The Standard Model From String Theory

Martin Bies

July 3, 2014

Martin Bies The Standard Model From String Theory

Outline

1 Brief introduction to string theory

- Why String theory?
- What is string theory?

Outline

Brief introduction to string theory

- Why String theory?
- What is string theory?

Intersecting D6-Brane Models 2

- Factorisable D6-branes
- Standard model particles in intersecting D6-branes
- A concrete example
- Orientifold Models

Outline

Brief introduction to string theory

- Why String theory?
- What is string theory?

Intersecting D6-Brane Models 2

- Factorisable D6-branes
- Standard model particles in intersecting D6-branes
- A concrete example
- Orientifold Models

(3) Homological algebra, open strings and mirror symmetry

Why String theory? What is string theory?

Section 1

Brief introduction to string theory

Why String theory? What is string theory?

The Standard model gauge group

Why String theory? What is string theory?

The Standard model gauge group

The gauge group

- $G = SU(3) \times SU(2) \times U(1)_Y$
- Adjoint representation has dimension 12

Why String theory? What is string theory?

The Standard model gauge group

The gauge group

- $G = SU(3) \times SU(2) \times U(1)_Y$
- Adjoint representation has dimension 12

12 Force particles

- 8 gluons an SU (3) connection
- W^{\pm}, Z, Y an SU(2) \times U(1)_Y connection

Why String theory? What is string theory?

The Standard model matter particles and the Higgs

Summary of properties $(G = SU(3) \times SU(2) \times U(1)_Y)$

Particle	Chirality	Representation of G	Q _{em}
quarks Q	L	$(3,\overline{2})_{\frac{1}{\epsilon}}$	$+\frac{2}{3}, -\frac{1}{3}$
up-quarks U	R	$(3,\overline{1})_{\frac{2}{2}}^{\circ}$	$\frac{2}{3}$
down-quarks D	R	$(3,\bar{1})^{3}_{-\frac{1}{3}}$	$-\frac{1}{3}$
leptons L	L	$(1,\bar{2})_{-\frac{1}{2}}$	-1,0
charged leptons E	R	$(1, \bar{1})_{-1}^{2}$	-1
neutral leptons N	R	$(1,\overline{1})_0$	0
Higgs up <i>H_U</i>	×	$(1, \bar{2})_{\frac{1}{2}}$	0
Higgs down <i>H_D</i>	×	$(1,\bar{2})^{2}_{-\frac{1}{2}}$	0

Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry Why String theory? What is string theory?

Why string theory?

Why String theory? What is string theory?

Why string theory?

Current understanding of physics

- General relativity gravity
- Standard model electromagnetic, weak and strong interaction

Why String theory? What is string theory?

Why string theory?

Current understanding of physics

- General relativity gravity
- Standard model electromagnetic, weak and strong interaction

But . . .

• what is the physics of quantum gravity?

Why String theory? What is string theory?

Why string theory?

Current understanding of physics

- General relativity gravity
- Standard model electromagnetic, weak and strong interaction

But . . .

- what is the physics of quantum gravity?
- why is the Standard Model the way it is?

Why String theory? What is string theory?

Why string theory?

Current understanding of physics

- General relativity gravity
- Standard model electromagnetic, weak and strong interaction

But . . .

- what is the physics of quantum gravity?
- why is the Standard Model the way it is?

Answer

String theory is a promising candidate to answer these questions.

Why String theory? What is string theory?

The fundamental objects in string theory

Why String theory? What is string theory?

The fundamental objects in string theory

General Philosophy

Replace point particles by 1-dimensional objects.

Why String theory? What is string theory?

The fundamental objects in string theory

General Philosophy

Replace point particles by 1-dimensional objects.

Consequence

There are two fundamental objects in string theory.

Why String theory? What is string theory?

Bosonic closed string CFT

Embedding of closed strings into spacetime

Why String theory? What is string theory?

Why is this promising?

Consistency of quantum theory

Why String theory? What is string theory?

Why is this promising?

Consistency of quantum theory

• Poincaré invariance $\Leftrightarrow D = 10$

Why String theory? What is string theory?

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D = 10$
- Absence of tachyons \Leftrightarrow SUSY in D = 10

Why String theory? What is string theory?

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D = 10$
- Absence of tachyons \Leftrightarrow SUSY in D = 10
- Conformal invariance implies:

$$0 = \beta_{\mu\nu}^{(2)} = \alpha' R_{\mu\nu} + \frac{1}{2} (\alpha')^2 R_{\mu\lambda\rho\sigma} R_{\nu}^{\lambda\rho\sigma} + \dots$$

2 "coupling constants" are VEVS of dynamical fields

Why String theory? What is string theory?

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D = 10$
- Absence of tachyons \Leftrightarrow SUSY in D = 10
- Conformal invariance implies:

$$0 = \beta_{\mu\nu}^{(2)} = \alpha' R_{\mu\nu} + \frac{1}{2} (\alpha')^2 R_{\mu\lambda\rho\sigma} R_{\nu}^{\lambda\rho\sigma} + \dots$$

2 "coupling constants" are VEVS of dynamical fields

Standard Model + GR = string theory is promising:

• Every consistent string theory contains a graviton.

Why String theory? What is string theory?

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D = 10$
- Absence of tachyons \Leftrightarrow SUSY in D = 10
- Conformal invariance implies:

$$0 = \beta_{\mu\nu}^{(2)} = \alpha' R_{\mu\nu} + \frac{1}{2} (\alpha')^2 R_{\mu\lambda\rho\sigma} R_{\nu}^{\lambda\rho\sigma} + \dots$$

2 "coupling constants" are VEVS of dynamical fields

Standard Model + GR = string theory is promising:

- Every consistent string theory contains a graviton.
- Consistent (perturbative) theory of quantum gravity.

Why String theory? What is string theory?

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D = 10$
- Absence of tachyons \Leftrightarrow SUSY in D = 10
- Conformal invariance implies:

$$0 = \beta_{\mu\nu}^{(2)} = \alpha' R_{\mu\nu} + \frac{1}{2} (\alpha')^2 R_{\mu\lambda\rho\sigma} R_{\nu}^{\lambda\rho\sigma} + \dots$$

2 "coupling constants" are VEVS of dynamical fields

Standard Model + GR = string theory is promising:

- Every consistent string theory contains a graviton.
- Consistent (perturbative) theory of quantum gravity.
- No coupling constants.

Why String theory? What is string theory?

Todays roadmap

Why String theory? What is string theory?

Todays roadmap

Why String theory? What is string theory?

Todays roadmap

M-Theory star

Why String theory? What is string theory?

Todays roadmap

M-Theory star

Why String theory? What is string theory?

Todays roadmap

M-Theory star

Questions?

Why String theory? What is string theory?

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Section 2

Intersecting D6-Brane Models

What is a D-brane?

Factorisable D6-branes Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

What is a D-brane?

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Choice of compactification

General remarks

- In type IIA theory, D-branes always have odd dimension.
- D-brane always cover the time dimension.

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Choice of compactification

General remarks

- In type IIA theory, D-branes always have odd dimension.
- D-brane always cover the time dimension.

Convention

A D-brane of dimension p + 1 is termed a Dp-brane.
Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Choice of compactification

General remarks

- In type IIA theory, D-branes always have odd dimension.
- D-brane always cover the time dimension.

Convention

A D-brane of dimension p + 1 is termed a Dp-brane.

Choice of compactification

- We assume $\mathcal{S} = \mathbb{R}^{1,3} \times T^2 \times T^2 \times T^2$.
- We work with the so-called A-model in type IIA string theory.
- \Rightarrow Only D6-branes are present.
 - We restrict further to work with factorisable D6-branes only.

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes

Remark

- For the time being we only care about homology.
- In this sense $\mathcal{D} \in H_1(T^2, \mathbb{Z}) \times H_1(T^2, \mathbb{Z}) \times H_1(T^2, \mathbb{Z})$ is a factorisable D6-brane.

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes: notation

Notation

Factorisable D6-brane \mathcal{D}_a denoted by

$$\mathcal{D}_{a} = \prod_{l=1}^{3} \left(n_{a}^{l} \left[a^{l} \right] + m_{a}^{l} \left[b^{l} \right] \right), \qquad n_{a}^{l}, m_{a}^{l} \in \mathbb{Z} \text{ coprime}$$

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes: notation

Notation

Factorisable D6-brane \mathcal{D}_a denoted by

$$\mathcal{D}_{a} = \prod_{l=1}^{3} \left(n_{a}^{l} \left[a^{l} \right] + m_{a}^{l} \left[b^{l} \right] \right), \qquad n_{a}^{l}, m_{a}^{l} \in \mathbb{Z} \text{ coprime}$$

Picture of $\mathcal{D} = ([a^1] + [b^1]) \times (2[a^2] + [b^2]) \times ([a^3] + 2[b^3])$

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes: topological intersection number

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes: topological intersection number

Computing topological intersection numbers

$$\mathcal{D}_{a} = \prod_{l=1}^{3} \left(n_{a}^{l} \left[a^{l} \right] + m_{a}^{l} \left[b^{l} \right] \right), \ \mathcal{D}_{b} = \prod_{l=1}^{3} \left(n_{b}^{l} \left[a^{l} \right] + m_{b}^{l} \left[b^{l} \right] \right)$$

$$\Rightarrow \mathcal{D}_a \circ \mathcal{D}_b = \prod_{l=1}^{3} \left(n_a^l m_b^l - n_b^l m_a^l \right)$$

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes: family replication

Example

•
$$\mathcal{D}_a = (3,1) \times (1,0) \times (1,0)$$

$$\mathcal{D}_b = (0,1) \times (0,1) \times (0,1)$$
$$\Rightarrow \mathcal{D}_a \circ \mathcal{D}_b = \prod_{l=1}^3 \left(n_a^l m_b^l - n_b^l m_a^l \right) = 3 \cdot 1 \cdot 1 = 3$$

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Factorisable D6-branes: family replication

Example

•
$$\mathcal{D}_a = (3,1) \times (1,0) \times (1,0)$$

•
$$\mathcal{D}_b = (0,1) imes (0,1) imes (0,1)$$

$$\Rightarrow \mathcal{D}_a \circ \mathcal{D}_b = \prod_{l=1}^3 \left(n_a^l m_b^l - n_b^l m_a^l \right) = 3 \cdot 1 \cdot 1 = 3$$

Outlook

multiple intersections \leftrightarrow family replication

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a U(N) gauge theory.

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a U(N) gauge theory.

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a U(N) gauge theory.

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a U(N) gauge theory.

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories II

Stack of N coincident branes

• N^2 strings between these branes

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories II

Stack of N coincident branes

- N^2 strings between these branes
- each gives one massless bosonic excitation along the stack

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories II

Stack of N coincident branes

- N^2 strings between these branes
- each gives one massless bosonic excitation along the stack
- \Rightarrow Those excitations form a U (N) connection.

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

D-branes carry gauge theories II

Stack of N coincident branes

- N^2 strings between these branes
- each gives one massless bosonic excitation along the stack
- \Rightarrow Those excitations form a U (N) connection.
 - Structure group can be reduced to SU(N).

Stringy quarks

Consequence

• A string that ends on N coincident branes (and starts on another stack) is charged under SU (N) × U (1).

Stringy quarks

Consequence

- A string that ends on N coincident branes (and starts on another stack) is charged under SU (N) \times U (1).
- ⇒ Are such strings candidates for the Standard Model matter particles?

Stringy quarks

Consequence

• A string that ends on N coincident branes (and starts on another stack) is charged under SU (N) × U (1).

Standard model particles in intersecting D6-branes

Orientifold Models

⇒ Are such strings candidates for the Standard Model matter particles?

Answer: Yes! - Picture of stringy quarks

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Example "A first course in string theory" by B. Zwiebach

Wrapping numbers

Brane	$\left(\textit{n}_{a}^{1},\textit{m}_{a}^{1} ight) imes \left(\textit{n}_{a}^{2},\textit{m}_{a}^{2} ight) imes \left(\textit{n}_{a}^{3},\textit{m}_{a}^{3} ight)$	Gauge Group	
$N_1 = 3$	(1,2) imes (1,-1) imes (1,-2)	$SU(3) \times U(1)_1$	
$N_2 = 2$	(1,1) imes (1,-2) imes (-1,5)	$SU(2) \times U(1)_2$	
$N_{3} = 1$	(1,1) imes (1,0) imes (-1,5)	$U(1)_{3}$	
$N_4 = 1$	(1,2) imes (-1,1) imes (1,1)	$U(1)_{4}$	
$N_{5} = 1$	(1,2) imes (-1,1) imes (2,-7)	$U(1)_{5}$	
$N_6 = 1$	(1,1) imes (3,-4) imes (1,-5)	U(1) ₆	

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry Factorisable D6-branes Standard model particles in intersecting D6-brane A concrete example Orientifold Models

Brief introduction to string theory Intersecting D6-Brane Models A concrete example Homological algebra, open strings and mirror symmetry Orientifold Models Example "A first course in string theory" by B. Zwiebach N_2, Q_2 N_1, Q_1

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Example:
$$Y=-rac{1}{3}Q_1-rac{1}{2}Q_2-Q_3-Q_5$$
 "A first course in …" by B. Zwiebach

Homological algebra, open strings and mirror symmetry

Example:
$$Y=-rac{1}{3}Q_1-rac{1}{2}Q_2-Q_3-Q_5$$
 "A first course in …" by B. Zwiebach

Homological algebra, open strings and mirror symmetry

Example:
$$Y = -rac{1}{3}Q_1 - rac{1}{2}Q_2 - Q_3 - Q_5$$
 "A first course in ..." by B. Zwiebach

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

General lesson from the example

Stability

• String theory suffers from two kinds of tadpoles - R-R-tadpoles and NS-NS-tadpoles.
Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

General lesson from the example

Stability

- String theory suffers from two kinds of tadpoles R-R-tadpoles and NS-NS-tadpoles.
- $\Rightarrow\,$ Both need to be cancelled for stable models.

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

General lesson from the example

Stability

- String theory suffers from two kinds of tadpoles R-R-tadpoles and NS-NS-tadpoles.
- $\Rightarrow\,$ Both need to be cancelled for stable models.

Consequence

Orientifold models have to be considered, such as hep-th/0105155,

hep-th/0307252, hep-th/0410134, hep-th/0502005, hep-th/0610327, hep-th/0902.3546, \ldots

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Need for orientifolding

Fact for D6-brane models

 $\bullet\,$ Suppose we build a model that preserves (at least) $\mathcal{N}=1\,$ SUSY.

Need for orientifolding

Fact for D6-brane models

- $\bullet\,$ Suppose we build a model that preserves (at least) $\mathcal{N}=1\,$ SUSY.
- For such models $_{hep-th/0206038,\ hep-th/0201205}$ R-R tadpoles cancelled \Leftrightarrow NS-NS tadpoles cancelled

Need for orientifolding

Fact for D6-brane models

- $\bullet\,$ Suppose we build a model that preserves (at least) $\mathcal{N}=1\,$ SUSY.
- For such models $_{hep-th/0206038,\ hep-th/0201205}$ R-R tadpoles cancelled \Leftrightarrow NS-NS tadpoles cancelled
- SUSY requires orientifold plane.

Need for orientifolding

Fact for D6-brane models

- $\bullet\,$ Suppose we build a model that preserves (at least) $\mathcal{N}=1\,$ SUSY.
- For such models $_{hep-th/0206038,\ hep-th/0201205}$ R-R tadpoles cancelled \Leftrightarrow NS-NS tadpoles cancelled
- SUSY requires orientifold plane.

Orientifolding on $T^2 \times T^2 \times T^2$

- Define involution $\overline{\sigma}$: $(z^1, z^2, z^3) \mapsto (\overline{z}^1, \overline{z}^2, \overline{z}^3)$
- Consider orientifold $\mathcal{O} := (T^2 \times T^2 \times T^2) / (\overline{\sigma} \times \Omega)$
- Fixpoint locus of $\overline{\sigma}$ is orientifold plane O6

A concrete example Orientifold Models

A model on
$$\mathcal{O}=\left(\mathcal{T}^2 imes\mathcal{T}^2 imes\mathcal{T}^2
ight)/\left(\overline{\sigma} imes\Omega
ight)$$
 hep-th/0105155

Details on parameters

Brane	Wrapping Numbers	Gauge Group
<i>N</i> _a = 3	$\left(\frac{1}{\beta^1},0\right) \times \left(n_a^2,\epsilon\beta^2\right) \times \left(\frac{1}{\rho},\frac{1}{2}\right)$	U(3)
N' _a = 3	$\left(\frac{1}{\beta^1},0\right) \times \left(n_a^2,-\epsilon\beta^2\right) \times \left(\frac{1}{\rho},-\frac{1}{2}\right)$	
$N_b = 2$	$\left(n_b^1,-\epsilon\beta^1 ight) imes \left(rac{1}{eta^2},0 ight) imes \left(1,rac{3 ho}{2} ight)$	U(2)
$N_b'=2$	$\left(\textit{n}_{b}^{1},\epsilon eta ^{1} ight) imes \left(rac{1}{eta ^{2}},0 ight) imes \left(1,-rac{3 ho }{2} ight)$	- ()
$N_c = 1$	$\left(n_{c}^{1}, 3 ho\epsilon\beta^{1} ight) imes \left(rac{1}{eta^{2}}, 0 ight) imes \left(0, 1 ight)$	U(1)
$N_c' = 1$	$\left(n_{c}^{1},-3 ho\epsilon\beta^{1} ight) imes\left(rac{1}{eta^{2}},0 ight) imes\left(0,-1 ight)$	- ()
$N_d = 1$	$\left(rac{1}{eta^1},0 ight) imes \left(n_d^2,-rac{eta^2\epsilon}{ ho} ight) imes \left(1,rac{3 ho}{2} ight)$	U(1)
$N'_d = 1$	$\left(\frac{1}{\beta^1},0\right) \times \left(n_d^2,\frac{\beta^2\epsilon}{\rho}\right) \times \left(1,-\frac{3\rho}{2}\right)$	

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

A model on the orientifold $\mathcal{O}_{\text{hep-th/0105155}}$

 N_a, Q_a

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

hep-th/0105155

✤ To summary on orientifold models

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

RR-Tadpole cancellation I

Cancellation of R-R tadpoles hep-th/0307252

• Find
$$\mathcal{D}_{O6} = 8 \prod_{l=1}^{3} [a^{l}].$$

• R-R tadpole cancellation then requires

$$\sum_{\text{branes } \mathcal{D}_{a}} N_{a} \left(\mathcal{D}_{a} + \mathcal{D}_{a}' \right) - 4 \mathcal{D}_{O6} = [0]$$

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

RR-Tadpole cancellation I

Cancellation of R-R tadpoles hep-th/0307252

• Find
$$\mathcal{D}_{O6} = 8 \prod_{l=1}^{3} [a^{l}].$$

• R-R tadpole cancellation then requires

$$\sum_{\text{branes } \mathcal{D}_a} N_a \left(\mathcal{D}_a + \mathcal{D}'_a \right) - 4 \mathcal{D}_{O6} = [0]$$

In terms of the wrapping numbers ...

•
$$\sum_{\text{branes } \mathcal{D}_a} N_a n_a^a n_a^2 n_a^3 = 16$$

•
$$\sum_{\text{branes } D_a} N_a n_a^I m_a^J m_a^K = 0$$
 for $I \neq J \neq K \neq I$

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

RR-Tadpole cancellation II

K-Theory charges

• D-brane charge classified by K-theory hep-th/9810188, hep-th/0307252.

RR-Tadpole cancellation II

K-Theory charges

- D-brane charge classified by K-theory hep-th/9810188, hep-th/0307252.
- \Rightarrow Additional K-theory constraint of even number of USp (2, \mathbb{C}) fundamentals needed.

RR-Tadpole cancellation II

K-Theory charges

- D-brane charge classified by K-theory hep-th/9810188, hep-th/0307252.
- \Rightarrow Additional K-theory constraint of even number of USp (2, \mathbb{C}) fundamentals needed.

In terms of wrapping numbers ...

... for rectangular tori in $(T^2 \times T^2 \times T^2) / (\sigma \times \Omega \times (-1)^{F_L})$

•
$$\sum_{\text{branes } \mathcal{D}_a} N_a m_a^1 m_a^2 m_a^3 \in 2\mathbb{Z}$$

•
$$\sum_{\text{branes } D_a} N_a m_a^I n_a^J n_a^K \in 2\mathbb{Z}$$
 for $I \neq J \neq K \neq I$

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Supersymmetry condition

General philosophy hep-th/9507158

- Orientifold plane O6 preserves some supersymmetry.
- $\bullet\,$ Configuration of D6-branes preserves at least ${\cal N}=1$ of this supersymmetry if each D6-brane satisfies

$$\Theta_a^1 + \Theta_a^2 + \Theta_a^3 = 0 \bmod 2\pi$$

Supersymmetry condition

General philosophy hep-th/9507158

- Orientifold plane O6 preserves some supersymmetry.
- $\bullet\,$ Configuration of D6-branes preserves at least ${\cal N}=1$ of this supersymmetry if each D6-brane satisfies

$$\Theta_a^1 + \Theta_a^2 + \Theta_a^3 = 0 \bmod 2\pi$$

Picture of angles Θ_a^I

Yukawa couplings

Fact hep-th/0303083

Interaction between 2 massless fermions and 1 massless boson - all located at different intersections - is governed by

$$Y \sim \exp\left(-\mathcal{A}^{1}
ight) \cdot \exp\left(-\mathcal{A}^{2}
ight) \cdot \exp\left(-\mathcal{A}^{3}
ight)$$

Picture

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

A model on $\mathcal{O}/\left(\mathbb{Z}_2 imes\mathbb{Z}_2
ight)$ hep-th/0107166, hep-th/0107143

Wrapping numbers of branes

Brane	$\left(\left(n_{a}^{1},m_{a}^{1} ight) imes \left(n_{a}^{2},m_{a}^{2} ight) imes \left(n_{a}^{3},\widetilde{m}_{a}^{3} ight) ight)$	Gauge Group
$A_1 = 4$	$(0,1) imes (0,-1) imes \left(2,\widetilde{0} ight)$	$U(1)^2$
$A_2 = 1$	$(1,0) imes(1,0) imes\left(2,\widetilde{0} ight)$	$USp(2,\mathbb{C})_A$
$B_1 = 2$	$(1,0) imes(1,-1) imes\left(1,rac{\widetilde{3}}{2} ight)$	SU(2) imes U(1)
$B_2 = 1$	$(1,0) imes (0,1) imes \left(0,\widetilde{-1} ight)$	$USp(2,\mathbb{C})_B$
$C_1 = 3 + 1$	$(1,-1) imes(1,0) imes\left(1,rac{\widetilde{1}}{2} ight)$	$SU(3) imes U(1)^2$
<i>C</i> ₂ = 2	$(0,1) imes (1,0) imes \left(0,\widetilde{-1} ight)$	$\mathit{USp}\left(4,\mathbb{C} ight)$

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

A model on $\mathcal{O}/\left(\mathbb{Z}_2 imes\mathbb{Z}_2
ight)$ hep-th/0107166, hep-th/0107143

Wrapping numbers of image branes

Brane	$\left(n_a^1, m_a^1 ight) imes \left(n_a^2, m_a^2 ight) imes \left(n_a^3, \widetilde{m}_a^3 ight)$	Gauge Group
$A'_1 = 4$	$(0,-1) imes (0,1) imes \left(2,\widetilde{0} ight)$	$U(1)^{2}$
$A'_{2} = 1$	$(1,0) imes (1,0) imes \left(2, \widetilde{0} ight)^{2}$	$USp(2,\mathbb{C})_{A}$
$B'_1 = 2$	$(1,0) imes(1,1) imes\left(1,-rac{3}{2} ight)$	SU(2) imes U(1)
$B'_{2} = 1$	$(1,0) imes (0,-1) imes \left(0,\widetilde{1} ight)$	$USp(2,\mathbb{C})_B$
$C_1' = 3 + 1$	$(1,1) imes (1,0) imes \left(1,-rac{1}{2} ight)$	$SU(3) imes U(1)^2$
<i>C</i> ['] ₂ = 2	$(0,-1) imes (1,0) imes \left(0,\widetilde{1} ight)$	$USp(4,\mathbb{C})$

Homological algebra, open strings and mirror symmetry

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

A model on $\mathcal{O}/\left(\mathbb{Z}_2 imes\mathbb{Z}_2 ight)$ hep-th/0107166, hep-th/0107143

Extension of search

Back to example

Example: $\mathcal{O}/(\mathbb{Z}_2 \times \mathbb{Z}_2) = (T^2 \times T^2 \times T^2)/(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega)$

- 11 semi-realistic models constructed hep-th/0403061 but
 Matter particles are missing/ too many present
 exotic matter present
- Systematic computer analysis was performed hep-th/0606109

Extension of search

Back to example

Example: $\mathcal{O}/\left(\mathbb{Z}_2 \times \mathbb{Z}_2\right) = \left(T^2 \times T^2 \times T^2\right)/\left(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \overline{\sigma} \times \Omega\right)$

- 11 semi-realistic models constructed hep-th/0403061 but
 Matter particles are missing/ too many present
 A exotic matter present
- Systematic computer analysis was performed hep-th/0606109

Extension of search

- Different orientifolds, e.g. hep-th/0211059, hep-th/0303015, hep-th/0309158, hep-th/0407181, hep-th/0404055, hep-th/1303.6845, ...
 - $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_4 \times \overline{\sigma} \times \Omega)$
 - $(T^2 \times T^2 \times T^2) / (\mathbb{Z}_2 \times \mathbb{Z}_4 \times \overline{\sigma} \times \Omega)$
- Magnetised D7-branes in type IIB hep-th/0702094, hep-th/0610327, hep-th/0701154, ...

Homological algebra, open strings and mirror symmetry

Questions?

Factorisable D6-branes Standard model particles in intersecting D6-branes A concrete example Orientifold Models

Section 3

Homological algebra, open strings and mirror symmetry

What is an A-brane on a CY X?

What is an A-brane on a CY X?

Definition: Lagrangian manifold

A submanifold $Z \subset X$ of a CY (X, J, ω, Ω) is a Lagrangian manifold if the following two conditions are satisfied:

•
$$\omega|_Z = 0$$

• dim_{$$\mathbb{R}$$} $(Z) = \frac{1}{2}$ dim _{\mathbb{R}} (X)

What is an A-brane on a CY X?

Definition: Lagrangian manifold

A submanifold $Z \subset X$ of a CY (X, J, ω, Ω) is a Lagrangian manifold if the following two conditions are satisfied:

•
$$\omega|_Z = 0$$

• dim_{$$\mathbb{R}$$} $(Z) = \frac{1}{2}$ dim _{\mathbb{R}} (X)

Answer to the above question: hep-th/0403166

An A-brane on a CY 3-fold (X, J, ω, Ω) is an object in the Fukaya category $\mathfrak{Fut}(X)$.

The B model

Remark hep-th/9112056

- There exists a model called the B-model in type IIB string theory.
- In the B-model D3-, D5-, D7- and D9-branes are present.
- Collectively they are labeled **B-branes**.

The B model

Remark hep-th/9112056

- There exists a model called the B-model in type IIB string theory.
- In the B-model D3-, D5-, D7- and D9-branes are present.
- Collectively they are labeled **B-branes**.

More precisely hep-th/0403166

A B-brane on a CY 3-fold (Y, J, ω, Ω) is an object in the category $D^{b}(\mathfrak{Coh}(Y))$.

Consequences

Open string between B-branes hep-th/0403166 hep-th/0208104

- \bullet Consider the holomorphic vector bundles \mathcal{E}_1 and \mathcal{E}_2 as B-branes.
- ⇒ A massless string excitation from \mathcal{E}_1 to \mathcal{E}_2 of ghost number q is an element of Ext^q ($\mathcal{E}_1, \mathcal{E}_2$).

Consequences

Open string between B-branes hep-th/0403166 hep-th/0208104

- \bullet Consider the holomorphic vector bundles \mathcal{E}_1 and \mathcal{E}_2 as B-branes.
- ⇒ A massless string excitation from \mathcal{E}_1 to \mathcal{E}_2 of ghost number q is an element of Ext^q ($\mathcal{E}_1, \mathcal{E}_2$).

An approach to mirror symmetry hep-th/0403166

Be X, Y mirror CY-manifolds, then $\operatorname{Tr}\mathfrak{Fut}(X) \simeq \mathsf{D}^{b}(\mathfrak{Coh}(Y))$.
Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Thank you for your attention!

Masses For Strings (Back to original frame

General formula

$$\alpha' M^2 = N_{\perp,\nu} + \frac{Y^2}{4\pi^2 \alpha'} + \nu \cdot \sum_{l=1}^3 \left| \vartheta_{ab}^{l} \right| - \nu$$

•
$$Y \cong$$
 length of string
• $\nu = \begin{cases} 0 & \text{Ramond sector} \\ \frac{1}{2} & \text{Neveu-Schwarz sector} \end{cases}$
• $\vartheta_{ab}^{I} \cong \frac{\text{intersection angle in I-th two-torus}}{\pi}$

Masses For Strings Back to original frame

General formula

$$\alpha' M^2 = N_{\perp,\nu} + \frac{Y^2}{4\pi^2 \alpha'} + \nu \cdot \sum_{l=1}^3 \left| \vartheta_{ab}^{l} \right| - \nu$$

•
$$Y \cong$$
 length of string
• $\nu = \begin{cases} 0 & \text{Ramond sector} \\ \frac{1}{2} & \text{Neveu-Schwarz sector} \end{cases}$
• $\vartheta_{ab}^{I} \cong \frac{\text{intersection angle in I-th two-torus}}{\pi}$

Example

Ground state in NS-sector has $2\alpha' M^2 = \sum_{l=1}^3 \left| \vartheta_{ab}^l \right| - 1$

Classification of D6-Branes I

Label	(P, Q, R, S)	$\left(n_a^{1,o}, n_a^{2,o}, n_a^{3,o}\right)$	$\left(m_a^{1,o},m_a^{2,o},m_a^{3,o}\right)$
A1	(-,+,+,+)	(+,+,-)	(+,+,-)
A2	(+, -, +, +)	(+, +, +)	(+, -, -)
A3	(+,+,-,+)	(+, +, +)	(-,+,-)
A4	(+, +, +, -)	(+, +, +)	(-, -, +)
B1	(+,+,0,0)	(1, +, +)	(0, +, -)
B2	(+, 0, +, 0)	(+, 1, +)	(+, 0, -)
B3	(+, 0, 0, +)	(+, +, 1)	(+, -, 0)
B4	(0, +, +, 0)	(+, +, 0)	(-, -, 1)
B5	(0, +, 0, +)	(+, 0, +)	(-,1,-)
B6	(0, 0, +, +)	(0, +, +)	(1,-,-)

Classification of D6-Branes II

▲ Back to original frame

Label	(P, Q, R, S)	$\left(\left(n_{a}^{1,o}, n_{a}^{2,o}, n_{a}^{3,o} \right) \right)$	$\left(m_{a}^{1,o},m_{a}^{2,o},m_{a}^{3,o} ight)$
C1	(1, 0, 0, 0)	(1, 1, 1)	(0,0,0)
C2	(0, 1, 0, 0)	(1, 0, 0)	(0, 1, -1)
C3	(0, 0, 1, 0)	(0, 1, 0)	(1, 0, -1)
C4	(0, 0, 0, 1)	(0, 0, 1)	(1, -1, 0)

ab-sector

Definition

• Strings from π_a to π_b form **ab-sector**

ab-sector

Definition

• Strings from π_a to π_b form **ab-sector**

Properties

- $U(N_a) U(N_b)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
- \Rightarrow Propatation **only** in the external space $\mathbb{R}^{1,3}$
 - multiple intersection $\pi_a \circ \pi_b = 3$ is possible

ab-sector

Definition

• Strings from π_a to π_b form **ab-sector**

Properties

- $U(N_a) U(N_b)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
- \Rightarrow Propatation **only** in the external space $\mathbb{R}^{1,3}$
 - multiple intersection $\pi_a \circ \pi_b = 3$ is possible

Conclusion

ab-sector can give rise to matter particles

aa-sector

Definition

• Strings from π_a to π_a form **aa-sector**

Definition

• Strings from π_a to π_a form **aa-sector**

Properties

- Adjoint representations of $U(N_a)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^2 \times T^2 \times T^2$
- \Rightarrow Winding and KK-states can appear

Definition

• Strings from π_a to π_a form **aa-sector**

Properties

- Adjoint representations of $U(N_a)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^2 \times T^2 \times T^2$
- \Rightarrow Winding and KK-states can appear

Conclusion

• aa-sector can give rise to Standard Model gauge bosons

Topological intersection number

Back to original frame

Fast derivation

Define

$$\begin{bmatrix} a' \end{bmatrix} \circ \begin{bmatrix} b^J \end{bmatrix} := \delta^{IJ} = : - \begin{bmatrix} b^J \end{bmatrix} \circ \begin{bmatrix} a' \end{bmatrix}$$

All other intersections vanish.

• Then for two 3-cycles

•
$$\mathcal{D}_a = \prod_{l=1}^3 \left(n_a^l \left[a^l \right] + m_a^l \left[b^l \right] \right)$$

• $\mathcal{D}_b = \prod_{l=1}^3 \left(n_b^l \left[a^l \right] + m_b^l \left[b^l \right] \right)$

the topological intersection number is given by

$$\mathcal{D}_{a} \circ \mathcal{D}_{b} = \prod_{l=1}^{3} \left(n_{a}^{l} m_{b}^{l} - n_{b}^{l} m_{a}^{l} \right)$$

Closed String Quantisation I

Simplifying assumptions

- Take $\mathcal{S} = \mathbb{R}^{1,d-1}$.
- Can achieve locally $h = \eta^{ab}$ (conformal invariance).

Closed String Quantisation I

Simplifying assumptions

- Take $\mathcal{S} = \mathbb{R}^{1,d-1}$.
- Can achieve locally $h = \eta^{ab}$ (conformal invariance).

Strategy

- Take $h = \eta^{ab}$ and quantise the theory **locally**.
- The classical theory $S[h, X^{\mu}]$ treats h as dynamical field.
- \Rightarrow Implement its e.o.m after quantisation.

Closed String Quantisation II

Simplified action

Taking
$$h = \eta^{ab}$$
 and $g = \eta^{\mu\nu}$ gives

$$S[X^{\mu}] = \frac{T}{2} \int_{\Sigma} d\tau d\sigma \left[(\partial_{\tau} X)^{2} - (\partial_{\sigma} X)^{2} \right]$$

Closed String Quantisation II

Simplified action

Taking
$$h = \eta^{ab}$$
 and $g = \eta^{\mu\nu}$ gives

$$S[X^{\mu}] = \frac{T}{2} \int_{\Sigma} d\tau d\sigma \left[(\partial_{\tau} X)^{2} - (\partial_{\sigma} X)^{2} \right]$$

Classical e.o.m. and boundary condition

Look for functions $X^{\mu} \colon \mathbb{R}^2 \to \mathbb{R}$, $(\tau, \sigma) \to X^{\mu}(\tau, \sigma) \in L^2(\mathbb{R}^2)$ such that

- the string is closed: $X^{\mu}(\tau, \sigma = 0) = X^{\mu}(\tau, \sigma = l)$
- the e.o.m. are satisfied, i.e. $\left(\partial_{\tau}^2 \partial_{\sigma}^2\right) X^{\mu} = 0$

Closed String Quantisation III

Most general solution

$$X^{\mu}(\tau,\sigma) = x^{\mu} + \frac{2\pi\alpha'}{L}p^{\mu}\tau + i\sqrt{\frac{\alpha'}{2}}\sum_{n\in\mathbb{Z},n\neq0}\frac{\alpha_{n}^{\mu}}{n}\cdot e^{-\frac{2\pi}{L}in(\tau-\sigma)}$$
$$= +i\sqrt{\frac{\alpha'}{2}}\sum_{n\in\mathbb{Z},n\neq0}\frac{\tilde{\alpha}_{n}^{\mu}}{n}\cdot e^{-\frac{2\pi}{L}in(\tau+\sigma)}$$

Poisson brackets

$$\{\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\} = \{\tilde{\alpha}_{m}^{\mu}, \tilde{\alpha}_{n}^{\nu}\} = -im\delta_{m+n,0}\eta^{\mu\nu}, \quad \{\alpha_{m}^{\mu}, \tilde{\alpha}_{n}^{\nu}\} = 0, \quad \{x^{\mu}, p^{\nu}\} = \eta$$

ŀ

Why no coupling constants?

Consequence

self-interaction = free CFT on worldsheet Σ with one handle

Wrapping numbers parameters

D-branes carry gauge theories II

Mass of an open string excitation between parallel D-branes

$$lpha' M^2 \ket{\varphi} = \left(N + lpha' \left(T \Delta x \right)^2 - 1 \right) \ket{\varphi}$$

D-branes carry gauge theories II

Mass of an open string excitation between parallel D-branes

$$\alpha' M^2 |\varphi\rangle = \left(N + \alpha' (T\Delta x)^2 - 1\right) |\varphi\rangle$$

Motivation for N = 3

D-branes carry gauge theories II

Mass of an open string excitation between parallel D-branes

$$\alpha' M^2 |\varphi\rangle = \left(N + \alpha' (T\Delta x)^2 - 1\right) |\varphi\rangle$$

Motivation for N = 3

D-branes carry gauge theories III

Labels of massless bosonic string excitations along Dp-brane

- excitations along D_p : $(A_a)_n^m$ (i.e. a = 0, ..., p)
- excitations normal to D_p : $(X_i)_n^m$ (i.e. i = p + 1, ..., D 1)

D-branes carry gauge theories III

Labels of massless bosonic string excitations along Dp-brane

- excitations along D_p : $(A_a)_n^m$ (i.e. a = 0, ..., p)
- excitations normal to D_p : $(X_i)_n^m$ (i.e. i = p + 1, ..., D 1)

Motivation for N = 3

D-branes carry gauge theories IV

Fact

- $(A_a)_n^m$ form a U(N) connection
- $(X_i)_n^m$ are scalar fields in the adjoint rep. of U(N)
- Strings that end on a stack of N-coincident Dp-branes are also charged under this U(N) gauge group

D-branes carry gauge theories IV

Fact

- $(A_a)_n^m$ form a U(N) connection
- $(X_i)_n^m$ are scalar fields in the adjoint rep. of U(N)
- Strings that end on a stack of N-coincident Dp-branes are also charged under this U(N) gauge group

Question

Can we hence use strings between a U(2) and a U(3) brane stack to model quarks?

Supersymmetric D6-branes

Fact

A D6-brane $Z \subset X$ preserves supersymmetry iff $\operatorname{Im} \left(e^{-i\varphi} \left(\Omega \right) \right) \big|_{Z} = 0.$

Supersymmetric D6-branes

Fact

A D6-brane $Z \subset X$ preserves supersymmetry iff $\operatorname{Im} \left(e^{-i\varphi} \left(\Omega \right) \right) \Big|_{Z} = 0.$

Consequence

supersymmetric D6-branes \leftrightarrow special Lagrange manifolds $Z \subset X$

Orientifold plane as special Lagrange manifold

σ is a real structure

The antiholomorphic involution $\overline{\sigma} \colon T^6 \to T^6$ has the following properties:

• Locally it is complex conjutation.

•
$$\sigma^*\omega = -\omega$$

•
$$\sigma^*\Omega = \overline{\Omega}$$

Orientifold plane as special Lagrange manifold

σ is a real structure

The antiholomorphic involution $\overline{\sigma} \colon T^6 \to T^6$ has the following properties:

• Locally it is complex conjutation.

•
$$\sigma^*\omega = -\omega$$

•
$$\sigma^*\Omega = \overline{\Omega}$$

Consequence

- Fixpoint locus of $\overline{\sigma}$ defines a special Lagrange manifold the orientifold plane O6.
- Also fixes reference $\varphi = 0$.