Tensor products of finitely presented functors

Martin Bies¹ and Sebastian Posur²

¹ Université Libre de Bruxelles, Belgium

² University of Siegen, Germany

1 Motivation

1.1 Sheaf cohomology in string model building

- Common task: Relate physical quantities to geometry
- Example: Zero mode counting \leftrightarrow sheaf cohomologies
- Also, deduce other geometric quantites from sheaf cohomology
- Example: Intersection number $D_1 \cdot D_2$ of divisors D_1 , D_2 of surface S

$$D_1 \cdot D_2 = \deg(\mathcal{O}_S(D_1)|_{D_2}) = h^0(\mathcal{O}_S(D_1)|_{D_2}) - h^1(\mathcal{O}_S(D_1)|_{D_2}) + g(D_2) - 1$$

1.2 Architecture of computer implementation [1]

Coherent toric sheaves \leftrightarrow Objects in Freyd categories Cohomology algorithms \leftrightarrow Induced by monoidal structures

3 Promonoidal structures

3.1 A promonoidal structure on A consists (among others) of

- a functor $T: \mathbf{A} \times \mathbf{A} \to \mathcal{A}(\mathbf{A})$ (protensor product),
- an additive functor $\underline{\mathrm{Hom}}(a,-): \mathbf{A} \to \mathcal{A}(\mathbf{A})$ for every $a \in \mathrm{Obj}(\mathbf{A})$ subject to **restricted** pentagonal identity, hexagonal identities, ...

3.2 Towards extensions to monoidal structures

Given a bilinear functor $F: \mathbf{A} \times \mathbf{A} \longrightarrow \mathcal{A}(\mathbf{A})$, there exists a bilinear and right exact functor $\widehat{F}: \mathcal{A}(\mathbf{A}) \times \mathcal{A}(\mathbf{A}) \longrightarrow \mathcal{A}(\mathbf{A})$. For two objects $A_1 \equiv (a_1 \stackrel{\rho_1}{\leftarrow} r_1), A_2 \equiv (a_2 \stackrel{\rho_2}{\leftarrow} r_2)$ of $\mathcal{A}(\mathbf{A})$ it holds

$$\widehat{F}(A_1, A_2) := \operatorname{cok} \left[F(a_1, a_2) \overset{F(\operatorname{id}_{a_1}, \rho_2)}{-F(\rho_1, \operatorname{id}_{a_2})} F(a_1, r_2) \oplus F(r_1, a_2) \right]$$

5 Examples: Promonoidal \Rightarrow monoidal

5.1 Application of section 3.2 to protensor product T

5.2 internal homs in A(A) from internal homs in A

2 Freyd categories

2.1 Freyd categories – generalities [2]

arXiv: to appear by Wednesday

• Any additive category \mathbf{A} admits a Freyd category $\mathcal{A}(\mathbf{A})$ with

$$\mathbf{A} \subseteq \mathcal{A}(\mathbf{A})$$
 and $\mathcal{A}(\mathbf{A})$ has cokernels

- Unified framework for f.p. (graded) modules and f.p. functors
- Completely constructive see CAP-package [3]

2.2 Freyd categories – elementary constructions

- Objects: Be $a \stackrel{\rho_a}{\leftarrow} r_a \in \text{Mor}(\mathbf{A})$, then $A \equiv (a \stackrel{\rho_a}{\leftarrow} r_a) \in \text{Obj}(\mathcal{A}(\mathbf{A}))$
- Morphisms: Equiv. classes of commutative diagrams in A
- Example: See $Defining\ data\ of\ protensor\ product\ T$

4 Defining data of protensor product T

• For $a_1, a_2 \in \text{Obj}(\mathbf{A})$, denote $T(a_1, a_2) \in \text{Obj}(\mathcal{A}(\mathbf{A}))$ by

$$\left(g_T(a_1, a_2) - r_T(a_1, a_2)\right)$$

• For $a_1 \stackrel{\alpha_1}{\leftarrow} b_1$, $a_2 \stackrel{\alpha_2}{\leftarrow} b_2$, denote $T(\alpha, \beta) \in \text{Mor}(\mathcal{A}(\mathbf{A}))$ by

6 Outlook: Zero modes in F-theory

- Elliptic fibration $\pi: \widehat{Y}_4 \to \mathcal{B}_3$ and G_4 -flux $G_4 \in H^{2,2}(\widehat{Y}_4, \mathbb{Z})$
- $D_{\mathbf{R}} \equiv \pi_*(G_4 \cdot S_{\mathbf{R}}) \in \operatorname{Pic}(\Sigma_{\mathbf{R}})$ with $\Sigma_{\mathbf{R}}$ the matter curve of rep. \mathbf{R}
- $\Rightarrow h^i(\Sigma_{\mathbf{R}}, \mathcal{O}_{\mathbf{R}}(D_{\mathbf{R}}))$ count zero modes in rep. **R** [4]
- Latest toric algorithms use $H^0(X_{\Sigma}, M) \cong \underline{\mathrm{Hom}}(I, M)_0$ (with ideal $I \leq S(X_{\Sigma})$ of Cox ring of X_{Σ}) and monoidal derivations [1]
- Applications to F-theory setups in [5] currently on their way Example: 4-family Pati-Salam model with

$$h^{i}(\mathcal{L}_{1,2,2}) = (4,4),$$
 $h^{i}(\mathcal{L}_{4,1,2}) = (1,5),$ $h^{i}(\mathcal{L}_{6,1,1}) = (4,4),$ $h^{i}(\mathcal{L}_{4,2,1}) = (5,1).$

References

- [1] M. Bies, "SheafCohomologyOnToricVarieties." https://github.com/homalg-project/SheafCohomologyOnToricVarieties, 2019.
- [2] P. Freyd, Representations in abelian categories, in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pp. 95–120, Springer, New York, (1966).
- [3] M. Bies and S. Posur, "FreydCategories." https://github.com/homalg-project/CAP_project/tree/master/FreydCategoriesForCAP, 2019.
- [4] M. Bies, C. Mayrhofer and T. Weigand, Gauge Backgrounds and Zero-Mode Counting in F-Theory, JHEP 11 (2017) 081 [1706.04616].
- [5] M. Cvetič, J. Halverson, L. Lin, M. Liu and J. Tian, A Quadrillion Standard Models from F-theory, 1903.00009.