The Standard Model From String Theory

Martin Bies

July 3, 2014

Outline

(1) Brief introduction to string theory

- Why String theory?
- What is string theory?

Outline

(1) Brief introduction to string theory

- Why String theory?
- What is string theory?
(2) Intersecting D6-Brane Models
- Factorisable D6-branes
- Standard model particles in intersecting D6-branes
- A concrete example
- Orientifold Models

Outline

(1) Brief introduction to string theory

- Why String theory?
- What is string theory?
(2) Intersecting D6-Brane Models
- Factorisable D6-branes
- Standard model particles in intersecting D6-branes
- A concrete example
- Orientifold Models
(3) Homological algebra, open strings and mirror symmetry

Section 1

Brief introduction to string theory

Brief introduction to string theory
Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

The Standard model gauge group

The Standard model gauge group

The gauge group

- $G=S U(3) \times S U(2) \times U(1)_{Y}$
- Adjoint representation has dimension 12

The Standard model gauge group

The gauge group

- $G=\operatorname{SU}(3) \times \operatorname{SU}(2) \times U(1)_{Y}$
- Adjoint representation has dimension 12

12 Force particles

- 8 gluons - an SU(3) connection
- $W^{ \pm}, Z, Y$ - an $\operatorname{SU}(2) \times U(1)_{Y}$ connection

The Standard model matter particles and the Higgs

Summary of properties $\left(G=S U(3) \times S U(2) \times U(1)_{Y}\right)$

Particle	Chirality	Representation of G	$Q_{e m}$
quarks Q	L	$(3, \overline{2})_{\frac{1}{1}}$	$+\frac{2}{3},-\frac{1}{3}$
up-quarks U	R	$(3, \overline{1})_{\frac{2}{3}}$	$\frac{2}{3}$
down-quarks D	R	$(3, \overline{1})_{-\frac{1}{3}}$	$-\frac{1}{3}$
leptons L	L	$(1, \overline{2})_{-\frac{1}{2}}$	$-1,0$
charged leptons E	R	$(1, \overline{1})_{-1}$	-1
neutral leptons N	R	$(1, \overline{1})_{0}$	0
Higgs up H_{U}	\boldsymbol{X}	$(1, \overline{2})_{\frac{1}{2}}$	0
Higgs down H_{D}	\boldsymbol{X}	$(1, \overline{2})_{-\frac{1}{2}}$	0

Brief introduction to string theory
Intersecting D6-Brane Models
Homological algebra, open strings and mirror symmetry

Why String theory?
What is string theory?

Why string theory?

Brief introduction to string theory
Intersecting D6-Brane Models

Why string theory?

Current understanding of physics

- General relativity - gravity
- Standard model - electromagnetic, weak and strong interaction

Why string theory?

Current understanding of physics

- General relativity - gravity
- Standard model - electromagnetic, weak and strong interaction

But ...

- what is the physics of quantum gravity?

Why string theory?

Current understanding of physics

- General relativity - gravity
- Standard model - electromagnetic, weak and strong interaction

But ...

- what is the physics of quantum gravity?
- why is the Standard Model the way it is?

Why string theory?

Current understanding of physics

- General relativity - gravity
- Standard model - electromagnetic, weak and strong interaction

But ...

- what is the physics of quantum gravity?
- why is the Standard Model the way it is?

Answer
String theory is a promising candidate to answer these questions.

The fundamental objects in string theory

The fundamental objects in string theory

General Philosophy

Replace point particles by 1-dimensional objects.

The fundamental objects in string theory

General Philosophy

Replace point particles by 1-dimensional objects.

Consequence

There are two fundamental objects in string theory.

open strings	closed strings

Bosonic closed string CFT

Embedding of closed strings into spacetime

worldsheet (Σ, h)
D-dim. spacetime (\mathcal{S}, g)

$$
S\left[h, X^{\mu}\right]=-\frac{1}{4 \pi \alpha^{\prime}} \int_{\Sigma} d^{2} \xi \sqrt{-h} h^{a b}(\xi) \partial_{a} X^{\mu}(\xi) \partial_{b} X^{\nu}(\xi) g_{\mu \nu}(X(\xi))
$$

Brief introduction to string theory
Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Why is this promising?

Consistency of quantum theory

Brief introduction to string theory
Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D=10$

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D=10$
- Absence of tachyons \Leftrightarrow SUSY in $D=10$

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D=10$
- Absence of tachyons \Leftrightarrow SUSY in $D=10$
- Conformal invariance implies:
(1) $0=\beta_{\mu \nu}^{(2)}=\alpha^{\prime} R_{\mu \nu}+\frac{1}{2}\left(\alpha^{\prime}\right)^{2} R_{\mu \lambda \rho \sigma} R_{\nu}^{\lambda \rho \sigma}+\ldots$
(2) "coupling constants" are VEVS of dynamical fields

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D=10$
- Absence of tachyons \Leftrightarrow SUSY in $D=10$
- Conformal invariance implies:
(1) $0=\beta_{\mu \nu}^{(2)}=\alpha^{\prime} R_{\mu \nu}+\frac{1}{2}\left(\alpha^{\prime}\right)^{2} R_{\mu \lambda \rho \sigma} R_{\nu}^{\lambda \rho \sigma}+\ldots$
(2) "coupling constants" are VEVS of dynamical fields

Standard Model + GR $=$ string theory is promising:

- Every consistent string theory contains a graviton.

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D=10$
- Absence of tachyons \Leftrightarrow SUSY in $D=10$
- Conformal invariance implies:
(1) $0=\beta_{\mu \nu}^{(2)}=\alpha^{\prime} R_{\mu \nu}+\frac{1}{2}\left(\alpha^{\prime}\right)^{2} R_{\mu \lambda \rho \sigma} R_{\nu}^{\lambda \rho \sigma}+\ldots$
(2) "coupling constants" are VEVS of dynamical fields

Standard Model + GR $=$ string theory is promising:

- Every consistent string theory contains a graviton.
- Consistent (perturbative) theory of quantum gravity.

Why is this promising?

Consistency of quantum theory

- Poincaré invariance $\Leftrightarrow D=10$
- Absence of tachyons \Leftrightarrow SUSY in $D=10$
- Conformal invariance implies:
(1) $0=\beta_{\mu \nu}^{(2)}=\alpha^{\prime} R_{\mu \nu}+\frac{1}{2}\left(\alpha^{\prime}\right)^{2} R_{\mu \lambda \rho \sigma} R_{\nu}^{\lambda \rho \sigma}+\ldots$
(2) "coupling constants" are VEVS of dynamical fields

Standard Model + GR $=$ string theory is promising:

- Every consistent string theory contains a graviton.
- Consistent (perturbative) theory of quantum gravity.
- No coupling constants.
- . . .

Todays roadmap

M-Theory star

type IIB

type I

type IIA

HE

Todays roadmap

M-Theory star

type IIB

type I

M-Theory

Brief introduction to string theory
Intersecting D6-Brane Models
Homological algebra, open strings and mirror symmetry

Todays roadmap

M-Theory star

Brief introduction to string theory
Intersecting D6-Brane Models
Homological algebra, open strings and mirror symmetry

Todays roadmap

M-Theory star

Brief introduction to string theory
Intersecting D6-Brane Models

Todays roadmap

M-Theory star

1

Section 2

Intersecting D6-Brane Models

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Factorisable D6-branes
Standard model particles in intersecting D6-branes A concrete example
Orientifold Models

What is a D-brane?

Brief introduction to string theory

What is a D-brane?

Picture of open strings and D-branes

Choice of compactification

General remarks

- In type IIA theory, D-branes always have odd dimension.
- D-brane always cover the time dimension.

Choice of compactification

General remarks

- In type IIA theory, D-branes always have odd dimension.
- D-brane always cover the time dimension.

Convention

A D-brane of dimension p+1 is termed a Dp-brane.

Choice of compactification

General remarks

- In type IIA theory, D-branes always have odd dimension.
- D-brane always cover the time dimension.

Convention

A D-brane of dimension p+1 is termed a Dp-brane.

Choice of compactification

- We assume $\mathcal{S}=\mathbb{R}^{1,3} \times T^{2} \times T^{2} \times T^{2}$.
- We work with the so-called A-model in type IIA string theory.
\Rightarrow Only D6-branes are present.
- We restrict further to work with factorisable D6-branes only.

Brief introduction to string theory

Factorisable D6-branes

Picture of a factorisable D6-brane \mathcal{D}

Brief introduction to string theory

Factorisable D6-branes

Picture of a factorisable D6-brane \mathcal{D}

Remark

- For the time being we only care about homology.
- In this sense $\mathcal{D} \in H_{1}\left(T^{2}, \mathbb{Z}\right) \times H_{1}\left(T^{2}, \mathbb{Z}\right) \times H_{1}\left(T^{2}, \mathbb{Z}\right)$ is a factorisable D6-brane.

Factorisable D6-branes: notation

Notation

Factorisable D6-brane \mathcal{D}_{a} denoted by

$$
\mathcal{D}_{a}=\prod_{l=1}^{3}\left(n_{a}^{\prime}\left[a^{\prime}\right]+m_{a}^{\prime}\left[b^{\prime}\right]\right), \quad n_{a}^{\prime}, m_{a}^{\prime} \in \mathbb{Z} \text { coprime }
$$

Factorisable D6-branes: notation

Notation

Factorisable D6-brane \mathcal{D}_{a} denoted by

$$
\mathcal{D}_{a}=\prod_{l=1}^{3}\left(n_{a}^{\prime}\left[a^{\prime}\right]+m_{a}^{\prime}\left[b^{\prime}\right]\right), \quad n_{a}^{\prime}, m_{a}^{\prime} \in \mathbb{Z} \text { coprime }
$$

Picture of $\mathcal{D}=\left(\left[a^{1}\right]+\left[b^{1}\right]\right) \times\left(2\left[a^{2}\right]+\left[b^{2}\right]\right) \times\left(\left[a^{3}\right]+2\left[b^{3}\right]\right)$

Brief introduction to string theory

Factorisable D6-branes: topological intersection number

Intersections of two factorisable D6-branes \mathcal{D}_{a} and \mathcal{D}_{b}

Factorisable D6-branes: topological intersection number

Intersections of two factorisable D6-branes \mathcal{D}_{a} and \mathcal{D}_{b}

Computing topological intersection numbers

$$
\begin{gathered}
\mathcal{D}_{a}=\prod_{l=1}^{3}\left(n_{a}^{\prime}\left[a^{\prime}\right]+m_{a}^{\prime}\left[b^{\prime}\right]\right), \mathcal{D}_{b}=\prod_{l=1}^{3}\left(n_{b}^{\prime}\left[a^{\prime}\right]+m_{b}^{\prime}\left[b^{\prime}\right]\right) \\
\Rightarrow \mathcal{D}_{a} \circ \mathcal{D}_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)
\end{gathered}
$$

Brief introduction to string theory

Factorisable D6-branes: family replication

Example

$$
\text { - } \begin{aligned}
\mathcal{D}_{a} & =(3,1) \times(1,0) \times(1,0) \\
\mathcal{D}_{b}= & (0,1) \times(0,1) \times(0,1) \\
& \Rightarrow \mathcal{D}_{a} \circ \mathcal{D}_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)=3 \cdot 1 \cdot 1=3
\end{aligned}
$$

Brief introduction to string theory

Factorisable D6-branes: family replication

Example

$$
\text { - } \begin{aligned}
\mathcal{D}_{a} & =(3,1) \times(1,0) \times(1,0) \\
\mathcal{D}_{b} & =(0,1) \times(0,1) \times(0,1) \\
& \Rightarrow \mathcal{D}_{a} \circ \mathcal{D}_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)=3 \cdot 1 \cdot 1=3
\end{aligned}
$$

Outlook
multiple intersections \leftrightarrow family replication

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a $U(N)$ gauge theory.

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a $U(N)$ gauge theory.

Motivation for $N=3$

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a $U(N)$ gauge theory.
Motivation for $N=3$

D-branes carry gauge theories

Fact

A stack of N-coincident D-branes carries a $U(N)$ gauge theory.
Motivation for $N=3 \quad \rightarrow$ Mass of strings

Brief introduction to string theory
Intersecting D6-Brane Models
Homological algebra, open strings and mirror symmetry

D-branes carry gauge theories II

Stack of N coincident branes

- N^{2} strings between these branes

Motivation for $N=3$

D-branes carry gauge theories II

Stack of N coincident branes

- N^{2} strings between these branes
- each gives one massless bosonic excitation along the stack

Motivation for $N=3$

D-branes carry gauge theories II

Stack of N coincident branes

- N^{2} strings between these branes
- each gives one massless bosonic excitation along the stack
\Rightarrow Those excitations form a $\mathrm{U}(N)$ connection.

Motivation for $N=3$

D-branes carry gauge theories II

Stack of N coincident branes

- N^{2} strings between these branes
- each gives one massless bosonic excitation along the stack
\Rightarrow Those excitations form a $U(N)$ connection.
- Structure group can be reduced to $\mathrm{SU}(N)$.

Motivation for $N=3$

Stringy quarks

Consequence

- A string that ends on N coincident branes (and starts on another stack) is charged under $\mathrm{SU}(\mathrm{N}) \times \mathrm{U}(1)$.

Stringy quarks

Consequence

- A string that ends on N coincident branes (and starts on another stack) is charged under $\mathrm{SU}(\mathrm{N}) \times \mathrm{U}(1)$.
\Rightarrow Are such strings candidates for the Standard Model matter particles?

Stringy quarks

Consequence

- A string that ends on N coincident branes (and starts on another stack) is charged under $\mathrm{SU}(N) \times \mathrm{U}(1)$.
\Rightarrow Are such strings candidates for the Standard Model matter particles?

Answer: Yes! - Picture of stringy quarks

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A fist course in string theory" by B. Zwiebach

Example "A first course in string theory" by B. Zwiebach

Wrapping numbers

Brane	$\left(n_{a}^{1}, m_{a}^{1}\right) \times\left(n_{a}^{2}, m_{a}^{2}\right) \times\left(n_{a}^{3}, m_{a}^{3}\right)$	Gauge Group
$N_{1}=3$	$(1,2) \times(1,-1) \times(1,-2)$	$\mathrm{SU}(3) \times \mathrm{U}(1)_{1}$
$N_{2}=2$	$(1,1) \times(1,-2) \times(-1,5)$	$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$
$N_{3}=1$	$(1,1) \times(1,0) \times(-1,5)$	$\mathrm{U}(1)_{3}$
$N_{4}=1$	$(1,2) \times(-1,1) \times(1,1)$	$\mathrm{U}(1)_{4}$
$N_{5}=1$	$(1,2) \times(-1,1) \times(2,-7)$	$\mathrm{U}(1)_{5}$
$N_{6}=1$	$(1,1) \times(3,-4) \times(1,-5)$	$\mathrm{U}(1)_{6}$

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A fist course in string theory" by B. Zwiebach

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A fist course in string theory" by B. Zwiebach

N_{1}, Q_{1}

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A first course in string theory" by B. Zwiebach

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A first course in string theory" by B. Zwiebach

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A first course in string theory" by B. Zwiebach

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A first course in string theory" by B. Zwiebach

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A first course in string theory" by B. Zwiebach

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Example "A first course in string theory" by B. Zwiebach

Brief introduction to string theory
Intersecting D6-Brane Models
Homological algebra, open strings and mirror symmetry

Orientifold Models

Example "A first course in string theory" by B. Zwiebach

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Factorisable D6-branes
Standard model particles in intersecting D6-branes
A concrete example
Orientifold Models

Example: $Y=-\frac{1}{3} Q_{1}-\frac{1}{2} Q_{2}-Q_{3}-Q_{5}$ "A fist course in ..." by B. zwiebach

N_{2}, Q_{2}		N_{3}, Q_{3}		N_{6}, Q_{6}	
+3		-3			-3
N_{1}, Q_{1}	$\int_{-1}\left({ }^{+1}\right)_{\frac{1}{6}}$		$P_{+1}\left(U^{c}\right)_{-\frac{2}{3}}$	$\left(D^{c}\right)_{\frac{1}{3}}^{-1}$	
$N_{4}, Q_{4}+{ }^{+6}$	${ }^{+1}(L)_{-\frac{1}{2}}$	+6	${ }^{-1}\left(E^{c}\right)_{1}$	$\left(N^{c}\right)_{0}$	
N_{4}, Q_{4}	${ }^{-1}$		+1	+1	
, ${ }^{+3}$	$+1(1,2)_{\frac{1}{2}}$	-3	${ }^{-1}\left(N^{c}\right)_{0}$	$(1,1)_{-}$	${ }^{-1}+3$
N_{5}, Q_{5}	-1		+1		

General lesson from the example

Stability

- String theory suffers from two kinds of tadpoles - R-R-tadpoles and NS-NS-tadpoles.

General lesson from the example

Stability

- String theory suffers from two kinds of tadpoles - R-R-tadpoles and NS-NS-tadpoles.
\Rightarrow Both need to be cancelled for stable models.

General lesson from the example

Stability

- String theory suffers from two kinds of tadpoles - R-R-tadpoles and NS-NS-tadpoles.
\Rightarrow Both need to be cancelled for stable models.

Consequence

Orientifold models have to be considered, such as hep-th/00105155, hep-th/0307252, hep-th/0410134, hep-th/0502005, hep-th/0610327, hep-th/0902.3546, ..

Brief introduction to string theory Intersecting D6-Brane Models

Need for orientifolding

Fact for D6-brane models

- Suppose we build a model that preserves (at least) $\mathcal{N}=1$ SUSY.

Need for orientifolding

Fact for D6-brane models

- Suppose we build a model that preserves (at least) $\mathcal{N}=1$ SUSY.
- For such models hep-th/0206038, hep-th/0201205

R-R tadpoles cancelled \Leftrightarrow NS-NS tadpoles cancelled

Need for orientifolding

Fact for D6-brane models

- Suppose we build a model that preserves (at least) $\mathcal{N}=1$ SUSY.
- For such models hep-th/0206038, hep-th/0201205

R-R tadpoles cancelled \Leftrightarrow NS-NS tadpoles cancelled

- SUSY requires orientifold plane.

Need for orientifolding

Fact for D6-brane models

- Suppose we build a model that preserves (at least) $\mathcal{N}=1$ SUSY.
- For such models hep-th/0206038, hep-th/0201205

R-R tadpoles cancelled \Leftrightarrow NS-NS tadpoles cancelled

- SUSY requires orientifold plane.

Orientifolding on $T^{2} \times T^{2} \times T^{2}$

- Define involution $\bar{\sigma}:\left(z^{1}, z^{2}, z^{3}\right) \mapsto\left(\bar{z}^{1}, \bar{z}^{2}, \bar{z}^{3}\right)$
- Consider orientifold $\mathcal{O}:=\left(T^{2} \times T^{2} \times T^{2}\right) /(\bar{\sigma} \times \Omega)$
- Fixpoint locus of $\bar{\sigma}$ is orientifold plane $\mathbf{O 6}$

Brief introduction to string theory
Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Factorisable D6-branes
Standard model particles in intersecting D6-branes
A concrete example
Orientifold Models

A model on $\mathcal{O}=\left(T^{2} \times T^{2} \times T^{2}\right) /(\bar{\sigma} \times \Omega)_{\text {heopth/000s }}$.

[^0]| Brane | Wrapping Numbers | Gauge Group |
| :---: | :---: | :---: |
| $N_{a}=3$ | $\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{a}^{2}, \epsilon \beta^{2}\right) \times\left(\frac{1}{\rho}, \frac{1}{2}\right)$ | $U(3)$ |
| $N_{a}^{\prime}=3$ | $\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{a}^{2},-\epsilon \beta^{2}\right) \times\left(\frac{1}{\rho},-\frac{1}{2}\right)$ | |
| $N_{b}=2$ | $\left(n_{b}^{1},-\epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times\left(1, \frac{3 \rho}{2}\right)$ | $U(2)$ |
| $N_{b}^{\prime}=2$ | $\left(n_{b}^{1}, \epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times\left(1,-\frac{3 \rho}{2}\right)$ | |
| $N_{c}=1$ | $\left(n_{c}^{1}, 3 \rho \epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times(0,1)$ | $U(1)$ |
| $N_{c}^{\prime}=1$ | $\left(n_{c}^{1},-3 \rho \epsilon \beta^{1}\right) \times\left(\frac{1}{\beta^{2}}, 0\right) \times(0,-1)$ | |
| $N_{d}=1$ | $\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{d}^{2},-\frac{\beta^{2} \epsilon}{\rho}\right) \times\left(1, \frac{3 \rho}{2}\right)$ | $U(1)$ |
| $N_{d}^{\prime}=1$ | $\left(\frac{1}{\beta^{1}}, 0\right) \times\left(n_{d}^{2}, \frac{\beta^{2} \epsilon}{\rho}\right) \times\left(1,-\frac{3 \rho}{2}\right)$ | |

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

A model on the orientifold \mathcal{O}

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

A model on the orientifold \mathcal{O}

hep-th/0105155

N_{a}, Q_{a}

Brief introduction to string theory Intersecting D6-Brane Models
Homological algebra, open strings and mirror symmetry

A model on the orientifold \mathcal{O} hep-th/0005155

Brief introduction to string theory Intersecting D6-Brane Models
Homological algebra, open strings and mirror symmetry

A model on the orientifold \mathcal{O} hep-th/0105155

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

A model on the orientifold \mathcal{O} hep-th/0005155

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

A model on the orientifold \mathcal{O} hep-th/0005155

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

A model on the orientifold \mathcal{O}

RR-Tadpole cancellation I

Cancellation of R-R tadpoles hep-th/0307252

- Find $\mathcal{D}_{06}=8 \prod_{I=1}^{3}\left[a^{\prime}\right]$.
- R-R tadpole cancellation then requires

$$
\sum_{\text {branes } \mathcal{D}_{a}} N_{a}\left(\mathcal{D}_{a}+\mathcal{D}_{a}^{\prime}\right)-4 \mathcal{D}_{O 6}=[0]
$$

RR-Tadpole cancellation I

Cancellation of R-R tadpoles hep-th/0307252

- Find $\mathcal{D}_{O 6}=8 \prod_{I=1}^{3}\left[a^{\prime}\right]$.
- $R-R$ tadpole cancellation then requires

$$
\sum_{\text {branes } \mathcal{D}_{a}} N_{a}\left(\mathcal{D}_{a}+\mathcal{D}_{a}^{\prime}\right)-4 \mathcal{D}_{O 6}=[0]
$$

In terms of the wrapping numbers ...

$$
\begin{aligned}
& \sum_{\text {branes } \mathcal{D}_{a}} N_{a} n_{a}^{a} n_{a}^{2} n_{a}^{3}=16 \\
& \sum_{\text {branes } \mathcal{D}_{a}} N_{a} n_{a}^{\prime} m_{a}^{J} m_{a}^{K}=0 \text { for } I \neq J \neq K \neq I
\end{aligned}
$$

Brief introduction to string theory Intersecting D6-Brane Models

RR-Tadpole cancellation II

K-Theory charges

- D-brane charge classified by K-theory hep-th/9810188, hep-th/0307252.

RR-Tadpole cancellation II

K-Theory charges

- D-brane charge classified by K-theory hep-th/9810188, hep-th/0307252.
\Rightarrow Additional K-theory constraint of even number of USp $(2, \mathbb{C})$ fundamentals needed.

RR-Tadpole cancellation II

K-Theory charges

- D-brane charge classified by K-theory hep-th/9810188, hep-th/0307252.
\Rightarrow Additional K-theory constraint of even number of USp $(2, \mathbb{C})$ fundamentals needed.

In terms of wrapping numbers ...

\ldots for rectangular tori in $\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\sigma \times \Omega \times(-1)^{F_{L}}\right)$

- $\quad \sum N_{a} m_{a}^{1} m_{a}^{2} m_{a}^{3} \in 2 \mathbb{Z}$ branes \mathcal{D}_{a}
- $\quad \sum N_{a} m_{a}^{I} n_{a}^{J} n_{a}^{K} \in 2 \mathbb{Z}$ for $I \neq J \neq K \neq I$ branes \mathcal{D}_{a}

Supersymmetry condition

General philosophy hep-th/9507158

- Orientifold plane $O 6$ preserves some supersymmetry.
- Configuration of D6-branes preserves at least $\mathcal{N}=1$ of this supersymmetry if each D6-brane satisfies

$$
\Theta_{a}^{1}+\Theta_{a}^{2}+\Theta_{a}^{3}=0 \bmod 2 \pi
$$

Supersymmetry condition

General philosophy hep-th/9507158

- Orientifold plane O6 preserves some supersymmetry.
- Configuration of D6-branes preserves at least $\mathcal{N}=1$ of this supersymmetry if each D6-brane satisfies

$$
\Theta_{a}^{1}+\Theta_{a}^{2}+\Theta_{a}^{3}=0 \bmod 2 \pi
$$

Picture of angles Θ_{a}^{\prime}

Yukawa couplings

Fact hep-th/0300083

Interaction between 2 massless fermions and 1 massless boson all located at different intersections - is governed by

$$
Y \sim \exp \left(-A^{1}\right) \cdot \exp \left(-A^{2}\right) \cdot \exp \left(-A^{3}\right)
$$

Picture

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Wrapping numbers of branes

Brane	$\left(n_{a}^{1}, m_{a}^{1}\right) \times\left(n_{a}^{2}, m_{a}^{2}\right) \times\left(n_{a}^{3}, \widetilde{m}_{a}^{3}\right)$	Gauge Group
$A_{1}=4$	$(0,1) \times(0,-1) \times(2, \widetilde{0})$	$U(1)^{2}$
$A_{2}=1$	$(1,0) \times(1,0) \times(2, \widetilde{0})$	$U S p(2, \mathbb{C})_{A}$
$B_{1}=2$	$(1,0) \times(1,-1) \times\left(1, \frac{3}{2}\right)$	$\operatorname{SU}(2) \times U(1)$
$B_{2}=1$	$(1,0) \times(0,1) \times(0, \widetilde{-1})$	$U S p(2, \mathbb{C})_{B}$
$C_{1}=3+1$	$(1,-1) \times(1,0) \times\left(1, \frac{1}{2}\right)$	$\operatorname{SU}(3) \times U(1)^{2}$
$C_{2}=2$	$(0,1) \times(1,0) \times(0, \widetilde{-1})$	$U S p(4, \mathbb{C})$

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Wrapping numbers of image branes

Brane	$\left(n_{a}^{1}, m_{a}^{1}\right) \times\left(n_{a}^{2}, m_{a}^{2}\right) \times\left(n_{a}^{3}, \widetilde{m}_{a}^{3}\right)$	Gauge Group
$A_{1}^{\prime}=4$	$(0,-1) \times(0,1) \times(2, \widetilde{0})$	$U(1)^{2}$
$A_{2}^{\prime}=1$	$(1,0) \times(1,0) \times(2, \widetilde{0})$	$U S p(2, \mathbb{C})_{A}$
$B_{1}^{\prime}=2$	$(1,0) \times(1,1) \times\left(1,-\frac{3}{2}\right)$	$\operatorname{SU}(2) \times U(1)$
$B_{2}^{\prime}=1$	$(1,0) \times(0,-1) \times(0, \widetilde{1})$	$U S p(2, \mathbb{C})_{B}$
$C_{1}^{\prime}=3+1$	$(1,1) \times(1,0) \times\left(1,-\frac{1}{2}\right)$	$\operatorname{SU}(3) \times U(1)^{2}$
$C_{2}^{\prime}=2$	$(0,-1) \times(1,0) \times(0, \widetilde{1})$	$U S p(4, \mathbb{C})$

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

A model on $\mathcal{O} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)_{\text {hep-th/0107166, hep-th/0107143 }}$

Extension of search

Example: $\mathcal{O} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right)$

- 11 semi-realistic models constructed hep-th/0403061 but X matter particles are missing/ too many present X exotic matter present
- Systematic computer analysis was performed hep-th/0606109

Extension of search

Example: $\mathcal{O} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)=\left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \bar{\sigma} \times \Omega\right)$

- 11 semi-realistic models constructed hep-th/0403061 but X matter particles are missing/ too many present X exotic matter present
- Systematic computer analysis was performed hep-th/0606109

Extension of search

- Different orientifolds, e.g. hep-th/0211059, hep-th/0303015, hep-th/0309158, hep-th/0407181, hep-th/0404055, hep-th/1303.6845, ...

$$
\begin{aligned}
& \left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{4} \times \bar{\sigma} \times \Omega\right) \\
& \left(T^{2} \times T^{2} \times T^{2}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \bar{\sigma} \times \Omega\right)
\end{aligned}
$$

- Magnetised D7-branes in type IIB hep-th/0702094, hep-th/0610327, hep-th/0701154, ...

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Orientifold Models

Questions?

Section 3

Homological algebra, open strings and mirror symmetry

What is an A-brane on a CY X?

What is an A-brane on a CY X?

Definition: Lagrangian manifold

A submanifold $Z \subset X$ of a $C Y(X, J, \omega, \Omega)$ is a Lagrangian manifold if the following two conditions are satisfied:

- $\left.\omega\right|_{z}=0$
- $\operatorname{dim}_{\mathbb{R}}(Z)=\frac{1}{2} \operatorname{dim}_{\mathbb{R}}(X)$

What is an A-brane on a CY X?

Definition: Lagrangian manifold

A submanifold $Z \subset X$ of a $C Y(X, J, \omega, \Omega)$ is a Lagrangian manifold if the following two conditions are satisfied:

- $\left.\omega\right|_{Z}=0$
- $\operatorname{dim}_{\mathbb{R}}(Z)=\frac{1}{2} \operatorname{dim}_{\mathbb{R}}(X)$

Answer to the above question: hep-th/0403166
An A-brane on a CY 3-fold (X, J, ω, Ω) is an object in the Fukaya category $\mathfrak{F u k}(X)$.

The B model

Remark hep-th/9112056

- There exists a model - called the B-model - in type IIB string theory.
- In the B-model D3-, D5-, D7- and D9-branes are present.
- Collectively they are labeled B-branes.

The B model

Remark hep-th/9112056

- There exists a model - called the B-model - in type IIB string theory.
- In the B-model D3-, D5-, D7- and D9-branes are present.
- Collectively they are labeled B-branes.

More precisely hep-th/0403166

A B-brane on a CY 3-fold (Y, J, ω, Ω) is an object in the category $\mathbf{D}^{b}(\mathfrak{C o h}(Y))$.

Consequences

Open string between B-branes hep-th/0403166 hep-th/0208104

- Consider the holomorphic vector bundles \mathcal{E}_{1} and \mathcal{E}_{2} as B-branes.
\Rightarrow A massless string excitation from \mathcal{E}_{1} to \mathcal{E}_{2} of ghost number q is an element of $\operatorname{Ext}^{q}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)$.

Consequences

Open string between B-branes hep-th/0403166 hep-t///0208104

- Consider the holomorphic vector bundles \mathcal{E}_{1} and \mathcal{E}_{2} as B-branes.
\Rightarrow A massless string excitation from \mathcal{E}_{1} to \mathcal{E}_{2} of ghost number q is an element of $\operatorname{Ext}^{q}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)$.

An approach to mirror symmetry hep-th/0403166

Be X, Y mirror CY-manifolds, then $\operatorname{Tr} \mathfrak{F} \mathfrak{k}(X) \simeq \mathbf{D}^{b}(\mathfrak{C o h}(Y))$.

Brief introduction to string theory Intersecting D6-Brane Models Homological algebra, open strings and mirror symmetry

Thank you for your attention!

Masses For Strings - Back to original frame

General formula

$$
\alpha^{\prime} M^{2}=N_{\perp, \nu}+\frac{Y^{2}}{4 \pi^{2} \alpha^{\prime}}+\nu \cdot \sum_{l=1}^{3}\left|\vartheta_{a b}^{\prime}\right|-\nu
$$

- $Y \widehat{=}$ length of string
- $\nu= \begin{cases}0 & \text { Ramond sector } \\ \frac{1}{2} & \text { Neveu-Schwarz sector }\end{cases}$
- $\vartheta_{a b}^{\prime} \widehat{=} \frac{\text { intersection angle in } 1 \text {-th two-torus }}{\pi}$

Masses For Strings \uparrow Back to original frame

General formula

$$
\alpha^{\prime} M^{2}=N_{\perp, \nu}+\frac{Y^{2}}{4 \pi^{2} \alpha^{\prime}}+\nu \cdot \sum_{l=1}^{3}\left|\vartheta_{a b}^{\prime}\right|-\nu
$$

- $Y \widehat{=}$ length of string
- $\nu= \begin{cases}0 & \text { Ramond sector } \\ \frac{1}{2} & \text { Neveu-Schwarz sector }\end{cases}$
- $\vartheta_{a b}^{\prime} \widehat{=} \frac{\text { intersection angle in I-th two-torus }}{\pi}$

Example

Ground state in NS-sector has $2 \alpha^{\prime} M^{2}=\sum_{l=1}^{3}\left|\vartheta_{a b}^{\prime}\right|-1$

Classification of D6-Branes I

Label	(P, Q, R, S)	$\left(n_{a}^{1, o}, n_{a}^{2, o}, n_{a}^{3, o}\right)$	$\left(m_{a}^{1, o}, m_{a}^{2, o}, m_{a}^{3, o}\right)$
A1	$(-,+,+,+)$	$(+,+,-)$	$(+,+,-)$
A2	$(+,-,+,+)$	$(+,+,+)$	$(+,-,-)$
A3	$(+,+,-,+)$	$(+,+,+)$	$(-,+,-)$
A4	$(+,+,+,-)$	$(+,+,+)$	$(-,-,+)$
B1	$(+,+, 0,0)$	$(1,+,+)$	$(0,+,-)$
B2	$(+, 0,+, 0)$	$(+, 1,+)$	$(+, 0,-)$
B3	$(+, 0,0,+)$	$(+,+, 1)$	$(+,-, 0)$
B4	$(0,+,+, 0)$	$(+,+, 0)$	$(-,-, 1)$
B5	$(0,+, 0,+)$	$(+, 0,+)$	$(-, 1,-)$
B6	$(0,0,+,+)$	$(0,+,+)$	$(1,-,-)$

Classification of D6-Branes II

Label	(P, Q, R, S)	$\left(n_{a}^{1, o}, n_{a}^{2, o}, n_{a}^{3, o}\right)$	$\left(m_{a}^{1, o}, m_{a}^{2, o}, m_{a}^{3, o}\right)$
C1	$(1,0,0,0)$	$(1,1,1)$	$(0,0,0)$
C2	$(0,1,0,0)$	$(1,0,0)$	$(0,1,-1)$
C3	$(0,0,1,0)$	$(0,1,0)$	$(1,0,-1)$
C4	$(0,0,0,1)$	$(0,0,1)$	$(1,-1,0)$

ab-sector

Definition

- Strings from π_{a} to π_{b} form ab-sector

ab-sector

Definition

- Strings from π_{a} to π_{b} form ab-sector

Properties

- $U\left(N_{a}\right)-U\left(N_{b}\right)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
\Rightarrow Propatation only in the external space $\mathbb{R}^{1,3}$
- multiple intersection $\pi_{a} \circ \pi_{b}=3$ is possible

ab-sector

Definition

- Strings from π_{a} to π_{b} form ab-sector

Properties

- $U\left(N_{a}\right)-U\left(N_{b}\right)$ bifundamentals in ab-sector
- Ramond ground state is massless, chiral fermion
- Tension forces ab-sector strings to locate at intersection
\Rightarrow Propatation only in the external space $\mathbb{R}^{1,3}$
- multiple intersection $\pi_{a} \circ \pi_{b}=3$ is possible

Conclusion

- ab-sector can give rise to matter particles

Definition

- Strings from π_{a} to π_{a} form aa-sector

Definition

- Strings from π_{a} to π_{a} form aa-sector

Properties

- Adjoint representations of $U\left(N_{a}\right)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^{2} \times T^{2} \times T^{2}$
\Rightarrow Winding and KK-states can appear

aa-sector

Definition

- Strings from π_{a} to π_{a} form aa-sector

Properties

- Adjoint representations of $U\left(N_{a}\right)$
- Neveu-Schwarz ground state is massless boson
- Location not fixed in $T^{2} \times T^{2} \times T^{2}$
\Rightarrow Winding and KK-states can appear

Conclusion

- aa-sector can give rise to Standard Model gauge bosons

Topological intersection number

Fast derivation

- Define

$$
\left[a^{\prime}\right] \circ\left[b^{J}\right]:=\delta^{\prime J}=:-\left[b^{J}\right] \circ\left[a^{\prime}\right]
$$

All other intersections vanish.

- Then for two 3-cycles

$$
\begin{aligned}
\text { - } \mathcal{D}_{a} & =\prod_{l=1}^{3}\left(n_{a}^{\prime}\left[a^{\prime}\right]+m_{a}^{\prime}\left[b^{\prime}\right]\right) \\
\text { - } \mathcal{D}_{b} & =\prod_{l=1}^{3}\left(n_{b}^{\prime}\left[a^{\prime}\right]+m_{b}^{\prime}\left[b^{\prime}\right]\right)
\end{aligned}
$$

the topological intersection number is given by

$$
\mathcal{D}_{a} \circ \mathcal{D}_{b}=\prod_{l=1}^{3}\left(n_{a}^{\prime} m_{b}^{\prime}-n_{b}^{\prime} m_{a}^{\prime}\right)
$$

Closed String Quantisation I

Simplifying assumptions

- Take $\mathcal{S}=\mathbb{R}^{1, d-1}$.
- Can achieve locally $h=\eta^{a b}$ (conformal invariance).

Closed String Quantisation I

Simplifying assumptions

- Take $\mathcal{S}=\mathbb{R}^{1, d-1}$.
- Can achieve locally $h=\eta^{a b}$ (conformal invariance).

Strategy

- Take $h=\eta^{a b}$ and quantise the theory locally.
- The classical theory $S\left[h, X^{\mu}\right]$ treats h as dynamical field.
\Rightarrow Implement its e.o.m after quantisation.

Closed String Quantisation II

Simplified action

Taking $h=\eta^{a b}$ and $g=\eta^{\mu \nu}$ gives

$$
S\left[X^{\mu}\right]=\frac{T}{2} \int_{\Sigma} d \tau d \sigma\left[\left(\partial_{\tau} X\right)^{2}-\left(\partial_{\sigma} X\right)^{2}\right]
$$

Closed String Quantisation II

Simplified action

Taking $h=\eta^{a b}$ and $g=\eta^{\mu \nu}$ gives

$$
S\left[X^{\mu}\right]=\frac{T}{2} \int_{\Sigma} d \tau d \sigma\left[\left(\partial_{\tau} X\right)^{2}-\left(\partial_{\sigma} X\right)^{2}\right]
$$

Classical e.o.m. and boundary condition
Look for functions $X^{\mu}: \mathbb{R}^{2} \rightarrow \mathbb{R},(\tau, \sigma) \rightarrow X^{\mu}(\tau, \sigma) \in L^{2}\left(\mathbb{R}^{2}\right)$ such that

- the string is closed: $X^{\mu}(\tau, \sigma=0)=X^{\mu}(\tau, \sigma=I)$
- the e.o.m. are satisfied, i.e. $\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X^{\mu}=0$

Closed String Quantisation III

Most general solution

$$
\begin{aligned}
X^{\mu}(\tau, \sigma) & =x^{\mu}+\frac{2 \pi \alpha^{\prime}}{L} p^{\mu} \tau+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}, n \neq 0} \frac{\alpha_{n}^{\mu}}{n} \cdot e^{-\frac{2 \pi}{L} i n(\tau-\sigma)} \\
& =+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \in \mathbb{Z}, n \neq 0} \frac{\tilde{\alpha}_{n}^{\mu}}{n} \cdot e^{-\frac{2 \pi}{L} i n(\tau+\sigma)}
\end{aligned}
$$

Poisson brackets

$$
\left\{\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right\}=\left\{\tilde{\alpha}_{m}^{\mu}, \tilde{\alpha}_{n}^{\nu}\right\}=-i m \delta_{m+n, 0} \eta^{\mu \nu}, \quad\left\{\alpha_{m}^{\mu}, \tilde{\alpha}_{n}^{\nu}\right\}=0, \quad\left\{x^{\mu}, p^{\nu}\right\}=\eta^{\prime}
$$

Why no coupling constants?

A closed string self-interaction

worldsheet (Σ, h)
D-dim. spacetime (\mathcal{S}, g)

Consequence

self-interaction $=$ free CFT on worldsheet Σ with one handle

Wrapping numbers parameters

Parameter	Values
β^{1}	$\left\{\frac{1}{2}, 1\right\}$
β^{2}	$\left\{\frac{1}{2}, 1\right\}$
ϵ	$\{-1,1\}$
ρ	$\left\{\frac{1}{3}, 1\right\}$
n_{a}^{2}	\mathbb{Z}
n_{b}^{1}	\mathbb{Z}
n_{c}^{1}	\mathbb{Z}
n_{d}^{2}	\mathbb{Z}

D-branes carry gauge theories II

Mass of an open string excitation between parallel D-branes

$$
\alpha^{\prime} M^{2}|\varphi\rangle=\left(N+\alpha^{\prime}(T \Delta x)^{2}-1\right)|\varphi\rangle
$$

D-branes carry gauge theories II

Mass of an open string excitation between parallel D-branes

$$
\alpha^{\prime} M^{2}|\varphi\rangle=\left(N+\alpha^{\prime}(T \Delta x)^{2}-1\right)|\varphi\rangle
$$

Motivation for $N=3$

D-branes carry gauge theories II

Mass of an open string excitation between parallel D-branes

$$
\alpha^{\prime} M^{2}|\varphi\rangle=\left(N+\alpha^{\prime}(T \Delta x)^{2}-1\right)|\varphi\rangle
$$

Motivation for $N=3$

D-branes carry gauge theories III

Labels of massless bosonic string excitations along Dp-brane

- excitations along $D_{p}:\left(A_{a}\right)_{n}^{m}$ (i.e. $\left.a=0, \ldots, p\right)$
- excitations normal to $D_{p}:\left(X_{i}\right)_{n}^{m}$ (i.e. $\left.i=p+1, \ldots, D-1\right)$

D-branes carry gauge theories III

Labels of massless bosonic string excitations along Dp-brane

- excitations along $D_{p}:\left(A_{a}\right)_{n}^{m}$ (i.e. $\left.a=0, \ldots, p\right)$
- excitations normal to $D_{p}:\left(X_{i}\right)_{n}^{m}$ (i.e. $\left.i=p+1, \ldots, D-1\right)$

Motivation for $N=3$

D-branes carry gauge theories IV

Fact

- $\left(A_{a}\right)_{n}^{m}$ form a $U(N)$ connection
- $\left(X_{i}\right)_{n}^{m}$ are scalar fields in the adjoint rep. of $U(N)$
- Strings that end on a stack of N -coincident Dp-branes are also charged under this $U(N)$ gauge group

D-branes carry gauge theories IV

Fact

- $\left(A_{a}\right)_{n}^{m}$ form a $U(N)$ connection
- $\left(X_{i}\right)_{n}^{m}$ are scalar fields in the adjoint rep. of $U(N)$
- Strings that end on a stack of N -coincident Dp-branes are also charged under this $U(N)$ gauge group

Question

Can we hence use strings between a $U(2)$ and a $U(3)$ brane stack to model quarks?

Supersymmetric D6-branes

Fact

A D6-brane $Z \subset X$ preserves supersymmetry iff $\left.\operatorname{Im}\left(e^{-i \varphi}(\Omega)\right)\right|_{z}=0$.

Supersymmetric D6-branes

Fact

A D6-brane $Z \subset X$ preserves supersymmetry iff $\left.\operatorname{Im}\left(e^{-i \varphi}(\Omega)\right)\right|_{z}=0$.

Consequence

supersymmetric D6-branes \leftrightarrow special Lagrange manifolds $Z \subset X$

Orientifold plane as special Lagrange manifold

σ is a real structure

The antiholomorphic involution $\bar{\sigma}: T^{6} \rightarrow T^{6}$ has the following properties:

- Locally it is complex conjutation.
- $\sigma^{*} \omega=-\omega$
- $\sigma^{*} \Omega=\bar{\Omega}$

Orientifold plane as special Lagrange manifold

σ is a real structure

The antiholomorphic involution $\bar{\sigma}: T^{6} \rightarrow T^{6}$ has the following properties:

- Locally it is complex conjutation.
- $\sigma^{*} \omega=-\omega$
- $\sigma^{*} \Omega=\bar{\Omega}$

Consequence

- Fixpoint locus of $\bar{\sigma}$ defines a special Lagrange manifold - the orientifold plane O6.
- Also fixes reference $\varphi=0$.

[^0]: - Details on parameters

