40)

Proof
The proof can be found in [85]. ∎

Remark:
In an abuse of notation we can thus write

c1 (E) = {nu1,u2 ∶= fu2 (u1) + fu1 (0) − fu1+u2 (0)}(u1,u2)∈Λ2 ∈H2 (Λ,Z) (C.41)

Lemma C.2.3:
Let X ≅ V /Λ a complex torus. Then there is an isomorphism

Ξ2∶H2 (Λ,Z) ∼→ Λ2Hom (Λ,Z) (C.42)

Proof
The proof can be found in [85]. ∎

Note:
Let X a complex torus and E = {eu ∈ O∗V (V )}u∈Λ ∈ H1 (Λ,O∗V ) a holomorphic line
bundle on X. Then we can find fu ∈ OV (V ) with

eu (z) = e2πifu(z) , ∀z ∈ V (C.43)

and the first Chern class of the line bundle given by E can be considered as the
alternating 2-form

c1 (E) ∶Λ ×Λ→ Z , (u1, u2)↦ fu2 (z + u1) + fu1 (z) − fu1 (z + u2) − fu2 (z) (C.44)

where we used c1 (E) in an abuse of notation.
Note that the entire class H2 (X,Z) is mapped via Ξ2 ○ Ξ1 to the above alternating
2-form and not to a class of alternating 2-forms.

C.3. The Appell-Humbert Theorem
Theorem C.3.1 (Appell-Humbert):
Let X a compact, connected and complex Lie group of dimension d. Then we have

X ≅ V /Λ (C.45)

with Λ ⊂ V a lattice and V = Te (X) ≅ Cd.
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1. Let H a hermitian inner product on V such that

E∶Λ ×Λ→ Z , (x, y)↦ im (H (u1, u2)) (C.46)

is an integer-valued, skew symmetric form on V .

2. For any such hermitian inner product H there exists a (not necessarily unique)
map α∶Λ→ {z ∈ C , ∣z∣ = 1} = U (1) with the property

α (u1 + u2) = e−iπE(u1,u2) ⋅ α (u1)α (u2) ∀u1, u2 ∈ Λ (C.47)

Given the data (H, α) we then have the following important results.
• By setting

eu∶V → C , z ↦ α (u) ⋅ e−πH(u,z)−π
2 H(u,u) (C.48)

the collection {eu ∈ O∗V (V )}u∈Λ gives an element in H1 (Λ,O∗V ) which defines a
holomorphic line bundle L (H, α) on X.

• The first Chern class of L (H, α) is mapped via Ξ2 ○ Ξ1 to the integer-valued,
skew symmetric form E given above.

• Any line bundle on X is isomorphic to a line bundle L (H, α) for a uniquely
determined pair (H, α).

• The holomorphic sections of L (H, α) are one-to-one to holomorphic functions
s ∈ OV (V ) which satisfy for any z ∈ V and any u ∈ Λ

s (z + u) = α (u) ⋅ e−πH(z,u)−π
2 H(u,u)s (z) (C.49)

Proof
The proof can be found in [85]. ∎

Remark (Relation With Gauge Theories):
The first Chern class will in the situation of complex tori be easily related to the
connection 2-form, which is physically interpreted as the field strength. Then the
above theorem tells us that the field strength is not all the data that we need to
specify a gauge theory on the torus. Rather we need in addition the function α. This
function can be interpretated as a representation of the group U (1) which links the
above holomorphic line bundles to U (1) gauge theories. In addition one can set

α (u) ∶= eiλ(u) (C.50)

for some real valued function λ∶Λ→ R. Then the sections transform according to

s (z + u) = eiλ(u)−πH(z,u)−π
2 H(u,u)s (z) (C.51)

The quantity iλ (u) − πH (z, u) − π
2 H (u, u) is then closely related to the connection

1-form of L (H, α) which in the physics literature is known as the gauge field. More
information on this relation can be found in [80].
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C.4. Example - Holomorphic Line Bundles On
The Complex 2-Torus

C.4.1. Hermitian Forms On The Complex Plane
Remark:
We wish to consider a connected, compact and complex Lie group X of dimension
d = 1. Then we know

X ≅ C/Λ (C.52)
with Λ ⊂ C a lattice. Though all complex 1-tori are topologically equivalent, not all
of them are biholomorphically equivalent. Rather the lattice Λ can always be written
as

Λ = Z +Zτ (C.53)
where τ ∈ F0 = {z ∈ H , ∣z∣ > 1, ∣R (τ)∣ < 1

2} lies in the fundamental domain of the mod-
ular group SL (2,Z). In particular note that τ1, τ2 ∈ F0 with τ1 ≠ τ2 correspond to
biholomorphically distinct complex tori, so that τ can be identifed as the complex
structure modulus.
In conclusion, there is a one-to-one correspondance between points in F0 and biholo-
morphic equivalence classes of complex tori of dimension d = 1.

Note (Convention):
We will denote the complex 2-torus with complex structure modulus τ ∈ F0 by C1,τ .

Lemma C.4.1:
Every Hermitian form on C is given by

Ha∶C ×C→ C , (u, v)↦ a ⋅ u ⋅ v (C.54)

for suitable a ∈ C.

Remark (Associated Skew-Symmetric Form):
To the Hermitian forms Ha (a ∈ C) we now associate skew-symmetric forms

Ea∶Λ ×Λ→ C , (u1, u2)↦ im (Ha (u1, u2)) (C.55)

However, we have learned in the previous chapter that for the construction of holo-
morphic line bundles on C1,τ we have to restrict to such hermitian forms Ha such
that Ea is integer-valued. Thus we require that for any two u1, u2 ∈ Λ it holds

Ea (u1, u2) ∈ Z (C.56)

An easy calculation shows that this leads to the requirement

a = m

im (τ)
(C.57)

where m ∈ Z is arbitary.
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Consequence:
For the construction of holomorphic line bundles on C1,τ we consider the Hermitian
forms

Hm∶C ×C→ C , (w, z)↦ mzw

im (τ)
, m ∈ Z (C.58)

with associated real-valued, skew-symmetric form

Em∶Λ ×Λ→ Z , (a1 + b1τ, a2 + b2τ)↦m [a1b2 − a2b1] (C.59)

C.4.2. The α-Map And The Group 1-Cycles
Remark:
Now we focus on the map α∶Λ→ U (1) with the property

α (u1 + u2) = e−iπEm(u1,u2) ⋅ α (u1) ⋅ α (u2) (C.60)

We will argue that for given Em these maps are labeled by a point b ∈ C1,τ . This
implies that all line bundles on C1,τ are labeled by a pair (m, b) with m ∈ Z and
b ∈ C1,τ .

Note (Convention):
We can find a map λ∶Λ→ R such that

α∶Λ↦ {z ∈ C , ∣z∣ = 1} = U (1) , u↦ eiλ(u) (C.61)

Consequence:
The requirement α (u1 + u2) = e−iπEm(u1,u2) ⋅ α (u1) ⋅ α (u2) is then equivalent to

λ (u1 + u2) = λ (u1) + λ (u2) − πEm (u1, u2) + 2πZ ∀u1, u2 ∈ Λ (C.62)

Construction C.4.1 (Group 1-Cycle):
Given the real-valued, skew-symmetry 2-form Em and the map α, the group 1-cocycle
{eu ∈ O∗C (C)}u∈Λ encoding the holomorphic line bundle L (Hm, α) is given by setting

eu (z) = eiλ(u)− πmu
im(τ) z− πmuu

2im(τ) (C.63)

For ease of notation we define

a (u) ∶= − mπu

im (τ)
, b (u) ∶= iλ (u) − πmuu

2im (τ)
(C.64)

Then the transformation behaviour of the function α dictates that for u1, u2 ∈ Λ it
holds

a (u1 + u2) = a (u1) + a (u2)
b (u1 + u2) = b (u1) + b (u2) + a (u1) ⋅ u2 + 2πiZ

(C.65)
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Remark:
Recall that we can alter a group 1-cocycle by a function β ∈ O∗C (C) without changing
the encoded element in H1 (Λ,O∗C). We pick

β∶C→ C∗ , z ↦ eAz2+Bz, A = πm

2im (τ)
, B = −i ⋅ λ (1) (C.66)

Then one readily verifies that the new group 1-cocycle {e′u ∈ O∗C (C)}u∈Λ is given by

e′u (z) = ea′(u)z+b′(u) (C.67)

where

a′ (1) = b′ (1) = 0, a′ (τ) = 2πim, b′ (τ) = πmτ 2

2im (τ)
− iλ (1) τ + b (τ) (C.68)

and all other values are determined by Equation C.65. Thus we can represent the
original group 1-cocycle in a condensed notation by

e′1 (z) = 1, e′τ (z) = e2πimz+b′(τ) (C.69)

Comment (Summary):
We have thus concluded that all line bundles on C1,τ are classified by group 1-cocycles
{eu ∈ O∗C (C)}uΛ which can always be taken to be of the form

e1 (z) = 1, eτ (z) = e2πimz+b′(τ) (C.70)

with all other elements determined by the cocycle condition.
Consequently we can indeed specify all line bundles on C1,τ by a pair (m, b′ (τ)) with
m ∈ Z and b′ (τ) ∈ C. We will find later that b′ (τ) ∈ C1,τ .

Notation:
From now on, we agree on the simplified notation

b′ (τ)→ b (C.71)

Remark (Meromorphic Sections):
Meromorphic sections of the holomorphic line bundle L (m, b) are one-to-one with
meromorphic functions F ∶C→ Csubject to the condition

F (z + 1) = F (z) , F (z + τ) = e2πimz+bF (z) ∀z ∈ C (C.72)

A major task will be to find all holomorphic functions that satisfy these conditions
for given (m, b) and also to find (at least) one non-trivial meromorphic section.
Remark:
Holomorphic functions with the above property are known as theta functions. In
principle we could now introduce the notion of theta functions and thereby relate the
task of finding all holomorphic sections of L (H, α) to the study of theta functions.
Details on this can be found in [85], [44] as well as [88]. In this thesis however we
prefer to follow a different path and construct all holomorphic and meromorphic
sections in a more hands-on fashion.
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C.4.3. Elliptic Functions, Divisor Classes And Cohomology
Classes

Definition C.4.1 (Elliptic Function):
A function f ∈M∗

C (C) is an elliptic function with respect to the lattice Λ = Z + Zτ
precisely if for all z ∈ C it holds

f (z + 1) = f (z) , f (z + τ) = f (z) (C.73)
Remark:

• The constant function f ∶C→ C , z ↦ a is an elliptic function.
• Elliptic functions are one-to-one to meromorphic functions on C1,τ .
• It follows from the third theorem of Liouville, that any holomorphic elliptic

function is constant [29].
Proposition:
Let q ∈ C with ∣q∣ < 1. Then consider the product

aq ∶C∗ → C , t↦ (1 − t) ⋅
∞
∏
n=1
(1 − qnt) ⋅ (1 − qnt−1) (C.74)

It holds
• The above product converges uniformely on compact subsets of C∗ to a holo-

morphic function aq (t) ∈ O (C∗C∗).
• aq (t) has simple zeros at the points t = qn for n ∈ Z and has no other zeros.
• It holds

aq (qt) = (1 − t−1) ⋅
aq (t)
1 − t

= −1
t
⋅ aq (t) (C.75)

Proof
• The first two points follows from theorem 15.6 in [89].
• The transformation formula simply follows from computation as follows:

a (qt) = (1 − qt)
∞
∏
n=1
(1 − qn+1t) (1 − qn−1t−1)

= (1 − qt)
∞
∏
n=0
(1 − qn+2t) (1 − qnt−1)

= [(1 − qt)
∞
∏
n=0
(1 − qn+2t)] ⋅ [

∞
∏
n=0
(1 − qnt−1)]

= [(1 − qt) (1 − q2t)
∞
∏
n=1
(1 − qn+2t)] ⋅ [(1 − 1

t
) ⋅

∞
∏
n=1
(1 − qnt−1)]

= [
∞
∏
n=1
(1 − qnt)] ⋅ [(1 − 1

t
) ⋅

∞
∏
n=1
(1 − qnt−1)]

= (1 − 1
t
) ⋅ a (t)

(C.76)
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..

im (z)

. Re (z).(+1) .

(−1)

. [b].

τ

(a) The divisor D as divisor in C1,τ .

..

im (z)

. Re (z)

(b) The divisor D as divisor in C.

Figure C.1.: The divisor D = (+1) [0] + (−1) [b] once as divisor in C1,τ and once as
divisor in C. Note that the gray-shaded C1,τ is represented in the standard fashion
by a parallelogramm in C corresponding to the lattice Λ = Z +Zτ .

This concludes the proof. ∎

Consequence:
Let us set q (τ) = e2πiτ with τ ∈ F0 the fundamental domain of SL (2,Z). Then we
have ∣q (τ)∣ < 1 and can define the function

A∶C→ C , z ↦ aq(τ) (e2πiz) (C.77)

This function has the following properties
• A is an entire function.
• A has simple zeros at z ∈ Λ = Z +Zτ and no other zeros.
• A satisfies

A (z + 1) = A (z) , A (z + τ) = − exp (−2πiz) ⋅A (z) (C.78)

Remark (Divisors On C1,τ ):
A divisor D on C1,τ is a finite formal sum

D =
n

∑
i=1
(ai) ⋅ [pi] (C.79)

where ai ∈ Z and [pi] ∈ C1,τ .

Example C.4.1:
We illustrate the divisor D = (+1) [0] + (−1) [b] with [b] ∈ C1,τ in Figure C.1.
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Remark:
We can consider a divisor D ∈ Div (C1,τ) also as a divisor on C. To this end [pi] is to
represent an equivalence class of a point in C with respect to the lattice Λ = Z +Zτ ,
namely

[pi] = {pi +m + nτ , m, n ∈ Z} (C.80)

Example C.4.2:
We exemplify this association in Figure C.1.

Remark:
Recall that one can associate to any f ∈M∗

C (C) a divisor div (f) ∈ Div (C) which
covers the zeros and poles of f counted with their multiplicites ai.

Claim:
Consider the divisor

D =
n

∑
i=1
(ai) [pi] ∈ Div (C1,τ) (C.81)

which satisfies 1
n

∑
i=1

ai = 0,
n

∑
i=1
(ni) [pi] = 0 (C.82)

Then there exists f ∈M∗
C (C) such that D = div (f).

Proof
First let us separate the set of points in C1,τ according to

Z ∶= {zi}i∈I = { points pj in C1,τ with aj > 0 }
P ∶= {pj}j∈J = { points pj in C1,τ with aj < 0 } (C.83)

Note that the sets Z, P are finite.
We identify the points zi, pj ∈ C1,τ with a representative in C. Though the choice of
representative is not unique, the following function does not depend on that particular
choice

f ∶C→ C , z ↦
∣I ∣

∏
i=1

∣J ∣

∏
j=1

A (z − zi)
A (z − pj)

(C.84)

This is because this function is elliptic with respect to the lattice Λ = Z+Zτ which in
turn stems from the properties of the function A introduced earlier in this subsection.
Finally one easily checks div (f) =D. This proves the statement. ∎

Theorem C.4.1 (Abel Theorem For Complex 2-Torus):
Let D = ∑n

i=1 (ai) [pi] ∈ Div (C1,τ). This is the divisor of a meromorphic function on
C1,τ if and only if

• deg (D) = ∑n
i=1 ai = 0

• ∑n
i=1 (ai) [pi] = 0 with respect to the additive group action on C1,τ respectively.

1The second equation is to be read as an equation in the abelian group C1,τ .
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Example C.4.3:
Let us consider some divisors on C1,τ and determine whether they are divisors of a
meromorphic function on C1,τ .

• Consider D1 = (+1) [p] for [p] ∈ C1,τ arbitary. Then however

deg (D1) = 1 ≠ 0 (C.85)

So D1 is not the divisor of an elliptic function.
• Next let D2 = (+1) [p] + (−1) [q] with [p] ≠ [q] ∈ C1,τ . Then

deg (D2) = (+1) + (−1) = 0 (C.86)

However with respect to the abelian group structure upon addition on C1,τ the
divisor D2 is not trivial since

(+1) [p] + (−1) [q] = [p] − [q] ≠ [0] (C.87)

since we required [p] ≠ [q].
• Now consider D3 = (+1) [p] + (−1) [q] where [p] , [q] ∈ C1,τ . With the example

of D2 one immediately verifies that D3 is the divisor of an elliptic function if
and only if [p] = [q], i.e. D3 ≡ 0.

• Finally consider

D = (−3) [0] + (1) [1
2
] + (1) [τ

2
] + (1) [1 + τ

2
] (C.88)

This non-trivial divisor is easily checked to be the divisor of a meromorphic
function.

Remark (Notation):

• The line bundle L (m, b) is encoded by the group 1-cocycle {eu ∈ O∗C (C)}u∈Λ
where

e1 (z) = 1, eτ (z) = e2πimz+b (C.89)
and all other elements are given by the cocycle condition.

• For the line bundle L (m, b) we set

S (m, b) ∶={F ∈M∗
C (C) , F (z + 1) = F (z) and

F (z + τ) = e2πimz+bF (z)} ∪ {0}
(C.90)

• Moreover we set
H (m, b) ∶= S (m, b) ∩OC (C) (C.91)

Claim:
For every f ∈ S (m, b)−{0} there exists an elliptic function e∶C→ C and a holomorphic
section h ∈H (m, b) − {0} such that

f (z) = e (z) ⋅ h (z) ∀z ∈ C (C.92)
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Proof
Let f ∈ S (m, b) − {0} and h ∈H (m, b) − {0}, then the function

e∶C→ C , z ↦ f (z)
h (z)

(C.93)

is an elliptic function. ∎

Remark:
To every f ∈M∗

C (C) one can associate a divisor div (f) ∈ Div (C). In particular this
applies to all non-trivial meromorphic sections of L (m, b), to which one can even
associate a divisor in Div (C1,τ) since their poles and zeros are periodic with respect
to the lattice Λ = Z +Zτ .

Remark (Divisor Class Group):
Let D, E ∈ Div (C1,τ). Then linear equivalence of divisors is defined as

D ∼ E ⇐⇒ ∃f ∈M∗ (C1,τ) ∶D = E + div (f) (C.94)

The associated equivalence class is denoted [D].

Note:
The Abel-Theorem in its special version to elliptic functions thus gives us an easy
means to construct divisor classes and to decide when divisors belong to the same or
distinct divisor classes. Note however that the situation is much more involved for
connected and compact Riemann surfaces of genus g ≥ 2. To see this consult [45] or
[77] to study the Abel-Theorem in its general form.

Definition C.4.2 (Divisor Of A Line Bundle):
Consider the line bundle L (m, b). Then let s ∈ S (m, b) − {0} a non-trivial meromor-
phic section. Then we know that the divisor of s is a divisor on C1,τ so that we can
set

div (s) =D ∈ Div (C1,τ) (C.95)

We now define that L (m, b) has divisor

D (m, b) = −D (C.96)

Note:

• The minus sign in the above definition appears there on purpose.
• Note that the divisor of L (m, b) depends on the chosen section s. Still this

assignment is well-defined in the following sense.

Lemma C.4.2:
The divisor class [D (m, b)] is well-defined, i.e. independent of the choice of the
section s ∈ S (m, b) − {0}.
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Proof
Let us consider s, t ∈ S (m, b) − {0}. We will prove that their divisors are linearly
equivalent and thus define the same divisor class.
To this end we first note that we can find elliptic functions e, e′∶C→ C and holomor-
phic sections h, h′ ∈H (m, b) − {0} such that for all z ∈ C it holds

s (z) = e (z)h (z) , t (z) = e′ (z)h′ (z) (C.97)

But then by definition of linear equivalence

div (s) ∼ div (h) , div (t) ∼ div (h′) (C.98)

Now note that the quotient h
h′ is again an elliptic function, so that div (h) ∼ div (h′).

But since linear equivalence is an equivalence relation, this implies

div (s) ∼ div (t) (C.99)

which concludes the proof. ∎
Remark:
Due to the identity theorem of complex calculus the zeros of a meromorphic function
are discrete. This has been used to argue that the quotient h

h′ is a (special) meromor-
phic function.
In fact a more general statement holds true - on a connected Riemann surface the set
of meromorphic functions does form a field. The prove makes use of the identity the-
orem on Riemann surfaces. Since C is a connected Riemann surface, this statement
justifies that the inverse of the holomorphic function h′ is a meromorphic function
on C.
Corollary:
Consider the line bundle L (m, b) with divisor D (m, b) ∈ Div (C1,τ). Then one finds

H0 (C1,τ , L (m, b)) ≅ {f ∈ S (m, b) , div (f) ≥ −D} (C.100)

Remark:
We agree on the convention, that the function that vanishes identically satisfies this
inequality for every divisor D ∈ Div (C1,τ).
Proof
Consider again the line bundle L (m, b) with divisor D (m, b) ∈ Div (C1,τ). By defini-
tion, there exists s ∈ S (m, b) − {0} with the property

div (s) = −D (C.101)

We can now consider the map

φ∶H (m, b)→H0 (C1,τ , L (m, b)) , f ↦ f ⋅ s (C.102)

This map is an isomorphism. Therefore we conclude

H (m, b) ≅H0 (C1,τ , L (m, b)) (C.103)

This suffices for the proof. ∎
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Remark (Summary):
We conclude that it suffices to find a single non-trivial meromorphic section of the
line bundle L (m, b) to determine its divisor class. As for its first cohomology class
we have H (m, b) ≅ H0 (C1,τ , L (m, b)) so that we need to find all of its holomorphic
sections.

C.4.4. All Holomorphic Line Bundles With m = 0
A Meromorphic Section For All Degree 0 Bundles

Remark (Task):
Our task is to find a non-trivial meromorphic function F ∶C→ C such that

F (z + 1) = F (z) , F (z + τ) = e2πimz+b ⋅ F (z) m=0= ebF (z) (C.104)

Any such function is a non-trivial meromorphic section of the holomorphic line bundle
L (0, b) and allows us to determine the divisor class of this holomorphic line bundle.

Comment:
Recall that we defined back in subsection C.4.3 the function

A∶C→ C , z ↦ (1 − t)
∞
∏
n=1
(1 − qnt) (1 − qnt−1) (C.105)

with t = e2πiz and q = e2πiτ . We argued that this function has the following properties.
• A is an entire function
• A has simple zeros at Λ = Z +Zτ and not other zeros
• A (z + 1) = A (z) and A (z + τ) = −e−2πiz ⋅A (z)

Claim:
Let b ∈ C arbitrary but fixed. Then the function

Fb∶C→ C , z ↦
A (z − b

2πi
)

A (z)
(C.106)

has the following properties
• Fb ∈M∗

C (C)
• Fb has simple poles at Λ = Z+Zτ and simple zeros at b

2πi +Z+Zτ but not other
poles nor zeros.

• It satisfies
Fb (z + 1) = Fb (z) , Fb (z + τ) = eb ⋅ Fb (z) (C.107)

Proof
All of these properties follow from the properties of the function A (z). ∎
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Figure C.2.: The divisor of L (0, b).

Consequence:
The holomorphic line bundle L (0, b) has divisor class represented by the divisor

D (0, b) = (+1) [0] + (−1) [ b

2πi
] (C.108)

This divisor is illustrated in Figure C.2.

Remark:
Note that deg (D (0, b)) = 0 which matches m since we are considering the case m = 0.

Classification Of Degree 0 Divisors

Claim:
Let D ∈ Div (C1,τ) with deg (D) = 0. Then there exists a unique [p] ∈ C1,τ such that

D ∼ (+1) [0] + (−1) [p] (C.109)

Proof
Let us write

D =
n

∑
i=1
(ai) ⋅ [pi] (C.110)

with ai ∈ Z the weights and [pi] ∈ C1,τ . Then we define the point

[p] = [
n

∑
i=1
−aipi] ∈ C1,τ (C.111)

and the divisor
D′ = (+1) ⋅ [0] + (−1) [p] (C.112)

Then we consider

D̃ =D −D′ =∑
i∈I
(ai) ⋅ [pi] + (−1) [0] + (+1) [∑

i∈I
−aipi] (C.113)
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This is a degree 0 divisor which is trivial in C1,τ . Thus by the Abel theorem D̃ is the
divisor of a meromorphic function on C1,τ and we have D ∼D′.
Now let us show that [p] ∈ C1,τ is unique. To this end let us assume that there existed
[p] , [q] ∈ C1,τ such that

D ∼ (+1) [0] + (−1) [p] , D ∼ (+1) [0] + (−1) [q] (C.114)

Thus since the equivalence of divisors is an equivalence relation, we must have

(+1) [0] + (−1) [p] ∼ (+1) [0] + (−1) [q] (C.115)

This however implies that

̃̃D ∶= (+1) [0] + (−1) [p] − ((+1) [0] + (−1) [q]) (C.116)

must be the divisor of a meromorphic function on C1,τ . In particular this requires by
the Abel theorem

̃̃D = (−1) [p] + (+1) [q] != 0 (C.117)

which is equivalent to [p] = [q]. Thus [p] ∈ C1,τ is uniquely determined which
concludes the proof. ∎

Moduli Space Of Degree 0 Bundles

Consequence:
From the preceeding we find the following

• The parameter b can take any value in C such that b
2πi lies in the fundamental

parallelogramm of the lattice Λ = Z +Zτ . Thus we have

b ∈ {(2πi)λ + (2πiτ)µ , 0 ≤ λ, µ ≤ 1} ∶=M0 (C.118)

• The following map is an isomorphism.

φ0∶M0 → Pic0 (C1,τ) , b↦ L (0, b) (C.119)

We have thus classified the degree zero holomorphic line bundles on C1,τ as the points
of M0 ≅ C1,τ .

First Cohomology Class

Remark:
To determine H0 (C1,τ , L (0, b)) we have to find all holomorphic sections of L (0, b).
These are given by holomorphic functions F ∶C→ C such that

F (z + 1) = F (z) , F (z + τ) = eb ⋅ F (z) (C.120)

where b ∈M0.
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Claim:
Let b ∈M0. Then it holds

• H0 (C1,τ , L (0, 0)) ≅ C
• H0 (C1,τ , L (0, b)) = {0} for b ≠ 0

Proof
We are looking for all entire functions F ∶C→ C subject to the conditions

F (z + 1) = F (z) , F (z + τ) = eb ⋅ F (z) (C.121)

If such a function does exist, its Laurent series must be of the form

F (z) =∑
n∈Z

antn (C.122)

with t = e2πiz. In particular this implies

F (z + τ) =∑
n∈Z

anqntn (C.123)

where q = e2πiτ . On the other hand we have by the second requirement

F (z + τ) =∑
n∈Z

anebtn (C.124)

From the identity theorem of power series we thus conclude that for all n ∈ Z it holds

an = qneb ⋅ an (C.125)

Recall im (τ) > 0, so that q ≠ 1. Consequently for n ≠ 0 it holds qneb ≠ 1, so that we
conclude an = 0 for n ≠ 0. As for n = 0, we have to satisfy

a0 = eb ⋅ a0 (C.126)

This is trivially satisfied for any a0 ∈ C if b = 0. Otherwise it forces a0 = 0. Thus we
find

• For b = 0 we have H0 (C1,τ , L (0, 0)) = {F ∶C→ C , z ↦ a0 ∈ C} ≅ C
• For b ≠ 0 we have H0 (C1,τ , L (0, b)) = {F ∶C→ C , z ↦ 0} ≅ {0}

All so-obtained functions are in fact holomorphic. This concludes the proof. ∎

C.4.5. All Holomorphic Line Bundles With m > 0
A Meromorphic Section For All m > 0 Bundles

Remark:
We are looking for non-trivial meromorphic functions F ∶C→ C subject to the condi-
tions

F (z + 1) = F (z) , F (z + τ) = e2πimz+b ⋅ F (z) (C.127)
as these allows us to determine the divisor of the line bundle L (m, b).
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..

im (z)

. Re (z).(m + 1) .

(−1)

. [ b
2πi +

m
2 ].

τ

Figure C.3.: Divisor D (m, b) of the holomorphic line bundle L (m, b).

Claim:
The function

F
(m)
b ∶C→ C , z ↦

A (z − b
2πi −

m
2 )

A (z)m+1 (C.128)

has the following properties

• F
(m)
b ∈M∗

C (C).

• It has simple zeros at z = b
2πi +

m
2 +Λ = b

2πi +
m
2 +Z +Zτ and no other zeros.

• It has poles of order m + 1 at z ∈ Λ = Z +Zτ and no other poles.

• It holds

F
(m)
b (z + 1) = F

(m)
b (z) , F

(m)
b (z + τ) = e2πimz+bF

(m)
b (z) (C.129)

Proof
This follows from the properties of the function A (z) as introduced in subsection C.4.3.

∎

Consequence:
L (m, b) has divisor class represented by the divisor

D (m, b) = (m + 1) [0] + (−1) [ b

2πi
+ m

2
] (C.130)

which is illustrated in Figure C.3.
Note in particular that this divisor has degree m. This proves together with our
findings for the line bundles L (0, b) that m is the degree of the holomorphic line
bundles L (m, b).
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Classification Of Degree m Divisors

Claim:
Let D ∈ Div (C1,τ) with deg (D) =m. Then there exists a unique [p] ∈ C1,τ such that

D ∼ (m + 1) [0] + (−1) [p] (C.131)

Proof
Let us write

D =∑
i∈I
(wi) ⋅ [pi] (C.132)

with wi ∈ Z the weights, [pi] ∈ C1,τ the points and I an appropriate finite indexing
set. Then we define the point

[p] = [∑
i∈I
−wipi] ∈ C1,τ (C.133)

and the divisor
D′ = (m + 1) ⋅ [0] + (−1) [p] (C.134)

Then we consider

D̃ =D −D′ =∑
i∈I
(wi) ⋅ [pi] + (−m − 1) [0] + (+1) [∑

i∈I
−wipi] (C.135)

This is a degree 0 divisor which is trivial in C1,τ . Thus D̃ is the divisor of a mero-
morphic function on C1,τ , so that

D ∼D′ (C.136)

Now let us prove that [p] ∈ C1,τ is unique. To this end let us assume that there
existed [p] , [q] ∈ C1,τ such that

D ∼ (m + 1) [0] + (−1) [p] , D ∼ (m + 1) [0] + (−1) [q] (C.137)

But since equivalence of divisors is an equivalence relation, this implies that

D̃ = (+1) [p] + (−1) [q] ∈ Div (X) (C.138)

is the divisor of a meromorphic function on X. In particular this implies that D̃ is
trivial. But then [p] = [q], and the uniqueness property follows. This concludes the
proof. ∎

Moduli Space Of Degree m Bundles

Consequence:
From the preceeding we find the following
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• The parameter b can take any value in C such that b
2πi+

m
2 lies in the fundamental

parallelogramm of the lattice Λ = Z +Zτ . Thus we have

b ∈ {(2πi)λ + (2πiτ)µ − πim , 0 ≤ λ, µ ≤ 1} ∶=Mm (C.139)

• The following map is an isomorphism.

φm∶Mm → Picm (C1,τ) , b↦ L (m, b) (C.140)

We have thus classified all holomorphic line bundles of degree m > 0 on C1,τ as the
points of Mm ≅ C1,τ .

First Cohomology Class

Remark:
We are now looking for the most general holomorphic functions F ∶C → C such that
for m ∈ N>0 and b ∈Mm it holds

F (z + 1) = F (z) , F (z + τ) = e2πimz+b ⋅ F (z) (C.141)

Claim:
All non-trivial holomorphic functions F ∶C→ C which satisfy for b ∈Mm and m ∈ N>0
the conditions

F (z + 1) = F (z) , F (z + τ) = e2πimz+b ⋅ F (z) (C.142)

can be written as
F (z) =

m−1
∑
l=0

al ⋅H(m)l (z) (C.143)

for a0, . . . , am−1 ∈ C arbitary and

H
(m)
l (z) =∑

k∈Z
e2πiτk[m

2 (k−1)+l]e−b⋅ke2πi(km+l)z (C.144)

Proof
If such a holomorphic does ever exist, it follows from the condition F (z + 1) = F (z)
and F being entire, that its Laurent series is of the form

F (z) =∑
n∈Z

an ⋅ tn (C.145)

where t ∶= e2πiz and an ∈ C for all n ∈ Z. Then we find in particular

F (z + τ) =∑
n∈Z

anqntn (C.146)

where q ∶= e2πiτ . On the other hand the second condition

F (z + τ) = e2πimzeb ⋅ F (z) (C.147)

231/277



APPENDIX C. THE APPELL-HUMBERT THEOREM

is equivalent to
F (z + τ) =∑

n∈Z
an+mebtn (C.148)

Comparing Equation C.146 and Equation C.148 we then find that for any n ∈ Z it
holds

an+m = qne−ban (C.149)
Thus we can choose the coefficients a0, . . . , am−1 ∈ C arbitary and describe all other
coefficients via

akm+l = q
km

2 (k−1) ⋅ qkle−b⋅kal (C.150)
where k ∈ Z and 0 ≤ l ≤m − 1. Now one easily confirms

F (z) =
m−1
∑
l=0

al ⋅H(m)l (z) (C.151)

with
H
(m)
l (z) =∑

k∈Z
e2πiτk[m

2 (k−1)+l]e−b⋅ke2πi(km+l)z (C.152)

Finally we have to check that these functions are in fact holomorphic functions. For
this task we refer the interested reader to [85], where a proof ot this is given. This
then concludes the proof. ∎

Lemma C.4.3:
The functions H

(m)
l (z) are linearly independent over C.

Consequence:
For m > 0, the space of holomorphic sections of L (m, b) is an m complex-dimensional
vector space with basis B = {H(m)0 (z) , . . . , H(m)m−1 (z)}. This implies

H0 (C1,τ , L (m, b)) ≅ Cm (C.153)

C.4.6. Spin Bundles
Remark (Canonical Divisor On Complex 2-Torus):
On C1,τ we have a non-trivial meromorophic 1-form given by dz. Its divisor is the
trivial divisor. As any divisor linearly equivalent to this divisor is termed a canonical
divisor we can state this observation as DK ≡ 0.

Consequence (Spin Divisors):
By definition, a spin divisor Ds ∈ Div (C1,τ) is such that

2Ds ∼DK ≡ 0 (C.154)

We know from the above that deg (DK) = 0. This implies deg (Ds) = 0. By the
classification of degree 0 divisors on C1,τ we thus conclude

Ds ∼ (+1) [0] + (−1) [p] (C.155)

where p ∈M0. The constraint 2Ds ≡ 0 has precisely four solutions, namely

232/277



APPENDIX C. THE APPELL-HUMBERT THEOREM

• p = 0
• p = 1

2

• p = τ
2

• p = 1+τ
2

The four spin bundles on C1,τ are thus L (0, 0), L (0, 1
2), L (0, τ

2), L (0, 1+τ
2 ).
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D. What Is A Toric Variety?

D.1. Introduction
In this chapter we briefly introduce toric varieties. Our main source of reference will
be [52]. Here we omit the proofs of all statements in the spirit of a brief introduction
to the material. Therefore we mention that all proofs can be found in [52]. For an
alternative careful introduction to toric varieties the interested reader is refered to
[90].

D.2. (Toric) Varieties

D.2.1. Varieties
Definition D.2.1 (Affine Variety Of A Finite Number Of Polynomials):
Let f1, . . . , fs ∈ C [x1, . . . , xn]. Then

V (f1, . . . , fs) ∶= {x ∈ Cn , f1 (x) = ⋅ ⋅ ⋅ = fs (x) = 0} (D.1)

is an affine variety.

Definition D.2.2 (Affine Variety Of An Ideal):
Let I ⊂ C [x1, . . . , xn] an ideal. Then

V (I) ∶= {x ∈ Cn , f (x) = 0 ∀f ∈ I} (D.2)

is an ideal.

Remark:
The ring C [x1, . . . , xn] is Noetherian by the Hilbert Basis Theorem.

Consequence:
It holds V (f1, . . . , fs) = V (I) with I = (f1, . . . , fs) the ideal generated by the poly-
nomials f1, . . . , fs ∈ C [x1, . . . , xn].

Example D.2.1:
Cn and {x ∈ Cn , x1 ⋅ x2 = 0} are affine varieties.

Definition D.2.3 (Projective Variety):
Let F1, . . . , Fs ∈ C [x1, . . . , xn] homogeneous polynomials. Then

V (F1, . . . , Fs) = {z ∈ CPn , F1 (z) = ⋅ ⋅ ⋅ = Fn (z) = 0} (D.3)

is a projective variety.
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Note:
When we talk about varieties in the following, we mean either an affine, a projective
or abstract variety.

Remark:
In the theory of algebraic groups (C∗)n is termed the n-dimensional complex torus.
This is what will be so ’toric’ about toric varieties.

Claim:
(C∗)n is an affine variety.

Proof
The map

φ∶ (C∗)n → Cn+1 , (t1, . . . , tn)↦ (t1, . . . , tn,
1

t1 ⋅ ⋅ ⋅ ⋅ ⋅ tn

) (D.4)

gives an isomorphism (C∗)n ≅ V (x1 ⋅ ⋅ ⋅ ⋅ ⋅ xn+1 − 1). ∎

Definition D.2.4 (Zariski Open):
Let W ⊂ V two varieties. Then we term the complement V −W Zariski open.

Note:
This notion extends to a topology - the Zariski topology.

Consequence:
(C∗)n ⊂ Cn is Zariski open.

Definition D.2.5 (Irreducible):
A variety V is irreducible if V cannot be written as the union of two proper subvari-
eties V1, V2, i.e. V = V1 ∪ V2, such that V1 ≠ V and V2 ≠ V .

D.2.2. Toric Varieties
Definition D.2.6 (Toric Variety):
An irreducible variety V is a toric variety precisely if it satisfies in addition the
following two requirements.

• (C∗)n is a Zariski open subset of V

• the action of (C∗)n on itself extends to an action of (C∗)n on V .

Example D.2.2:
(C∗)n and Cn are toric varieties.

Claim:
CPn is a toric variety.
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Proof
CPn is an irreducible variety. Let now x0, . . . , xn its homogeneous coordinates and
consider the isomorphism

φ∶ (C∗)n → CPn , (t1, . . . , tn)↦ (1, t1, . . . , tn) (D.5)

Thereby we can identify (C∗)n with CPn − V (x0x1 . . . xn) which is Zariski open. Fi-
nally we write the torus action as

(t1, . . . , tn) ⋅ (a0, a1, . . . , an) = (a0, t1a1, . . . , tnan) (D.6)

This then shows that CPn is a toric variety. ∎

Comment (General Remarks):
We will see that points p = (p1, . . . , pn) ∈ Zn are imporant in the study of toric
varieties.

• The Laurent monomial of p is defined by

tp = tp1
1 ⋅ ⋅ ⋅ ⋅ ⋅ tpn

n (D.7)

which gives a function χp∶ (C∗)n → C∗ which is termed a character.
• A 1-parameter subgroup λp∶C∗ → (C∗)n is defined by

λp (t) = (tp1 , . . . , tpn) (D.8)

In particular toric varieties V are generically just (C∗)n with some additional infor-
mation. Given that the toric variety V is affine, then this addtional information is
determined by which Laurent monomials tp are defined on V .

D.3. Cones And Affine Toric Varieties

D.3.1. Cones
Definition D.3.1 (Rational Polyhedral Cone):
A rational polyhedral cone σ ⊂ Rn is a cone generated by finitely many elements of
Zn as

σ = {α1p1 + ⋅ ⋅ ⋅ + αpl ∈ Rn , αi ≥ 0} (D.9)
with p1, . . . , pl ∈ Zn.

Definition D.3.2 (Strong Convexity):
Let σ ⊂ Rn a rational polyhedral cone. Then σ is strongly convex precisely if σ∩(−σ) =
{0}

Comment:
We will be mostly interested in strongly convex rational polyhedral cones. These we
abbreviate as scrapc.
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Definition D.3.3 (Dual Cone):
Be σ ⊂ Rn a scrapc. Then its dual cone σ∨ ⊂ Rn is

σv = {m ∈ Rn , ⟨m, u⟩ ≥ 0 for all u ∈ σ} (D.10)

Note that in this expression ⟨m, u⟩ is just the usual dot product on Rn.

D.3.2. Affine Toric Varieties
Remark:
Let σ ⊂ Rn a scrapc. Then we want to associate to it an affine toric variety Uσ ⊂ Cl.

Construction D.3.1:

• By Gordan’s lemma, the set σ∨ ∩ Zn is a finitely generated semigroup over Z,
that is there are m1, . . . , ml ∈ σ∨ ∩Zn such that every x ∈ σ∨ ∩Zn is of the form

x = a1m1 + ⋅ ⋅ ⋅ + alml , ai ∈ Z≥0 (D.11)

• Given the generators m1, . . . , ml ∈ σ∨ ∩Zn, we consider the map

φ∶ (C∗)n → Cl , (t1, . . . , tn)↦ (χm1 (t1, . . . , tn) , . . . , χml (t1, . . . , tn)) (D.12)

• Now define Uσ as the Zariski closure of the image of (C∗)n under the map φ,
i.e.

Uσ = φ ((C∗)n) (D.13)

Lemma D.3.1:

• The map φ∶ (C∗)n → Uσ is an inclusion of the algebraic torus, which makes Uσ

an affine toric variety.
• The Laurent monomials tmi extend to functions Uσ → C given by projection of

Uσ ⊂ Cl onto the i-th coordinate.
• For every m ∈ σ∨ ∩Zn, the Laurent monomial tm extends to a function on Uσ.
• Uσ is the smallest toric variety on which all the tm are defined.

Definition D.3.4:
The affine toric variety Uσ associated to the scrapc σ ⊂ Rn is termed the normal toric
variety associated to σ.

D.3.3. Coordinate Rings
Definition D.3.5 (Coordinate Rings):
Let V an affine variety. Then the ring of polynomial functions over V is the coordinate
ring of V .
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Example D.3.1:
The affine variety Cn has coordinate ring C [x1, . . . , xn].

Lemma D.3.2:
Let Uσ ⊂ Cl the normal affine variety associated to the scrapc σ ⊂ Rn. Then consider

Span{tm , m ∈ σ∨ ∩Zn} ⊂ C [t1, t
−1
1 , . . . , tn, t−1

n ] (D.14)

It is not too hard to prove that this forms a ring which is usually denoted by
C [σ∨ ∩Zn]. Finally it holds

C [σ∨ ∩Zn] is the coordinate ring of Uσ

Consequence:
The coordinate ring of Uσ is thus made of all polynomial expressions in the Laurent
monomials tmi .

D.3.4. Normality
Definition D.3.6 (Normal Varieties):
A variety V is normal if its local rings are integrally closed in their field of fractions.

Remark:
The toric variety Uσ associated to a scrapc σ ⊂ Rn is always normal by construction.

D.4. Fans And Toric Varieties

D.4.1. Toric Varieties From Fans
Comment:
We now intend to build more general toric varieties by gluing together affine toric
varieties that contain the same algebraic torus (C∗)n.

Definition D.4.1 (Fan):
A fan Σ in Rn is a finite collection of scrapcs in Rn such that

• σ ∈ Σ and τ a face of σ, then τ ∈ Σ.
• σ, τ ∈ Σ, then σ ∩ τ ∈ Σ is a face of σ and τ .

Remark:
Let Σ a fan. Then each σ ∈ Σ gives a normal affine toric variety Uσ. Now let τ a
face of σ. By definition of a fan, then τ is a scrapc contained in Σ and thus gives
another normal affine toric variety Uτ . In particular one can regard Uτ as a Zariski
open subset of Uσ.

Definition D.4.2:
Given a fan Σ in Rn. Then the variety XΣ is obtained from the affine varieties Uσ

with σ ∈ Σ by gluing together Uσ and Uτ along their common open subset Uσ∩τ .
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Theorem D.4.1:

• XΣ is a normal toric variety for a fan Σ in Rn.
• Let V a normal toric variety. Then there exists a fan Σ in Rn such that V ≅XΣ.

Note:
The normal toric variety XΣ associated to a fan Σ in Rn is an example of abstract
varieties, i.e. it can happen that XΣ is neither an affine nor a projective variety.

D.4.2. Properties Of Toric Varieties And Properties Of Fans
Note:
There is a close relation between the properties of a fan Σ in Rn and the structure of
the associated normal toric variety XΣ. It is this relationship among others makes
toric varieties easily calculable.
Lemma D.4.1:
There are one-to-one correspondances between the following objects:

• The limits limt→0λu (t) for u ∈ ∣Σ∣ = ⋃σ∈Σ σ where ∣Σ∣ is termed the support of
the fan Σ.

• The cones σ ∈ Σ.
• The orbits of the torus action on XΣ.

Definition D.4.3 (Smooth And Simplicial Cones):
Let σ ⊂ Rn a cone. Then we define

• σ is smooth precisely if it is generated by a subsest of a basis of Zn.
• σ is simplicial precisely if it is generated by a subset of a basis of Rn.

Theorem D.4.2:
Let XΣ the normal toric variety associated to the fan Σ in Rn. Then we have the
following important results.

1. XΣ is compact precisely if ∣Σ∣ = Rn

2. XΣ is smooth precisely if every σ ∈ Σ is smooth.
3. XΣ has at worst finite quotient singularities precisely if every σ ∈ Σ is simplicial.

Lemma D.4.2:
Let Σ a fan in Rn and XΣ the associated normal toric variety (which need not be
smooth nor compact). Assume that there exists σ ∈ Σ a scrapc with dimR (σ) = n.
Then XΣ is simply connected.
Consequence:
A normal toric variety XΣ is compact precisely if the fan Σ in Rn satisfies the relation

∣Σ∣ = Rn (D.15)

But since Σ is a finite collection of scrapcs, there must then exist σ ∈ Σ with dim (σ) =
n. Consequently all compact toric varieties are simply connected.
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D.5. Homogenisation

D.5.1. Homogeneous Coordinates
Remark:
The goal is to describe a normal toric variety XΣ as a quotient

XΣ = (Cr −Z) /G (D.16)

for some variety Z ⊂ Cr and some group G ⊂ (C∗)r.

Construction D.5.1:
Let Σ a fan in Rn. Then by Gordan’s lemma, there are primitive elements of the
1-dimensional cones ρi of Σ, i.e. there exist ni ∈ ρi∩Zn which generate ρi over R. We
now associate to each primitive element a variable xi.

Example D.5.1:
Consider the fan Σ in R2 whose maximal cones are as follows

σ1 = Cone (e1, e2) , σ2 = Cone (e1,−e1 − e2) , σ3 = Cone (e2,−e1 − e2) (D.17)

This fan is smooth and the primitive elements of the rays are

n1 = e1, n2 = e2, n3 = −e1 − e2 (D.18)

By the above prescription we now associate to each primitive element ni a formal
variable xi.

Definition D.5.1 (The Exceptional Set):
Given a fan Σ in Rn and having associated variables x1, . . . , xr to the primitive
elements n1, . . . , nr of its rays ρ1, . . . , ρr, then we define for σ ∈ Σ

xσ̂ = ∏
ni∉σ

xi (D.19)

Subsequently we set
Z ∶= V (xσ̂ , σ ∈ Σ) ⊂ Cr (D.20)

Remark:
It suffices to define Z only using the maximal cones of Σ.

Example D.5.2:
Continuing with the above example, one finds

Z = V (x0, x1, x2) = {(0, 0, 0)} ⊂ C3 (D.21)

Definition D.5.2 (The Group G):
We now define G ⊂ (C∗)r by

G = {(µ1, . . . , µr) ∈ (C∗)r ,
r

∏
i=1

µ
⟨m,ni⟩
i = 1 for all m ∈ Zn} (D.22)
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Lemma D.5.1:
It holds (µ1, . . . , µn) ∈ G if and only if

r

∏
i=1

µ
⟨e1,ni⟩
i =

r

∏
i=1

µ
⟨e2,ni⟩
i = ⋅ ⋅ ⋅ =

r

∏
i=1

µ
⟨en,ni⟩
i = 1 (D.23)

Example D.5.3:
Following the preceeding two examples it is readily checked that

G = {(µ, µ, µ) , µ ∈ C∗} ≅ C∗ (D.24)

This also gives the standard action of C∗ on C3. With Z given in the previous
example we conclude that the quotient construction that we have just performed
yields

(C3 − 0) /C∗ (D.25)

Theorem D.5.1:
If XΣ is the normal toric variety associated to the fan Σ in Rn such that the primitive
elements n1, . . . , nr of its rays span Rn, then it holds.

1. XΣ is the universal categorical quotient (Cr −Z) /G.
2. XΣ is a geometric quotient (Cr −Z) /G if and only if XΣ is simplicial.

Consequence:
In the remainder of this thesis we want to focus on normal toric varieties XΣ which
are both compact and smooth. Compactness implies that n1, . . . , nr indeed span
Rn, whilst smoothness ensures that Σ is smooth and therefore also simplicial. Con-
sequently any smooth and compact normal toric variety can be represented as a
geometric quotient (Cr −Z) /G.

Remark:
Consider the polynomial ring S = C [x1, . . . , xr]. Then the action of G induces a natu-
ral grading of this ring. To see this consider f = f (x1, . . . , xr) ∈ S and (µ1, . . . , µr) ∈ G.
Then the natural action is given by

(µ1, . . . , µr) ⋅ f = f (µ1x1, . . . , µrxr) (D.26)

This induces a grading on S as follows.

Lemma D.5.2:
It holds deg (xa1

1 ⋯xar
r ) = deg (xb1

1 ⋯xbr
r ) precisely if there exists m ∈ Zn such that for

1 ≤ i ≤ r it holds
ai = bi + ⟨ni, m⟩ (D.27)

Definition D.5.3:

• The ring S = C [x1, . . . , xr] together with the above grading is the homogeneous
coordinate ring of XΣ.

• f ∈ S is homogeneous precisely if all monomials appearing in f have the same
degree.
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D.5.2. Triangulisations
Remark:
In the physics literature one usually focuses on smooth and compact normal toric
varieties. Those, as we have just learned, can always be represented as a geometric
quotient (Cr −Z) /G for some affine variety Z ⊂ Cr and a group G. In particular
both, the variety Z and the group G need to be known, to specify a smooth and
compact normal toric variety uniquely.
Still oftentimes given the group G there is a unique choice for the variety Z such that
the above geometric quotient becomes a smooth and compact normal toric variety.
This leads to the following definitions.

Definition D.5.4 (Irrelevant Ideal):
For a smooth and compact normal toric variety XΣ, the exceptional set Z appearing
in the geometric quotient is an affine variety in Cr. Therefore we know that there
exists and ideal BXΣ ⊂ C [x1, . . . , xr] such that Z = V (BXΣ). We term this ideal BXΣ

the irrelevant ideal of the toric variety XΣ.

Definition D.5.5 (Stanley-Reisner Ideal):
For a smooth and compact normal toric variety XΣ, the Stanley-Reisner ideal ISR is
the Alexander-dual of the irrelevant ideal BXΣ .

Consequence (Construction Of The Stanley-Reisner Ideal):
Consider a smooth and compact normal toric variety XΣ. The primitive elements
in the rays ρi of Σ be denoted by ni with 1 ≤ i ≤ ∣Σ (1)∣. In addition we denote
the scrapc generated by ni1 , . . . , nim as ⟨ni1 , . . . , nim⟩. Finally we associate to each
primitive element ni a formal variable xi.
Given this notation, the Stanley-Reisner ideal of XΣ is given by

ISR = ⟨
m

∏
k=1

xij
, ⟨ni1 , . . . , nim⟩ ∉ Σ⟩ ⊂ C [x1, . . . , x∣Σ(1)∣] (D.28)

Definition D.5.6 (Triangulisation):
Let G ⊂ (C∗)r a group acting on Cr. Then the following set is a triangulisation of
the group G

T ∶= {ISR ⊂ C [x1, . . . , xr] , (Cr − V (ISR)) /G is a smooth, compact toric variety}
(D.29)

Note:
Triangulisations can be computed with the computer program Sage [51]. We give an
example of the necessary sourcecode.

Example D.5.4 (Stanley-Reisner Ideal From Sage [51]):
The Stanley-Reisner ideal for CP4 can be obtained from Sage [51]. To this end we
need to know the ray generators of the fan of CP4. Those can be taken of the following
form

u1 = e1, u2 = e2, u3 = e3, u4 = e4, u5 = −e1 − e2 − e3 − e4 (D.30)
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Given this knowledge we perform the following commands in Sage [51]
• points=matrix([ [ 1, 0, 0, 0,-1],

[ 0, 1, 0, 0,-1],
[ 0, 0, 1, 0,-1],
[ 0, 0, 0, 1,-1] ]).transpose()

• p = PointConfiguration(points.transpose()
.augment(vector([0,0,0,0])).transpose())

• p=p.restrict_to_star_triangulations((0,0,0,0))

• p=p.restrict_to_fine_triangulations()

• p=p.restrict_to_regular_triangulations(True)

• tria=p.triangulations_list()

• len(tria)

The last line of code returns ’1’. This is the number of triangulisations admitted
by the entered ray generators. We will now save all triangulisations in the variables
triangl and evalute the single triangulisation in this case via ’[0]’. If there are more
triangulisations one has to replace ’[0]’ by e.g. ’[1]’ to take a look at the second
triangulisation.

• triangl=[[i[:-1] for i in j] for j in tria]

• fan=Fan(triangl[0],points)

• tor=ToricVariety(fan,coordinate_names=’x1 x2 x3 x4 x5’)

• tor.Stanley_Reisner_ideal()

The last command returns the desired result.

"Ideal (x1*x2*x3*x4*x5) of Multivariate Polynomial Ring in x1, x2, x3, x4,
x5 over Rational Field"

Thus we have ISR = ⟨x1x2x3x4x5⟩ ⊂ C [x1, x2, x3, x4, x5] for CP4, just as expected.
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Notebook

1 (∗Routines From The Koszul−Extension−Notebook∗)
2 (∗Routines From The Koszul−Extension−Notebook∗)
3 (∗Routines From The Koszul−Extension−Notebook∗)
4

5 cohomCalgPath = NotebookDirectory[];
6 (∗Please fill in the name of the executable e.g. "cohomcalg.exe" for \
7 Windows and "./cohomcalg" for Linux∗)
8 (∗Default for Windows∗)
9 cohomCalgExecutable = "cohomcalg.exe";

10

11 (∗Setting directory ... ∗)
12 SetDirectory[cohomCalgPath];
13 (∗Generate temp file for more efficent calculations ∗)
14 TempFile = FileNameJoin[StringJoin[{"cohomCalgKoszulExtension.in"}]];
15 stream1 = OpenWrite[TempFile];
16 Close[stream1];
17 (∗This file contains the monomial data and is deleted once you choose \
18 a different ambient space∗)
19 MonomFile = StringJoin[TempFile, ".monoms"];
20

21 (∗Three small routines that convert the Mathematica input to the \
22 proper input format of the C++ implementation of cohomCalg ∗)
23 (∗Converts the variety specifications to the proper string needed by \
24 cohomCalg∗)
25 ConvertMathematicaToCppInput[Variety_] := Module[{i, j, StringVariety},
26 StringVariety = "";
27 For[ i = 1, i <= Length[Variety [[1]]], i++,
28 StringVariety =
29 StringJoin[ StringVariety , "vertex ", ToString[Variety [[1, i ]]],
30 "|GLSM:(", ListToStringWithoutBracket[Variety [[3, i ]]], ") ;" ];
31 ];
32 StringVariety =
33 StringJoin[ StringVariety , " srideal [",
34 ListToStringWithoutBracket[ReconvertSR[Variety [[2]]]], " ]; " ];
35 Return[StringVariety ];
36 ];
37 (∗Converts a list to as string without the brackets∗)
38 ListToStringWithoutBracket[ list_ ] := Module[{i, StringList },
39 StringList = ToString[ list [[1]]];
40 For[ i = 2, i <= Length[list], i++,
41 StringList = StringJoin[ StringList , ",", ToString[ list [[ i ]]]];

244/277



APPENDIX E. CODE OF MATHEMATICA NOTEBOOK

42 ];
43 Return[StringList ];
44 ];
45 (∗Converts the SR ideal into the correct cohomCalg input string∗)
46 ReconvertSR[SR_] := Module[{i, j, StringSR, ListStringSR},
47 ListStringSR = {};
48 For[ i = 1, i <= Length[SR], i++,
49 AppendTo[ListStringSR, ToString[SR[[i, 1]]]];
50 For[ j = 2, j <= Length[SR[[i]]], j++,
51 ListStringSR [[ i ]] = StringJoin[ListStringSR [[ i ]], "∗" ];
52 ListStringSR [[ i ]] =
53 StringJoin[ListStringSR [[ i ]], ToString[SR[[i , j ]]]];
54 ];
55 ];
56 Return[ListStringSR];
57 ];
58

59 (∗Generates the requested command for a given variety and line bundle∗)
60

61

62 GenerateRequestCommand[AmbientVariety_, LineBundles_] :=
63 Module[{i, j , command, StringAmbientVariety, StingLineBundle},
64 StringAmbientVariety = ConvertMathematicaToCppInput[AmbientVariety];
65 command =
66 StringJoin["!", cohomCalgExecutable, " −−integrated −−in=\" ",
67 StringAmbientVariety ];
68

69 For[ j = 1, j <= Length[LineBundles], j++,
70 StingLineBundle = ToString[LineBundles[[ j , 1]]];
71 For[ i = 2, i <= Length[LineBundles[[j ]]], i++,
72 StingLineBundle =
73 StringJoin [StingLineBundle, ",", ToString[LineBundles [[ j , i ]]]];
74 ];
75 (∗Turn off use of the monomfile as I can then (without having to \
76 delete it explicitely ) use other ambient spaces∗)
77 command = command <> " monomialfile off; ";
78 command =
79 StringJoin [command, " ambientcohom O(", StingLineBundle, "); "];
80 ];
81 command = StringJoin[command, "\" ", TempFile];
82 Return[command];
83 ];
84

85 (∗Useful routines from me∗)
86 (∗Useful routines from me∗)
87 (∗Useful routines from me∗)
88

89 (∗Gives a vector from weights which allows to rephrase the problem as \
90 linear equation∗)
91 VarGenerator[Weights_, Variables_] := Module[{var},
92 var = Array[
93 If [Weights[[#]] == {−1}, {−1 −
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94 Variables [[#]] }, {Variables [[#]]}] &,
95 Length[Weights]];
96 Return[var];
97 ]
98 (∗Print the rationom corresponding to a list ∗)
99 Rationom[m_] := Module[{Rat},

100 Rat = Array[Symbol[StringJoin[ToString[x], ToString[#]]]^(m[[#]]) &,
101 Length[m]];
102 Return[Times @@ Rat];
103 ]
104 (∗Modify a list to the right signs∗)
105 RightSigns[Solu_] := Module[{res, w},
106 (∗Weight vector is last element in given list − extract it ∗)
107 w = Solu[[Length[Solu ]]];
108 (∗Modify all other entries in solu according the rules dictated by \
109 w∗)
110 res = Array[RightSignVectors[w, Solu [[#]]] &, Length[Solu] − 1];
111 Return[ res ];
112 ]
113 (∗Modify a given vectors according to the rules dictated by the \
114 weights∗)
115 RightSignVectors[Weights_, Vec_] := Module[{res},
116 res = Array[If[Weights[[#]] == {−1}, −1 − Vec[[#]], Vec[[#]]] &,
117 Length[Vec]];
118 Return[ res ];
119 ]
120 (∗Generate Weights from Polynomial∗)
121 GenerateWeightFromPolynomial[P_, N_] := Module[{weights, vars},
122 vars = Table[Symbol["x" <> ToString[i]], {i, N}];
123 weights = Array[If[Exponent[P, vars[[#]]] == 0, {1}, {−1}] &, N];
124 Return[weights];
125 ]
126 (∗Important routine − find all rationoms∗)
127 (∗Important routine − find all rationoms∗)
128 FindRationoms[Weights_, BundleCharges_, Relations_, Multi_] :=
129 Module[{Vars, MyAssumption, MyVec, sol, i, RationomResult},
130

131 (∗Step1 − Create Variables ∗)
132 Vars = Array[Symbol["a" <> ToString[#]] &, Length[Weights]];
133

134 (∗Step2 −
135 Reformulate the problem such that mathematica can solve it ∗)
136 MyVec = VarGenerator[Weights, Vars];
137 MyVec = Transpose[Relations].MyVec;
138

139 (∗Step3 − Create Assumption∗)
140 MyAssumption = True;
141 Do[MyAssumption = MyAssumption && Vars[[i]] >= 0, {i, Length[Vars]}];
142

143 (∗Step4 − Solve Problem under created assumption∗)
144 sol = Solve[MyVec == BundleCharges && MyAssumption, Integers];
145
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146 (∗Step5 −
147 Extract explicit solutions from rules generated by the solve−
148 command∗)
149 sol = Vars /. sol ;
150 sol = Join[sol , {Weights}];
151

152 (∗Step6 − Reformulate solutions as rationoms∗)
153 sol = RightSigns[sol ];
154 sol = Map[Rationom, sol];
155

156 (∗Step7 −
157 Determine basis of the space taking into account their multiplicity ∗)
158

159

160 RationomResult = Array[sol[[#]] &, Length[sol ]];
161 Do[
162 RationomResult =
163 Join[RationomResult, Array[sol [[#]] &, Length[sol ]]],
164 {i , Multi − 1}
165 ];
166 (∗Return the result ∗)
167 Return[RationomResult];
168 ]
169

170 (∗2 Get Basis Of Vector Bundle Cohomology∗)
171 (∗2 Get Basis Of Vector Bundle Cohomology∗)
172 (∗2 Get Basis Of Vector Bundle Cohomology∗)
173

174 (∗Get basis of line bundle cohomology by use of cohomCalg∗)
175 GetBasisOfLineBundleCohomology[ambToricSpace_, BundleCharges_] :=
176 Module[{cohomology, res, dimA, dim, i, j , P, R, w, help , multi ,
177 CohomPolynomials},
178 (∗Get result of cohomcalg computation∗)
179 cohomology =
180 ReadList[GenerateRequestCommand[ambToricSpace, {BundleCharges}]];
181

182 (∗Strip of unnessary data∗)
183 cohomology = cohomology[[1]];
184

185 (∗Step 1 − Strip of unnessary data agin∗)
186 cohomology = cohomology[[2]];
187 cohomology = cohomology[[2]];
188

189 (∗Step 2 − Initialise cohomology vector∗)
190 dim = Dimensions[ambToricSpace[[3]]];
191 dimA = dim[[1]] − dim [[2]];
192 res = Table[{}, {dimA + 1}];
193

194 (∗Step 3 −
195 Fill in all rationoms contributing to the cohomology vector∗)
196 For[ i = 1, i <= Length[cohomology], i++,
197 (∗ Isolate i−th cohomology contribution∗)
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198 help = cohomology[[i ]];
199 (∗Check to what cohomology group it does contribute∗)
200 j = help [[1]];
201 (∗Get the polynomial delivered by cohomCalg∗)
202 P = help [[2]];
203 (∗Generate weight vector from P∗)
204 w = GenerateWeightFromPolynomial[P, dim[[1]]];
205 (∗Determine multiplicity of contribution ∗)
206 If [Variables[P] == {}, multi = P,
207 multi = Coefficient[P, Times @@ Variables[P]]];
208 (∗Add the rationoms∗)
209 R = FindRationoms[w, BundleCharges, ambToricSpace[[3]], multi ];
210 res [[ j + 1]] = Join[res [[ j + 1]], R];
211 ];
212

213 (∗Step4 − return the result ∗)
214 Return[res ];
215 ]
216 (∗Get Basis of vector bundle∗)
217 GetBasisOfVectorBundleCohomology[ambToricSpace_, BundleCharges_] :=
218 Module[{bundleNumb, helpcohomologies, fcohom, i, j, k, help ,
219 helpvector },
220

221 (∗ Initialise variables ∗)
222 helpcohomologies = {};
223 bundleNumb = Length[BundleCharges];
224 helpvector = Table[0, {BundleCharges}];
225

226 (∗Get Cohomology of the individual bundles∗)
227 For[ i = 1, i <= bundleNumb, i++,
228 helpcohomologies =
229 Join[helpcohomologies, {GetBasisOfLineBundleCohomology[
230 ambToricSpace, BundleCharges[[i ]]]}];
231 ];
232

233 (∗Make vectors∗)
234 fcohom = Table[{}, {Length[helpcohomologies [[1]]]}];
235 For[ i = 1, i <= Length[fcohom], i++,
236 help = {};
237 (∗scan over all bundles∗)
238 For[ j = 1, j <= bundleNumb, j++,
239 (∗scan over the cohomology of each bundle∗)
240

241 For[k = 1, k <= Length[helpcohomologies[[j, i ]]], k++,
242 (∗Reset helpvector∗)
243 helpvector = Table[{0}, {Length[BundleCharges]}];
244

245 (∗Make replacement at position j∗)
246 helpvector [[ j ]] = {helpcohomologies[[j , i , k ]]};
247 help = Join[help, {helpvector }];
248 ];
249 ];
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250

251 (∗ if cohomology trivial ∗)
252 If [Length[help] == 0,
253 help = {{Table[{0}, {Length[BundleCharges]}]}, {}};
254 ,
255 help = {help, {}};
256 ];
257

258 (∗add the result ∗)
259 fcohom[[i ]] = Join[fcohom[[i ]], help ];
260 ];
261

262 (∗Return the result ∗)
263 Return[fcohom];
264 ]
265

266 (∗3 Generate Koszul sequence and compute cohomologies therein∗)
267 (∗3 Generate Koszul sequence and compute cohomologies therein∗)
268 (∗3 Generate Koszul sequence and compute cohomologies therein∗)
269

270 (∗Create ordered tuples − needed for creation of Koszul sequence∗)
271 OrderedTuples[n_, k_] := Module[{List1, List2},
272 List1 = Array[# &, k];
273 List2 = Table[List1, {i , n}];
274 Return[Select[Tuples@List2, Less @@ # &]];
275 ]
276 (∗This is a routine used in the creation of the Koszul sequence∗)
277 AddDivisors[ Divisors_ , Labels_, BundleDivisor_] :=
278 Module[{i, j , Div, DivLength, ReturnDivisors , indices , index},
279

280 (∗Determine length of the divisors ∗)
281 DivLength = Length[Divisors [[1]]];
282

283 (∗ Initialise ReturnDivisors∗)
284 ReturnDivisors = Table[{}, {Length[Labels]}];
285

286 For[ i = 1, i <= Length[Labels], i++,
287

288 (∗ Initialise Div∗)
289 Div = Table[0, {DivLength}];
290

291 (∗Add to Div∗)
292 indices = Labels[[ i ]];
293 For[ j = 1, j <= Length[indices], j++,
294 Div = Div − Divisors [[ indices [[ j ]]]];
295 ];
296 Div = Div + BundleDivisor;
297

298 (∗Save Result∗)
299 ReturnDivisors [[ i ]] = Div;
300 ];
301 Return[ReturnDivisors]
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302 ]
303 (∗Generate the Koszul Sequence∗)
304 GenerateKoszulSequence[Divisors_, BundleDivisor_] :=
305 Module[{DivisorNumb, Bundles, Matrices, Tuples, RememberTuples, i, j},
306 (∗ Initialise the variable bundles that will be used to save the \
307 bundles appearing in the Koszul sequence∗)
308 DivisorNumb = Length[Divisors];
309 Bundles = Table[{}, {i , DivisorNumb + 1}];
310 Matrices = Table[{}, {i , DivisorNumb}];
311

312 (∗ Fill in the details of the individual bundles and bridging maps∗)
313

314

315 Bundles[[DivisorNumb + 1]] = {BundleDivisor};
316 For[ i = 1, i <= DivisorNumb, i++,
317

318 (∗Get tuples for bunle i∗)
319 Tuples = OrderedTuples[DivisorNumb + 1 − i, DivisorNumb];
320

321 (∗Create the matrix mapping between bundle i and bundle i−1∗)
322 If [ i > 1,
323 Matrices [[ i − 1]] = CreateMatrix[RememberTuples, Tuples];
324 ];
325

326 (∗Create the explicit weights of bundle i∗)
327 Bundles[[ i ]] = AddDivisors[Divisors , Tuples, BundleDivisor ];
328

329 (∗Remember the current tuples for the construction of the next map∗)
330

331

332 RememberTuples = Tuples;
333 ];
334

335 (∗Add final matrix∗)
336 Matrices [[
337 DivisorNumb]] = {Array[Symbol["s" <> ToString[#]] &,
338 Length[Divisors ]]};
339

340 Return[{Bundles, Matrices}];
341 ]
342 (∗Correct production of the mapping matrices in the Koszul complex∗)
343 CreateMatrix[ITuples_, FTuples_] :=
344 Module[{BMatrix, i, j , helpArray , helpVector , helpPosition },
345

346 (∗Create BMatrix∗)
347 BMatrix = {};
348

349 (∗Compute image for the i−th tuple in ITuples∗)
350 For[ i = 1, i <= Length[ITuples], i++,
351

352 (∗ initialise helpVector∗)
353 helpVector = Table[0, {Length[FTuples]}];
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354

355 (∗run over all elements in the i−th tuple in ITuples∗)
356 For[ j = 1, j <= Length[ITuples[[i ]]], j++,
357

358 (∗Omit the j−th element of the i−th tuple in ITuples∗)
359 helpArray = Delete[ITuples[[ i ]], j ];
360

361 (∗determine position of the image∗)
362 helpPosition = Position[FTuples, helpArray ];
363

364 (∗set the value∗)
365 helpVector [[ helpPosition [[1, 1]]]] = (−1)^(j − 1)∗
366 Symbol["s" <> ToString[ITuples[[i, j ]]]];
367 ];
368

369 (∗add result from the i−th tuple in ITuples to BMatrix∗)
370 BMatrix = Join[BMatrix, {helpVector}];
371 ];
372

373 (∗Transpose BMatrix to obtain final result ∗)
374 BMatrix = Transpose[BMatrix];
375

376 (∗Return the result ∗)
377 Return[BMatrix];
378 ]
379 (∗Calculate all cohomologies that appear in a sequence∗)
380 GetAllCohomologiesInKoszulSequence[ambSpace_, KoszulSequence_] :=
381 Module[{i, Cohomology},
382 (∗ initialise variable and add all cohomologies∗)
383 Cohomology = {};
384 For[ i = 1, i <= Length[KoszulSequence], i++,
385 Cohomology =
386 Join[Cohomology, {GetBasisOfVectorBundleCohomology[ambSpace,
387 KoszulSequence[[ i ]]]}];
388 ];
389 (∗Return the result ∗)
390 Return[Cohomology]
391 ]
392

393 (∗4 Fancy Output∗)
394 (∗4 Fancy Output∗)
395 (∗4 Fancy Output∗)
396

397 (∗Generate nice output to display charges of a certain direct sum of \
398 line bundles∗)
399 GenerateBundleOutput[Charges_] :=
400 Module[{OutputString, i, j , SingleCharge, helpString },
401 OutputString = "";
402 For[ i = 1, i <= Length[Charges], i++,
403 (∗Get charges of the i−th bundle in the direct sum∗)
404 SingleCharge = Charges[[ i ]];
405
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406 (∗Generate helpString∗)
407 helpString = "\[ScriptCapitalO ](";
408 For[ j = 1, j <= Length[SingleCharge], j++,
409 helpString = helpString <> ToString[SingleCharge[[j ]]];
410 If [ j < Length[SingleCharge], helpString = helpString <> ","];
411 ];
412 helpString = helpString <> ")";
413

414 (∗Add to OutputString∗)
415 OutputString = OutputString <> helpString;
416 If [ i < Length[Charges],
417 OutputString = OutputString <> "\[CirclePlus]" ];
418 ];
419

420 (∗Return result ∗)
421 Return[OutputString];
422 ]
423 (∗Check if a vector is trivial or not∗)
424 CheckTrivial [Vector_] := Module[{i, res},
425 (∗check for non− trivial entries ∗)
426 res = True;
427 For[ i = 1, i <= Length[Vector], i++,
428 If [Variables[Vector [[ i , 1]]] != {}, res = False];
429 If [Vector [[ i , 1]] != 0, res = False];
430 ];
431 (∗return the result ∗)
432 Return[res ];
433 ]
434 (∗Get the global sections defining the algebraic subvariety ∗)
435 GetGlobalSections [ambSpace_, Divisors_] :=
436 Module[{helpcohom, helpsec, res, i , j , CCount},
437

438 (∗get basis of the zeroth−cohomolgy group∗)
439 res = {{"Section", " Explicit form", "Charges"}};
440 CCount = 0;
441 For[ i = 1, i <= Length[Divisors], i++,
442 helpcohom =
443 GetBasisOfLineBundleCohomology[ambSpace, Divisors[[i ]]][[1]];
444 helpsec = 0;
445 For[ j = 1, j <= Length[helpcohom], j++,
446 CCount = CCount + 1;
447 helpsec =
448 helpsec + Symbol["C" <> ToString[CCount]]∗ helpcohom[[j]];
449 ];
450 res = Join[
451 res , {{Symbol["s" <> ToString[i]], helpsec, Divisors [[ i ]]}}];
452 ];
453

454 (∗return the result ∗)
455 Return[res ];
456 ]
457 MyGenerateRowII[Polynomial_, Numb_] :=
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458 ReplacePart[Table[0, {Numb}],
459 ParallelMap[
460 ToExpression[StringDrop[ToString[#[[1]]], 1]] −> #[[2]] &,
461 ParallelMap[Level[#, 1] &, Polynomial, Method −> Automatic],
462 Method −> Automatic]];
463

464 (∗Slow generateRow method replaced by the faster one given above∗)
465 GenerateRow[Polynomial_, Numb_] := Module[{HelpRow, HelpVar, i},
466 (∗ Initialise HelpRow∗)
467 HelpRow = Table[0, {Numb}];
468

469 (∗ Initialise Helpvar∗)
470 HelpVar = Array[Symbol["A" <> ToString[#]] &, Numb];
471

472 (∗Get all their coefficients ∗)
473 For[ i = 1, i <= Numb, i++,
474 HelpRow[[i ]] = Coefficient[Polynomial, HelpVar[[ i ]]];
475 ];
476

477 (∗Return result ∗)
478 Return[HelpRow];
479 ]
480 (∗Draw the first sheet of the Koszul spectral sequence with maps∗)
481 DrawFirstSheetWithMaps[ambSpace_, Divisors_, BundleDivisor_,
482 MapSpecifier_] := Monitor[Module[
483 {KoszulSequence, Sequence, SequenceMaps, MyCohomologies,
484 bundleNumb, Tab1, Tab2, Tab3, Tab5, PCount, i, j, k, l , numbCohom,
485 help , helpVector , helpVector2, helpRule , helpRule2, helpRule3,
486 helpRule4, helpBasisVec, helpIndex , helpEntry , helpCoefficient ,
487 helpCoefficient2 , MyArrow, Sections, helpMatrix, helpMatrix2,
488 helpArray , helpArray2, VariableArray , tStart , tEnd, helper },
489

490 (∗Step 0 − save system time and start computation∗)
491 tStart = AbsoluteTime[];
492 Print["Computation started" ];
493

494 (∗Step 1 − Generate the Koszul−Sequence and the rough mappings∗)
495 KoszulSequence = GenerateKoszulSequence[Divisors, BundleDivisor];
496 Sequence = KoszulSequence[[1]];
497 SequenceMaps = KoszulSequence[[2]];
498 bundleNumb = Length[Sequence];
499

500 (∗Step 2 − Get the cohomologies of all direct−sum line bundles∗)
501 MyCohomologies =
502 GetAllCohomologiesInKoszulSequence[ambSpace, Sequence];
503 numbCohom = Length[MyCohomologies[[1]]];
504

505 (∗Step 3 −
506 Get the sections defining the algebraic subvariety and create \
507 corresponding rule∗)
508 Tab3 = GetGlobalSections[ambSpace, Divisors];
509 helpRule = {};
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510 For[ i = 1, i <= Length[Divisors], i++,
511 helpRule = Join[helpRule, {Tab3[[ i + 1, 1]] −> Tab3[[i + 1, 2]]}];
512 ];
513

514 (∗Step 4 − Compute explicit mapping matrices∗)
515 helpRule2 =
516 Array[Symbol["x" <> ToString[#]] −> 0 &, Length[ambSpace[[3]]]];
517 Tab5 = Table[Table[0, {numbCohom}], {Length[Sequence] − 1}];
518 VariableArray =
519 Array[Symbol["x" <> ToString[#]] &, Length[ambSpace[[3]]]];
520 MCount = 0;
521

522 (∗check if the user wants any matrices coputed∗)
523 If [MapSpecifier [[1, 1]] == "none",
524

525 (∗user wants no mappings computed, so∗)
526 Tab5 =
527 Table[Table["not computed", {numbCohom}], {Length[Sequence] − 1}];
528 MCount =
529 Length[Divisors]∗(Length[ambSpace[[3]]] −
530 Length[ambSpace[[3, 1]]]) ;
531

532 ,
533

534 (∗user wants at least some matrices computed, so do it∗)
535

536 (∗Compute the mappings between row i and row i+1∗)
537 For[ i = 1, i < Length[Sequence], i++,
538 (∗and therein the columns j∗)
539 For[ j = 1, j <= numbCohom, j++,
540

541 (∗Check if user wants this map computed∗)
542 If [
543 MemberQ[MapSpecifier, {i, j}] ||
544 MapSpecifier [[1, 1]] == "all",
545

546 (∗user wants this map computed, so do it∗)
547

548 (∗get principal mapping matrix from Tab4∗)
549 helpMatrix = SequenceMaps[[i]];
550

551 (∗ represent the basis space∗)
552 help = MyCohomologies[[i, j , 1]];
553 helpVector = Symbol["A" <> ToString[1]]∗help[[1]];
554 For[k = 2, k <= Length[help], k++,
555

556 helpVector =
557 helpVector + Symbol["A" <> ToString[k]]∗help[[k]];
558 ];
559

560 (∗ if the domain space is trivial , the mapping is trivial , so∗)
561
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562

563 If [! CheckTrivial [helpVector ],
564

565 (∗the domain is non− trivial ,
566 so proceed and check if the target space is non−
567 trivial ... ∗)
568

569

570 If [Length[MyCohomologies[[i + 1, j, 1]]] > 1 || !
571 CheckTrivial [MyCohomologies[[i + 1, j , 1, 1]]],
572

573 (∗the target space is non− trivial ,
574 so proceed with the real computation∗)
575 (∗The situation is non− trivial ,
576 and the mapping coefficient for each basis element in the \
577 target space are determind in what follows∗)
578

579 (∗compute the mapped vector −
580 in particular use the expressions for the global sections ∗)
581

582

583 helpVector = helpMatrix.helpVector ;
584 helpVector = Expand[helpVector /. helpRule];
585

586 (∗ initialise helpMatrix2∗)
587 helpMatrix2 = {};
588

589 (∗get the mapping coefficient for each basis element of \
590 the target∗)
591 For[ l = 1, l <= Length[MyCohomologies[[i + 1, j, 1]]], l++,
592

593 (∗consider the l−
594 th basis vector of the target cohomologies∗)
595 helpBasisVec = MyCohomologies[[i + 1, j, 1, l ]];
596

597 (∗ isolate its single entry and position of that entry∗)
598 helpEntry = Total[helpBasisVec];
599 helpEntry = helpEntry [[1]];
600 helpIndex = Position[helpBasisVec, helpEntry ][[1, 1]];
601

602 (∗compute the coefficient of the l−
603 th target space basis vector∗)
604 (∗ this is the most time−
605 consuming task in the entire notebook∗)
606

607 (∗Step 1 − Compute the coefficient ∗)
608 If [Variables[helpEntry ] != {},
609

610 (∗\[Rule] basis vector non− trivial ,
611 so go through detailed analysis ∗)
612

613 (∗step 1.1: keep only expression in helpArray2,
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614 that have the correct denominator∗)
615

616 (∗ split the long polynomial image expression into its \
617 additive parts∗)
618 helpArray2 = Level[helpVector [[ helpIndex , 1]], 1];
619 (∗get variables in the l−th basis vector∗)
620 helpArray = Variables[helpEntry ];
621 (∗keep only expression of helpArray2,
622 that depend on the variables that the l−
623 th basis vector does depend on∗)
624

625

626 helpArray2 =
627 Select[helpArray2,
628 SameQ[Denominator[helpEntry], Denominator[#]] &];
629

630 (∗step 2.1: keep only expression in helpArray2,
631 that depend on the correct variables ∗)
632

633 helpArray2 =
634 Select[helpArray2,
635 Intersection [Complement[VariableArray, helpArray],
636 Variables[#]] == {} &];
637

638 (∗step 3.1:
639 compute the coefficient in the reduced expression via \
640 the ’slow’ command coefficient∗)
641 (∗step 3.1: for speed−up, this is parallelised ∗)
642 helpCoefficient = ParallelMap[
643 If [Variables[Denominator[#]∗helpEntry] != {},
644 Coefficient [Numerator[#], Denominator[#]∗helpEntry]
645 ,
646 Numerator[#] /. helpRule2
647 ]
648 &, helpArray2, Method −> Automatic];
649

650 (∗Step 4.1:
651 mathematica might have factorised and thus left \
652 variables x_i in helpCoefficient2 ∗)
653 (∗Step 4.1: those we do not consider real coefficients ,
654 thus we get rid of them now∗)
655

656 helpCoefficient =
657 Select[ helpCoefficient ,
658 Intersection [Variables[#], VariableArray ] == {} &];
659

660 ,
661

662 (∗otherwise the basis vector is trivial ,
663 and the coefficient is simply the constant part∗)
664

665 helpCoefficient =
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666 helpVector [[ helpIndex , 1]] /. helpRule2;
667 ];
668 (∗drop zeros in helpCoefficient ∗)
669 (∗ helpCoefficient =Select[ helpCoefficient ,
670 Variables [#]\[NotEqual]{}&];∗)
671 helpCoefficient = Total[ helpCoefficient ];
672

673 (∗Step 2: Use helpCoefficient to assemble matrix∗)
674

675 helpMatrix2 =
676 Join[helpMatrix2, {GenerateRow[helpCoefficient ,
677 Length[MyCohomologies[[i, j, 1]]]]}];
678

679 ];
680

681 ,
682

683 (∗otherwise the target space is trivial ,
684 so the mapping is∗)
685

686 helpMatrix2 =
687 Table[Table[
688 0, {Length[MyCohomologies[[i, j, 1]]]}], {Length[
689 MyCohomologies[[i + 1, j , 1]]]}];
690 ];
691

692 ,
693

694 (∗otherwise the domain is trivial , so the mapping is∗)
695

696 helpMatrix2 =
697 Table[Table[
698 0, {Length[MyCohomologies[[i, j, 1]]]}], {Length[
699 MyCohomologies[[i + 1, j , 1]]]}];
700 ];
701

702 (∗save the user wished matrix∗)
703 Tab5[[ i , j ]] = MatrixForm[helpMatrix2];
704

705 ,
706

707 (∗user does not want this map computed, so∗)
708 Tab5[[ i , j ]] = "not computed";
709

710 ];
711

712 (∗ increase the computed−matrix−counter∗)
713 MCount = MCount + 1;
714

715 ]; (∗ j−loop finished ∗)
716 ]; (∗ i−loop finished ∗)
717 ]; (∗user check finished ∗)
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718

719 (∗Step 5 − Nicely represent the first sheet∗)
720 MyArrow =
721 Graphics[{LightBlue, Rectangle[{0, 0}, {1, 1}], Black,
722 Arrowheads[0.1], Arrow[{{0.5, 1}, {0.5, 0}}]},
723 ImageSize −> Tiny, AspectRatio −> 0.5];
724 Tab1 = Table[{}, {4∗bundleNumb − 2}];
725 Tab2 = {{"Space", "Basis", "Equivalence Relations",
726 "Naive Dimension"}};
727 PCount = 0;
728 For[ i = 1, i <= bundleNumb, i++,
729

730 (∗Get cohomologies of bundle i∗)
731 help = MyCohomologies[[i]];
732

733 (∗Look for non− trivial entries and save them to Tab2∗)
734 For[k = 1, k <= numbCohom, k++,
735 (∗Print [help [[ k ,1,1]]]; ∗)
736 If [! CheckTrivial [help [[ k, 1, 1]]],
737 PCount = PCount + 1;
738 Tab2 =
739 Join[Tab2, {{"P" <> ToString[PCount],
740 Map[MatrixForm, help[[k, 1]], {1}],
741 Map[MatrixForm, help[[k, 2]], {1}],
742 Length[help[[k, 1]]] − Length[help[[k, 2]]]}}];
743 help [[ k ]] = "P" <> ToString[PCount];
744 ,
745 help [[ k ]] = {Map[MatrixForm, help[[k, 1]], {1}],
746 Map[MatrixForm, help[[k, 2]], {1}]};
747 ];
748 ];
749

750 (∗Add information to Tab1∗)
751 Tab1[[4∗i − 3]] =
752 Join[{GenerateBundleOutput[Sequence[[i]]]}, help ];
753 If [ i < bundleNumb,
754 Tab1[[4∗i − 2]] = Table[MyArrow, {j, numbCohom + 1}];
755 Tab1[[4∗i − 1]] =
756 Join[{MatrixForm[SequenceMaps[[i]]]}, Tab5[[i ]]];
757 (∗Tab1[[4∗i−1]]=Table["mappings",{numbCohom+1}];∗)
758 Tab1[[4∗i ]] = Table[MyArrow, {j, numbCohom + 1}];
759 ];
760

761 ];
762 (∗add cohomology labels∗)
763 Tab1 =
764 Join[Tab1, {Array[
765 If [# == 1, , Superscript["H", ToString[# − 2]]] &,
766 numbCohom + 1]}];
767

768 (∗Step 6 − Print output∗)
769
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770 (∗Print global sections ∗)
771 Print[ Style [
772 Labeled[Grid[Tab3, Frame −> All, Background −> LightBlue,
773 Alignment −> Baseline],
774 Text@Style[
775 "Global sections defining the complete intersection \
776 subvariety .", "Text" ], {{Bottom, Center}}], FontSize −> 16]];
777

778 (∗Print legends∗)
779 Print[ Style [
780 Labeled[Grid[Tab2, Frame −> All, Background −> LightBlue,
781 Alignment −> Baseline],
782 Text@Style[
783 "Rationom spaces in the first sheet of the Koszul spectral \
784 sequence.", "Text" ], {{Bottom, Center}}], FontSize −> 16]];
785

786 (∗Print first sheet∗)
787 helpRule3 =
788 Array[If [ Divisible [# + 3, 4], # −> Orange, # −> LightBlue] &,
789 Length[Tab1]];
790 Print[ Style [
791 Labeled[Grid[Tab1, Alignment −> Center,
792 Frame −> {1 −> True, −1 −>
793 True, {{1, Length[Tab1] − 1}, {2, numbCohom + 1}} −> True},
794 Background −> {Automatic, helpRule3}],
795 Text@Style[
796 " First sheet of the Koszul exact sequence and the maps \
797 therein .", "Text" ], {{Bottom, Center}}], FontSize −> 16]];
798

799 (∗Step 7 − Signal that the computation is done∗)
800 tEnd = AbsoluteTime[];
801 Return[
802 "Computation finished after " <> ToString[tEnd − tStart] <>
803 " seconds." ];
804 ], ProgressIndicator [
805 MCount, {0,
806 Length[Divisors]∗(Length[ambSpace[[3]]] −
807 Length[ambSpace[[3, 1]]]) }]]
808 RandomSection[ambSpace_, Charges_] := Module[{MySec, ReplacementTaple},
809 MySec = GetBasisOfLineBundleCohomology[ambSpace, Charges][[1]];
810 MySec = Map[RandomReal[]∗# &, MySec];
811 Return[Total[MySec]];
812 ]
813 (∗Compute E2−sheet under simplified assumptions∗)
814 ComputeSheetE2[ambSpace_, Divisors_, BundleDivisor_, GlobalSection_] :=
815 Monitor[Module[
816 {KoszulSequence, Sequence, SequenceMaps, MyCohomologies,
817 bundleNumb, Tab1, Tab1b, Tab1c, Tab3, Tab5, Tab5b, PCount, i, j,
818 k, l , numbCohom, help, helpVector, helpVector2, helpRule ,
819 helpRule2, helpRule3, helpRule4, helpBasisVec, helpIndex ,
820 helpEntry , helpCoefficient , helpCoefficient2 , MyArrow, Sections,
821 helpMatrix, helpMatrix2, helpArray , helpArray2, VariableArray ,
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822 tStart , tEnd, helper },
823

824 (∗Step 0 − save system time and start computation∗)
825 tStart = AbsoluteTime[];
826 Print["Computation started" ];
827

828 (∗Step 1 − Generate the Koszul−Sequence and the rough mappings∗)
829 KoszulSequence = GenerateKoszulSequence[Divisors, BundleDivisor];
830 Sequence = KoszulSequence[[1]];
831 SequenceMaps = KoszulSequence[[2]];
832 bundleNumb = Length[Sequence];
833

834 (∗Step 2 − Get the cohomologies of all direct−sum line bundles∗)
835 MyCohomologies =
836 GetAllCohomologiesInKoszulSequence[ambSpace, Sequence];
837 numbCohom = Length[MyCohomologies[[1]]];
838

839 (∗Step 3 −
840 Get the sections defining the algebraic subvariety and create \
841 corresponding rule∗)
842 (∗Tab3=GetGlobalSections[ambSpace,Divisors];∗)
843 Tab3 = GlobalSection;
844 helpRule = {};
845 For[ i = 1, i <= Length[Divisors], i++,
846 helpRule = Join[helpRule, {Tab3[[ i + 1, 1]] −> Tab3[[i + 1, 2]]}];
847 ];
848

849 (∗Step 4 − Compute explicit mapping matrices∗)
850 helpRule2 =
851 Array[Symbol["x" <> ToString[#]] −> 0 &, Length[ambSpace[[3]]]];
852 Tab5 = Table[Table[0, {numbCohom}], {Length[Sequence] − 1}];
853 Tab5b = Table[Table[0, {numbCohom}], {Length[Sequence] − 1}];
854 VariableArray =
855 Array[Symbol["x" <> ToString[#]] &, Length[ambSpace[[3]]]];
856 MCount = 0;
857

858 (∗Compute the mappings between row i and row i+1∗)
859 For[ i = 1, i < Length[Sequence], i++,
860 (∗and therein the columns j∗)
861 For[ j = 1, j <= numbCohom, j++,
862

863 (∗get principal mapping matrix from SequenceMaps∗)
864 helpMatrix = SequenceMaps[[i]];
865

866 (∗ represent the basis space∗)
867 help = MyCohomologies[[i, j , 1]];
868 helpVector = Symbol["A" <> ToString[1]]∗help[[1]];
869 For[k = 2, k <= Length[help], k++,
870 helpVector = helpVector + Symbol["A" <> ToString[k]]∗help[[k]];
871 ];
872

873 (∗ if the domain space is trivial , the mapping is trivial , so∗)
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874 If [! CheckTrivial [helpVector ],
875

876 (∗the domain is non− trivial ,
877 so proceed and check if the target space is non− trivial ... ∗)
878

879 If [
880 Length[MyCohomologies[[i + 1, j, 1]]] > 1 || !
881 CheckTrivial [MyCohomologies[[i + 1, j , 1, 1]]],
882

883 (∗the target space is non− trivial ,
884 so proceed with the real computation∗)
885 (∗The situation is non− trivial ,
886 and the mapping coefficient for each basis element in the \
887 target space are determind in what follows∗)
888

889 (∗compute the mapped vector −
890 in particular use the expressions for the global sections ∗)
891 helpVector = helpMatrix.helpVector ;
892 helpVector = Expand[helpVector /. helpRule];
893

894 (∗ initialise helpMatrix2∗)
895 helpMatrix2 = {};
896

897 (∗get the mapping coefficient for each basis element of the \
898 target∗)
899 For[ l = 1, l <= Length[MyCohomologies[[i + 1, j, 1]]], l++,
900

901 (∗consider the l−th basis vector of the target cohomologies∗)
902

903

904 helpBasisVec = MyCohomologies[[i + 1, j, 1, l ]];
905

906 (∗ isolate its single entry and position of that entry∗)
907 helpEntry = Total[helpBasisVec];
908 helpEntry = helpEntry [[1]];
909 helpIndex = Position[helpBasisVec, helpEntry ][[1, 1]];
910

911 (∗compute the coefficient of the l−
912 th target space basis vector∗)
913 (∗ this is the most time−
914 consuming task in the entire notebook∗)
915

916 (∗Step 1 − Compute the coefficient ∗)
917 If [Variables[helpEntry ] != {},
918

919 (∗\[Rule] basis vector non− trivial ,
920 so go through detailed analysis ∗)
921

922 (∗step 1.1: keep only expression in helpArray2,
923 that have the correct denominator∗)
924

925 (∗ split the long polynomial image expression into its \
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926 additive parts∗)
927 helpArray2 = Level[helpVector [[ helpIndex , 1]], 1];
928 (∗get variables in the l−th basis vector∗)
929 helpArray = Variables[helpEntry ];
930 (∗keep only expression of helpArray2,
931 that depend on the variables that the l−
932 th basis vector does depend on∗)
933

934 (∗helper=Array[SameQ[Denominator[helpEntry],Denominator[
935 helpArray2 [[#]]]]&, Length[helpArray2 ]];
936 helpArray2=Pick[helpArray2,helper ]; ∗)
937

938 helpArray2 =
939 Select[helpArray2,
940 SameQ[Denominator[helpEntry], Denominator[#]] &];
941

942 (∗step 2.1: keep only expression in helpArray2,
943 that depend on the correct variables ∗)
944

945 helpArray2 =
946 Select[helpArray2,
947 Intersection [Complement[VariableArray, helpArray],
948 Variables[#]] == {} &];
949

950 (∗step 3.1:
951 compute the coefficient in the reduced expression via the \
952 ’slow’ command coefficient∗)
953 (∗step 3.1: for speed−up, this is parallelised ∗)
954 helpCoefficient = ParallelMap[
955 If [Variables[Denominator[#]∗helpEntry] != {},
956 Coefficient [Numerator[#], Denominator[#]∗helpEntry]
957 ,
958 Numerator[#] /. helpRule2
959 ]
960 &, helpArray2, Method −> Automatic];
961

962 (∗Step 4.1:
963 mathematica might have factorised and thus left variables \
964 x_i in helpCoefficient2 ∗)
965 (∗Step 4.1: those we do not consider real coefficients ,
966 thus we get rid of them now∗)
967

968 helpCoefficient =
969 Select[ helpCoefficient ,
970 Intersection [Variables[#], VariableArray ] == {} &];
971

972 ,
973

974 (∗otherwise the basis vector is trivial ,
975 and the coefficient is simply the constant part∗)
976 helpCoefficient = helpVector[[ helpIndex , 1]] /. helpRule2;
977 ];
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978 (∗drop zeros in helpCoefficient ∗)
979 (∗ helpCoefficient =Select[ helpCoefficient ,
980 Variables [#]\[NotEqual]{}&];∗)
981 helpCoefficient = Total[ helpCoefficient ];
982

983 (∗Step 2: Use helpCoefficient to assemble matrix∗)
984

985 helpMatrix2 =
986 Join[helpMatrix2, {GenerateRow[helpCoefficient ,
987 Length[MyCohomologies[[i, j, 1]]]]}];
988

989 ];
990

991 (∗compute kernel of non− trivial mapping matrix∗)
992 Tab5[[ i , j ]] = Length[NullSpace[helpMatrix2]];
993 Tab5b[[i , j ]] = "Ker = " <> ToString[Tab5[[i, j ]]];
994 ,
995

996 (∗otherwise the target space is trivial ,
997 so the mapping is trivial ∗)
998 Tab5[[ i , j ]] = Length[MyCohomologies[[i, j, 1]]];
999 Tab5b[[i , j ]] = "Ker = " <> ToString[Tab5[[i, j ]]];

1000 ];
1001

1002 ,
1003

1004 (∗otherwise the domain is trivial , so the mapping is∗)
1005 Tab5[[ i , j ]] = 0;
1006 Tab5b[[i , j ]] = "Ker = 0";
1007 ];
1008

1009 (∗ increase the computed−matrix−counter∗)
1010 MCount = MCount + 1;
1011

1012 ]; (∗ j−loop finished ∗)
1013 ]; (∗ i−loop finished ∗)
1014

1015 (∗Step 5 − Nicely represent the first sheet∗)
1016 MyArrow =
1017 Graphics[{LightBlue, Rectangle[{0, 0}, {1, 1}], Black,
1018 Arrowheads[0.1], Arrow[{{0.5, 1}, {0.5, 0}}]},
1019 ImageSize −> Tiny, AspectRatio −> 0.5];
1020 Tab1 = Table[{}, {4∗bundleNumb − 2}];
1021 Tab1b = Table[{}, {4∗bundleNumb − 2}];
1022 PCount = 0;
1023 For[ i = 1, i <= bundleNumb, i++,
1024

1025 (∗Get cohomologies of bundle i∗)
1026 help =
1027 Map[If[Variables[#[[1, 1]]] != {}, Length [#[[1]]], 0] &,
1028 MyCohomologies[[i ]]];
1029
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1030 (∗Add information to Tab1∗)
1031 Tab1[[4∗i − 3]] =
1032 Join[{GenerateBundleOutput[Sequence[[i]]]}, help ];
1033 Tab1b[[4∗i − 3]] = Tab1[[4∗i − 3]];
1034 If [ i < bundleNumb,
1035 Tab1[[4∗i − 2]] = Table[MyArrow, {j, numbCohom + 1}];
1036 Tab1b[[4∗i − 2]] = Table[MyArrow, {j, numbCohom + 1}];
1037 Tab1[[4∗i − 1]] =
1038 Join[{MatrixForm[SequenceMaps[[i]]]}, Tab5b[[i ]]];
1039 Tab1b[[4∗i − 1]] =
1040 Join[{MatrixForm[SequenceMaps[[i]]]}, Tab5[[i ]]];
1041 Tab1[[4∗i ]] = Table[MyArrow, {j, numbCohom + 1}];
1042 Tab1b[[4∗i ]] = Table[MyArrow, {j, numbCohom + 1}];
1043 ];
1044

1045 ];
1046 (∗add cohomology labels∗)
1047 Tab1 =
1048 Join[Tab1, {Array[
1049 If [# == 1, , Superscript["H", ToString[# − 2]]] &,
1050 numbCohom + 1]}];
1051 Tab1b =
1052 Join[Tab1b, {Array[
1053 If [# == 1, , Superscript["H", ToString[# − 2]]] &,
1054 numbCohom + 1]}];
1055

1056 (∗Step 6 − compute sheet E2∗)
1057 (∗use Tab1b as backup data, and compute the entries of Tab1c∗)
1058 Tab1c = Table[Table[, {Length[Tab1b[[1]]]}], {Length[Tab1b]}];
1059 For[ i = 1, i <= bundleNumb, i++,
1060

1061 (∗add legend on the left ∗)
1062 Tab1c[[4∗ i − 3, 1]] = Tab1b[[4∗i − 3, 1]];
1063 If [ i != bundleNumb,
1064 Tab1c[[4∗ i − 2, 1]] = Tab1b[[4∗i − 2, 1]];
1065 Tab1c[[4∗ i − 1, 1]] = Tab1b[[4∗i − 1, 1]];
1066 Tab1c[[4∗ i , 1]] = Tab1b[[4∗i, 1]];
1067 ];
1068

1069 (∗compute dimensions of quotient spaces in sheet E2∗)
1070 For[ j = 1, j <= numbCohom, j++,
1071

1072 (∗compute dimensions∗)
1073 If [ i == 1,
1074 (∗ If we compute the row on top just take the kernel∗)
1075 Tab1c[[4∗ i − 3, j + 1]] = Tab1b[[4∗i − 1, j + 1]];
1076 ,
1077

1078 (∗ If we compute the row at the bottom∗)
1079 If [ i == bundleNumb,
1080

1081 (∗otherwise ker − Im∗)
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1082 Tab1c[[4∗ i − 3, j + 1]] =
1083 Tab1b[[4∗i − 3, j + 1]] + Tab1b[[4∗i − 5, j + 1]] −
1084 Tab1b[[4∗i − 7, j + 1]];
1085 Tab1c[[4∗ i − 1, j + 1]] = Superscript["H", ToString[j − 1]];
1086 ,
1087

1088 (∗Otherwise we are somewhere in the middle∗)
1089 Tab1c[[4∗ i − 3, j + 1]] =
1090 Tab1b[[4∗i − 1, j + 1]] + Tab1b[[4∗i − 5, j + 1]] −
1091 Tab1b[[4∗i − 7, j + 1]];
1092 ];
1093 ];
1094 ];
1095 ];
1096

1097 (∗Print first sheet∗)
1098 helpRule3 =
1099 Array[If [ Divisible [# + 3, 4], # −> Orange, # −> LightBlue] &,
1100 Length[Tab1]];
1101 Print[ Style [
1102 Labeled[Grid[Tab1, Alignment −> Center,
1103 Frame −> {1 −> True, −1 −>
1104 True, {{1, Length[Tab1] − 1}, {2, numbCohom + 1}} −> True},
1105 Background −> {Automatic, helpRule3}],
1106 Text@Style[
1107 " First sheet of the Koszul exact sequence and the maps \
1108 therein .", "Text" ], {{Bottom, Center}}], FontSize −> 16]];
1109

1110 (∗Print second sheet∗)
1111 Print[ Style [
1112 Labeled[Grid[Tab1c, Alignment −> Center,
1113 Frame −> {1 −> True, −1 −>
1114 True, {{1, Length[Tab1c] − 1}, {2, numbCohom + 1}} −> True},
1115 Background −> {Automatic, helpRule3} (∗ItemSize\[Rule]All∗)],
1116 Text@Style[
1117 "Second sheet of the Koszul exact sequence and the maps \
1118 therein .", "Text" ], {{Bottom, Center}}], FontSize −> 16]];
1119

1120 (∗Step 7 − Signal that the computation is done∗)
1121 tEnd = AbsoluteTime[];
1122 Return[tEnd − tStart ];
1123 ], ProgressIndicator [
1124 MCount, {0,
1125 Length[Divisors]∗(Length[ambSpace[[3]]] −
1126 Length[ambSpace[[3, 1]]]) }]]
1127

1128 (∗Compute model of our choice∗)
1129 (∗Compute model of our choice∗)
1130 Model[ambSpace_, DB3_, DGUT_, G4_] :=
1131 Module[{AntiKB3, Da1, Da21, Da32, Da43, DC10, DC5m, DC5H, DL1, DL2,
1132 DL3, sB3, sGUT, sa1, sa21, sa32, sa43, sC10, sC5m, sC5H,
1133 OutputTable, InputTable1, InputTable2, InputTable3, t1, t2},
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1134

1135 (∗Step 0: Signal that the computation started∗)
1136 Print["Started computation." ];
1137 t1 = AbsoluteTime[];
1138

1139 (∗Step 1: Compute necessary divisor classes ∗)
1140 AntiKB3 = Total[ambSpace[[3]]] − DB3;
1141 Da1 = AntiKB3;
1142 Da21 = 2∗AntiKB3 − 1∗DGUT;
1143 Da32 = 3∗AntiKB3 − 2∗DGUT;
1144 Da43 = 4∗AntiKB3 − 3∗DGUT;
1145 DC10 = Da1;
1146 DC5m = Da32;
1147 DC5H = 5∗AntiKB3 − 3∗DGUT;
1148

1149 (∗Step 2: Compute some sections∗)
1150 sa1 = RandomSection[ambSpace, Da1];
1151 sa21 = RandomSection[ambSpace, Da21];
1152 sa32 = RandomSection[ambSpace, Da32];
1153 sa43 = RandomSection[ambSpace, Da43];
1154

1155 (∗Step 3: Compute line bundles L_i∗)
1156 DL1 = −G4 + (DC10 + DGUT − AntiKB3)/2;
1157 DL2 = 3∗G4 + (DC5m + DGUT − AntiKB3)/2;
1158 DL3 = 2∗G4 + (DC5H + DGUT − AntiKB3)/2;
1159

1160 (∗Step 4: Compute random sections∗)
1161 sB3 = RandomSection[ambSpace, DB3];
1162 sGUT = RandomSection[ambSpace, DGUT];
1163 sC10 = sa1;
1164 sC5m = sa32;
1165 sC5H = Expand[sa32∗sa21 − sa43∗sa1];
1166

1167 (∗Step 5: Organise the above information in a nice output∗)
1168 OutputTable = {{"Name", "Charge", "Random Section"}};
1169 OutputTable = Join[OutputTable, {{"Base", DB3, sB3}}];
1170 OutputTable = Join[OutputTable, {{"GUT", DGUT, sGUT}}];
1171 OutputTable = Join[OutputTable, {{"a1", Da1, sa1}}];
1172 OutputTable = Join[OutputTable, {{"a21", Da21, sa21}}];
1173 OutputTable = Join[OutputTable, {{"a32", Da32, sa32}}];
1174 OutputTable = Join[OutputTable, {{"a43", Da43, sa43}}];
1175 OutputTable = Join[OutputTable, {{"C10", DC10, sC10}}];
1176 OutputTable = Join[OutputTable, {{"C5m", DC5m, sC5m}}];
1177 OutputTable = Join[OutputTable, {{"C5H", DC5H, sC5H}}];
1178 OutputTable = Join[OutputTable, {{"L1", DL1, "−"}}];
1179 OutputTable = Join[OutputTable, {{"L2", DL2, "−"}}];
1180 OutputTable = Join[OutputTable, {{"L3", DL3, "−"}}];
1181 Print[ Style [
1182 Labeled[Grid[OutputTable, Frame −> All, Background −> LightBlue,
1183 Alignment −> Baseline],
1184 Text@Style[
1185 "Global sections defining the complete intersection \
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1186 subvariety .", "Text" ], {{Bottom, Center}}], FontSize −> 16]];
1187

1188 (∗Step 6: Compute cohomologies till E2−sheet∗)
1189

1190 (∗Start computation of second sheets on C_10∗)
1191 InputTable1 = {{"Section", " Explicit form", "Charges"}};
1192 InputTable1 =
1193 Join[InputTable1, {{Symbol["s" <> ToString[1]], sB3, DB3}}];
1194 InputTable1 =
1195 Join[InputTable1, {{Symbol["s" <> ToString[2]], sGUT, DGUT}}];
1196 InputTable1 =
1197 Join[InputTable1, {{Symbol["s" <> ToString[3]], sC10, DC10}}];
1198 Print["Start computation on C10 curve"];
1199 Print["Computation finished after " <>
1200 ToString[
1201 ComputeSheetE2[ambSpace, {DB3, DGUT, DC10}, DL1, InputTable1]] <>
1202 " seconds." ];
1203

1204 (∗Start computation of second sheets on C_5m∗)
1205 InputTable2 = {{"Section", " Explicit form", "Charges"}};
1206 InputTable2 =
1207 Join[InputTable2, {{Symbol["s" <> ToString[1]], sB3, DB3}}];
1208 InputTable2 =
1209 Join[InputTable2, {{Symbol["s" <> ToString[2]], sGUT, DGUT}}];
1210 InputTable2 =
1211 Join[InputTable2, {{Symbol["s" <> ToString[3]], sC5m, DC5m}}];
1212 Print["Start computation on C5m curve"];
1213 Print["Computation finished after " <>
1214 ToString[
1215 ComputeSheetE2[ambSpace, {DB3, DGUT, DC5m}, DL2, InputTable2]] <>
1216 " seconds." ];
1217

1218 (∗Start computation of second sheets on C_5H∗)
1219 InputTable3 = {{"Section", " Explicit form", "Charges"}};
1220 InputTable3 =
1221 Join[InputTable3, {{Symbol["s" <> ToString[1]], sB3, DB3}}];
1222 InputTable3 =
1223 Join[InputTable3, {{Symbol["s" <> ToString[2]], sGUT, DGUT}}];
1224 InputTable3 =
1225 Join[InputTable3, {{Symbol["s" <> ToString[3]], sC5H, DC5H}}];
1226 Print["Start computation on C5H curve"];
1227 Print["Computation finished after " <>
1228 ToString[
1229 ComputeSheetE2[ambSpace, {DB3, DGUT, DC5H}, DL3, InputTable3]] <>
1230 " seconds." ];
1231

1232 (∗Step 7: Signal end of computation∗)
1233 t2 = AbsoluteTime[];
1234 Return[
1235 "Finished the computation after " <> ToString[t2 − t1] <>
1236 " seconds." ];
1237 ];
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