Cohomology Of Holomorphic Pullback Line Bundles On Smooth And Compact Normal Toric Varieties

Martin Bies

Feb 11, 2014

Martin Bies Cohomology Of Holomorphic Pullback Line Bundles

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

Section 1

Motivation From Physics

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes

Intersecting D7-Branes

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes

Intersecting D7-Branes

Consequence hep-th/0403166

Spectrum of massless zero modes at $\ensuremath{\mathcal{C}}$

 $\begin{array}{l} H^{0}\left(\mathcal{C}, \mathcal{L}_{a}|_{\mathcal{C}} \otimes \mathcal{L}_{b}|_{\mathcal{C}}\right) \\ H^{1}\left(\mathcal{C}, \mathcal{L}_{a}|_{\mathcal{C}} \otimes \mathcal{L}_{b}|_{\mathcal{C}}\right) \end{array}$

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes - Simplified Setup

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes - Simplified Setup

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes - Simplified Setup

Simplifying Assumptions

 X_Σ a smooth and compact normal toric variety

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes - Simplified Setup

Simplifying Assumptions

- X_Σ a smooth and compact normal toric variety
- C, \mathcal{B}_a , \mathcal{B}_b , $X_3 \subset X_{\Sigma}$ submanifolds

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes - Simplified Setup

Simplifying Assumptions

- X_Σ a smooth and compact normal toric variety
- C, B_a, B_b, X₃ ⊂ X_Σ submanifolds

•
$$\exists \mathcal{L} \in \operatorname{Pic}(X_{\Sigma}) \text{ s.t.}$$

 $\mathcal{L}|_{\mathcal{C}} = \mathcal{L}_{a}|_{\mathcal{C}} \otimes \mathcal{L}_{b}|_{\mathcal{C}}$

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

U(1) Charged Localised Zero Modes - Simplified Setup

Simplifying Assumptions

- X_Σ a smooth and compact normal toric variety
- C, B_a, B_b, X₃ ⊂ X_Σ submanifolds

•
$$\exists \mathcal{L} \in \mathsf{Pic}(X_{\Sigma}) \text{ s.t.}$$

 $\mathcal{L}|_{\mathcal{C}} = \mathcal{L}_{\mathsf{a}}|_{\mathcal{C}} \otimes \mathcal{L}_{\mathsf{b}}|_{\mathcal{C}}$

New Question

How to compute $H^i(C, \mathcal{L}|_C)$?

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

What Is A Toric Variety? Book by D. Cox, J. Little, H. Schenk 'Toric Varieties'

Toric Varieties Via Homogenisation

Every smooth and compact normal toric variety X_{Σ} is given by

 $X_{\Sigma}\cong \left(\mathbb{C}^{r}-Z
ight)/\left(\mathbb{C}^{*}
ight)^{a}$

Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

What Is A Toric Variety? Book by D. Cox, J. Little, H. Schenk 'Toric Varieties'

Toric Varieties Via Homogenisation

Every smooth and compact normal toric variety X_{Σ} is given by

$$X_{\Sigma}\cong \left(\mathbb{C}^{r}-Z
ight)/\left(\mathbb{C}^{*}
ight)^{a}$$

Example: Complex Projective Space

$$\mathbb{CP}^n \equiv \left(\mathbb{C}^{n+1} - \{0\}\right) / \mathbb{C}^*$$

Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

What Is A Toric Variety? Book by D. Cox, J. Little, H. Schenk 'Toric Varieties'

Toric Varieties Via Homogenisation

Every smooth and compact normal toric variety X_{Σ} is given by

 $X_{\Sigma}\cong \left(\mathbb{C}^{r}-Z
ight)/\left(\mathbb{C}^{*}
ight)^{a}$

Example: Complex Projective Space

$$\mathbb{CP}^n \equiv \left(\mathbb{C}^{n+1} - \{0\}\right) / \mathbb{C}^*$$

Why Smooth And Compact Normal Toric Varieties?

Let $X_{\Sigma} \cong (\mathbb{C}^r - Z) / (\mathbb{C}^*)^a$. Then it holds

• Pic $(X_{\Sigma}) \cong \mathbb{Z}^a$.

• $H^{i}(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(\mathbf{v}))$ are finite dimensional vector spaces.

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

Example: Computation Of Ambient Space Cohomologies

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

Example: Computation Of Ambient Space Cohomologies

Ingredients

- \bullet ambient space \mathbb{CP}^3
- $\mathcal{L} = \mathcal{O}_{\mathbb{CP}^3}(1)$

Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

Example: Computation Of Ambient Space Cohomologies

Ingredients

- ambient space \mathbb{CP}^3
- $\mathcal{L} = \mathcal{O}_{\mathbb{CP}^3}(1)$

cohomCalg hep-th/1003.5217, hep-th/1010.3717, math.AG/1006.0780, hep-th/1006.2392

I implemented a function into *Mathematica* which computes a basis of cohomology based on *cohomCalg*.

Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

Example: Computation Of Ambient Space Cohomologies

Ingredients

- ambient space \mathbb{CP}^3
- $\mathcal{L} = \mathcal{O}_{\mathbb{CP}^3}(1)$

cohom Calg hep-th/1003.5217, hep-th/1010.3717, math.AG/1006.0780, hep-th/1006.2392

I implemented a function into *Mathematica* which computes a basis of cohomology based on *cohomCalg*.

Result from Mathematica

•
$$H^0\left(\mathbb{CP}^3, \mathcal{O}_{\mathbb{CP}^3}\left(1\right)\right) = \{\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 , \alpha_i \in \mathbb{C}\} \cong \mathbb{C}^3$$

• $H^i\left(\mathbb{CP}^3, \mathcal{O}_{\mathbb{CP}^3}\left(1\right)\right) = 0 \text{ for } i \ge 1$

The Hypersurface Case The Codimension Two Case Summary And Future Work Localised Zero Modes In Type IIB Compactification Simplification: Towards Toric Varieties

Questions so far?

The Principle Answer Is ... The Practical Answer

Section 2

The Hypersurface Case

The Principle Answer Is ... The Practical Answer

Task

The Principle Answer Is ... The Practical Answer

Task

Ingredients

• Toric variety X_{Σ}

•
$$\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(D)$$

The Principle Answer Is ... The Practical Answer

Task

Ingredients

• Toric variety X_{Σ}

•
$$\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(D)$$

• $\widetilde{s}_1 \in H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(S_1))$ s.t. $X_3 = \{ p \in X_{\Sigma} , \widetilde{s}_1(p) = 0 \}$

 X_{Σ}

The Principle Answer Is ... The Practical Answer

CY X_3

Task

Ingredients

• Toric variety X_{Σ}

•
$$\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(D)$$

•
$$\widetilde{s}_1 \in H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(S_1))$$
 s.t.
 $X_3 = \{p \in X_{\Sigma}, \widetilde{s}_1(p) = 0\}$

Goal

Compute
$$H^i(X_3, \mathcal{L}|_{X_3})$$
.

The Principle Answer Is ... The Practical Answer

Hypersurface Case

Theorem > To the proof

The following sequence is sheaf exact

$$0 \to \underbrace{\mathcal{O}_{X_{\Sigma}}\left(D-S_{1}\right)}_{=\mathcal{L}'} \stackrel{\otimes \widetilde{s}_{1}}{\to} \underbrace{\mathcal{O}_{X_{\Sigma}}\left(D\right)}_{=\mathcal{L}} \stackrel{r}{\to} \left.\mathcal{O}_{X_{\Sigma}}\left(D\right)\right|_{X_{3}} \to 0$$

The Principle Answer Is ... The Practical Answer

Hypersurface Case

Theorem
To the proof

The following sequence is sheaf exact

$$0 \to \underbrace{\mathcal{O}_{X_{\Sigma}}\left(D-S_{1}\right)}_{=\mathcal{L}'} \stackrel{\otimes \widetilde{s}_{1}}{\to} \underbrace{\mathcal{O}_{X_{\Sigma}}\left(D\right)}_{=\mathcal{L}} \stackrel{\mathsf{r}}{\to} \left.\mathcal{O}_{X_{\Sigma}}\left(D\right)\right|_{X_{3}} \to 0$$

Consequence: There is a long exact cohomology sequence

$$0 \longrightarrow H^{0}(X_{\Sigma}, \mathcal{L}') \xrightarrow{\alpha^{0}} H^{0}(X_{\Sigma}, \mathcal{L}) \xrightarrow{\beta^{0}} H^{0}(X_{3}, \mathcal{L}|_{X_{3}}) \longrightarrow H^{1}(X_{\Sigma}, \mathcal{L}') \xrightarrow{\alpha^{1}} H^{1}(X_{\Sigma}, \mathcal{L}) \longrightarrow H^{1}(X_{3}, \mathcal{L}|_{X_{3}}) \longrightarrow H^{2}(X_{\Sigma}, \mathcal{L}') \xrightarrow{\alpha^{2}} H^{2}(X_{\Sigma}, \mathcal{L}) \longrightarrow H^{2}(X_{3}, \mathcal{L}|_{X_{3}})$$

The Principle Answer Is ... The Practical Answer

The Principle Answer Is ... The Practical Answer

A Computational Example

Ingredients

- Toric ambient space $X_{\Sigma} = \mathbb{CP}^2 \times \mathbb{CP}^1 \times \mathbb{CP}^1$
- $\tilde{s}_1 = C_1 x_1 + C_2 x_2 + C_3 x_3 \in H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(1, 0, 0))$
- $\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(1, 0, -2)$

The Principle Answer Is ... The Practical Answer

A Computational Example

Ingredients

- Toric ambient space $X_{\Sigma} = \mathbb{CP}^2 \times \mathbb{CP}^1 \times \mathbb{CP}^1$
- $\tilde{s}_1 = C_1 x_1 + C_2 x_2 + C_3 x_3 \in H^0(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}(1, 0, 0))$

•
$$\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(1, 0, -2)$$

Result

- cohomCalg left an unconstraint constant A_2 in the result.
- My notebook computed this constant to be 0 for pseudo-random C_i ∈ (0, 1). So in this case

$$H^0\left(X_{\Sigma}, \mathcal{L}|_{X_3}\right) = 0, \qquad H^1\left(X_{\Sigma}, \mathcal{L}|_{X_3}\right) = 2$$

The Principle Answer Is ... The Practical Answer

Questions?

Towards Spectral Sequences Open Question

Section 3

The Codimension Two Case

Towards Spectral Sequences Open Question

The Task

Ingredients

Towards Spectral Sequences Open Question

The Task

Towards Spectral Sequences Open Question

The Task

χ_{Σ} Ingredients

- Toric variety X_{Σ}
- $\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(D)$
- Polynomial \tilde{s}_1 s.t. $X_3 = \{\tilde{s}_1 = 0\}$

Towards Spectral Sequences Open Question

The Task

χ_{Σ} Ingredients

- Toric variety X_{Σ}
- $\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(D)$
- Polynomial \tilde{s}_1 s.t. $X_3 = \{\tilde{s}_1 = 0\}$

• Polynomial
$$\tilde{s}_2$$
 s.t.
 $\mathcal{B}_a = \{\tilde{s}_1 = \tilde{s}_2 = 0\}$

Towards Spectral Sequences Open Question

The Task

χ_{Σ} Ingredients

• Toric variety X_{Σ}

•
$$\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(D)$$

• Polynomial \tilde{s}_1 s.t. $X_3 = \{\tilde{s}_1 = 0\}$

• Polynomial
$$\tilde{s}_2$$
 s.t.
 $\mathcal{B}_a = \{\tilde{s}_1 = \tilde{s}_2 = 0\}$

Task

Compute $H^{i}(\mathcal{B}_{a}, \mathcal{L}|_{\mathcal{B}_{a}}).$

Towards Spectral Sequences Open Question

Codimension 2 Case

Theorem

The following sequence is sheaf exact

$$0 \to \mathcal{L}' \xrightarrow{\otimes \begin{pmatrix} \widetilde{s}_2 \\ -\widetilde{s}_1 \end{pmatrix}} \mathcal{V}_1 \xrightarrow{\otimes (\widetilde{s}_1, \widetilde{s}_2)} \mathcal{L} \xrightarrow{\mathsf{r}} \mathcal{L}|_{\mathcal{B}_2} \to 0$$

where

Towards Spectral Sequences Open Question

Codimension 2 Case

Theorem

The following sequence is sheaf exact

$$0 \to \mathcal{L}' \xrightarrow{\otimes \begin{pmatrix} \widetilde{s}_2 \\ -\widetilde{s}_1 \end{pmatrix}} \mathcal{V}_1 \xrightarrow{\otimes (\widetilde{s}_1, \widetilde{s}_2)} \mathcal{L} \xrightarrow{\mathsf{r}} \mathcal{L}|_{\mathcal{B}_2} \to 0$$

where

Watch out!

There is no associated long exact sequence in cohomology.

Towards Spectral Sequences Open Question

Spectral Sequence Construction Book by D. Cox, J. Little, H. Schenk 'toric varieties',

'Aspects of (2,0) string compactifications' by B. Green, J. Distler

Rough Picture

- $E_0^{p,q}$ are Abelian groups.
- Derive E_0 cohomologies.
- Write those into sheet E_1 .
- Derive E_1 cohomologies.

O

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

Definitions

 $V_i := \ker \left(\beta^i \right) / \operatorname{im} \left(\alpha^i \right) W_i := H^i \left(X_{\Sigma}, \mathcal{L} \right) / \operatorname{im} \left(\beta^i \right)$

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

Definitions

 $V_i := \ker \left(\beta^i \right) / \operatorname{im} \left(\alpha^i \right) W_i := H^i \left(X_{\Sigma}, \mathcal{L} \right) / \operatorname{im} \left(\beta^i \right)$

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

Definitions

 $V_i := \ker \left(\beta^i \right) / \operatorname{im} \left(\alpha^i \right) W_i := H^i \left(X_{\Sigma}, \mathcal{L} \right) / \operatorname{im} \left(\beta^i \right)$

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

$$\widetilde{W}_i := W_i / \operatorname{Im}\left(\alpha^i_{(2)} \right)$$

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

$$\widetilde{W}_i := W_i / \operatorname{Im}\left(\alpha^i_{(2)} \right)$$

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

$$\widetilde{W}_i := W_i / \operatorname{Im}\left(\alpha^i_{(2)} \right)$$

Towards Spectral Sequences Open Question

The Codimension 2 Strategy

$$\widetilde{W}_i := W_i / \operatorname{Im}\left(\alpha^i_{(2)} \right)$$

Towards Spectral Sequences Open Question

Example With Knight's Move I

Ingredients

• Toric ambient space $X_{\Sigma} = \mathbb{CP}^1 imes \mathbb{CP}^1 imes \mathbb{CP}^1$

•
$$S_1 = (1,0,1)$$
 and $S_2 = (0,0,1)$

•
$$\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(1, 1, 0)$$

Towards Spectral Sequences Open Question

Example With Knight's Move I

Ingredients

• Toric ambient space $X_{\Sigma} = \mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1$

•
$$S_1 = (1, 0, 1)$$
 and $S_2 = (0, 0, 1)$

•
$$\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(1, 1, 0)$$

E_2 -Sheet

Towards Spectral Sequences Open Question

Example With Knight's Move II

Spaces And Polynomials

•
$$\widetilde{s}_1 = C_4 x_1 x_5 + C_2 x_2 x_5 + C_3 x_1 x_6 + C_1 x_2 x_6$$

• $\widetilde{s}_2 = C_6 x_5 + C_5 x_6$
• $P_1 = \left\{ A_1 \cdot \frac{x_4}{x_5 x_6} + A_2 \cdot \frac{x_3}{x_5 x_6} , A_i \in \mathbb{C} \right\}$
• $P_2 = \left\{ A_3 \cdot x_2 x_4 + A_4 \cdot x_2 x_3 + A_5 x_1 x_4 + A_6 x_1 x_3 , A_i \in \mathbb{C} \right\}$

Towards Spectral Sequences Open Question

Example With Knight's Move II

Spaces And Polynomials

•
$$\widetilde{s}_1 = C_4 x_1 x_5 + C_2 x_2 x_5 + C_3 x_1 x_6 + C_1 x_2 x_6$$

• $\widetilde{s}_2 = C_6 x_5 + C_5 x_6$
• $P_1 = \left\{ A_1 \cdot \frac{x_4}{x_5 x_6} + A_2 \cdot \frac{x_3}{x_5 x_6} , A_i \in \mathbb{C} \right\}$
• $P_2 = \left\{ A_3 \cdot x_2 x_4 + A_4 \cdot x_2 x_3 + A_5 x_1 x_4 + A_6 x_1 x_3 , A_i \in \mathbb{C} \right\}$

It turns out that ...

 $\alpha_{(2)}^0: P_1 \to P_2$ is given by

$$\alpha_{(2)}^{0} = x_{1}x_{5}x_{6}\left[C_{4}C_{5} - C_{3}C_{6}\right] + x_{2}x_{5}x_{6}\left[C_{2}C_{5} - C_{1}C_{6}\right]$$

Towards Spectral Sequences Open Question

Example With Knight's Move II

Spaces And Polynomials

•
$$\widetilde{s}_1 = C_4 x_1 x_5 + C_2 x_2 x_5 + C_3 x_1 x_6 + C_1 x_2 x_6$$

• $\widetilde{s}_2 = C_6 x_5 + C_5 x_6$
• $P_1 = \left\{ A_1 \cdot \frac{x_4}{x_5 x_6} + A_2 \cdot \frac{x_3}{x_5 x_6} , A_i \in \mathbb{C} \right\}$
• $P_2 = \left\{ A_3 \cdot x_2 x_4 + A_4 \cdot x_2 x_3 + A_5 x_1 x_4 + A_6 x_1 x_3 , A_i \in \mathbb{C} \right\}$

It turns out that ...

 $\alpha_{(2)}^0: P_1 \to P_2$ is given by

$$\alpha_{(2)}^{0} = x_1 x_5 x_6 \left[C_4 C_5 - C_3 C_6 \right] + x_2 x_5 x_6 \left[C_2 C_5 - C_1 C_6 \right]$$

Note

 $\alpha^0_{(2)}$ respects the symmetries in P_1 and P_2 .

Towards Spectral Sequences Open Question

Open Questions

Fact hep-th/0808.3621, book by T. Huebsch 'Calabi-Yau Manifolds: A Bestiary for Physicists'

- The cohomologies $H^{i}(\mathbb{CP}^{n},\mathcal{L})$ are labeled by representations of $U(1) \times U(n)$.
- $\Rightarrow \text{ The cohomologies } H^i \left(\mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1, \mathcal{L} \right) \text{ have } (\text{anti})\text{-symmetrisation properties.}$

Towards Spectral Sequences Open Question

Open Questions

Fact hep-th/0808.3621, book by T. Huebsch 'Calabi-Yau Manifolds: A Bestiary for Physicists'

- The cohomologies $H^{i}(\mathbb{CP}^{n},\mathcal{L})$ are labeled by representations of $U(1) \times U(n)$.
- $\Rightarrow \text{ The cohomologies } H^i \left(\mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1, \mathcal{L} \right) \text{ have } (\text{anti})\text{-symmetrisation properties.}$

Question > To the definition

Is every smooth and compact normal toric variety X_{Σ} a generalised Flag variety?

Section 4

Summary And Future Work

Summary

Take-Away-Message

- Computing the spectrum of massless zero modes requires spectral sequence technology.
- The existing Koszul extension of *cohomCalg* leaves unconstraint constants in these computations.
- \Rightarrow My notebook computes the E_1 -sheet and thereby fixes many, but not all, of these constants.

Future Works

Open Tasks

 Prove of disprove that every smooth and compact normal toric variety X_Σ is a generalised Flag variety.

Future Works

Open Tasks

- Prove of disprove that every smooth and compact normal toric variety X_Σ is a generalised Flag variety.
- Extend the functionality of the notebook beyond hypersurfaces.

Future Works

Open Tasks

- Prove of disprove that every smooth and compact normal toric variety X_Σ is a generalised Flag variety.
- Extend the functionality of the notebook beyond hypersurfaces.
- Improve the performance of the notebook.

Future Works

Open Tasks

- Prove of disprove that every smooth and compact normal toric variety X_Σ is a generalised Flag variety.
- Extend the functionality of the notebook beyond hypersurfaces.
- Improve the performance of the notebook.
- Apply the notebook to model building.

Thank you for your attention! Questions?

Proof I

Claim

Let X a smooth and compact normal toric variety given by

$$X_{\Sigma}\cong \left(\mathbb{C}^{r}-Z
ight)/\left(\mathbb{C}^{*}
ight)^{a}$$

We pick $\widetilde{s}_{1} \in H^{0}\left(X_{\Sigma}, \mathcal{O}_{X_{\Sigma}}\left(S_{1}\right)\right)$ non-trivial and define

$$X_3 = \{p \in X_{\Sigma} , \ \widetilde{s}_1(p) = 0\}$$

Then for any divisor class $D \in Cl(X_{\Sigma})$ the following sequence is sheaf exact

$$0 \to \mathcal{O}_{X_{\Sigma}}\left(D - S_{1}\right) \stackrel{\otimes \widetilde{s}_{1}}{\to} \mathcal{O}_{X_{\Sigma}}\left(D\right) \stackrel{r}{\to} \left.\mathcal{O}_{X_{\Sigma}}\left(D\right)\right|_{X_{3}} \to 0$$

Proof

 Sheaf exactness is a local property. So let p ∈ X_Σ a point. Then we have to show that the following sequence is exact

$$0 \to \mathcal{O}_{X_{\Sigma,p}} \stackrel{[\widetilde{s}_{1}]_{p}}{\to} \mathcal{O}_{X_{\Sigma,p}} \stackrel{r}{\to} \mathcal{O}_{X_{\Sigma,p}} / \left([\widetilde{s}_{1}]_{p} \right) \to 0$$

- Note that $\mathcal{O}_{X_{\Sigma},p}$ is the local power series ring. This ring is an integral domain. Therefore $[\tilde{s}_1]_p$ is not a zero- divisor, so that the map $\mathcal{O}_{X_{\Sigma},p} \stackrel{[\tilde{s}_1]_p}{\to} \mathcal{O}_{X_{\Sigma},p}$ is injective.
- The map $\mathcal{O}_{X_{\Sigma},\rho} \xrightarrow{r} \mathcal{O}_{X_{\Sigma},\rho} / \left([\widetilde{s}_1]_{\rho} \right)$ is surjective.

Generalised Flag Varieties • To the conjecture

Definition

A simply connected, compact, complex, homogeneous *G*-space is termed a generalised Flag variety.
Generalised Flag Varieties • To the conjecture

Definition

A simply connected, compact, complex, homogeneous G-space is termed a generalised Flag variety.

Example

It holds

$$\mathbb{CP}^{n} \cong U(n+1) / (U(1) \times U(n))$$

Generalised Flag Varieties • To the conjecture

Definition

A simply connected, compact, complex, homogeneous G-space is termed a generalised Flag variety.

Example

It holds

$$\mathbb{CP}^{n} \cong U(n+1) / (U(1) \times U(n))$$

Consequence

The cohomology groups $H^i(\mathbb{CP}^n, \mathcal{O}_{\mathbb{CP}^n}(k))$ are labeled by representations of $U(1) \times U(n)$ for all $k \in \mathbb{Z}$.