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SFB-TRR 195: Summary of the research programme

Computing examples has always been a key component of mathematical research.
Modern computers paired with sophisticated mathematical software tools have taken
the possibilities of such calculations to a new level. In the realm of algebra and its
applications, where exact calculations are inevitable, the necessary software tools are
provided by computer algebra systems. Current challenges in this area arise from
the increasing complexity of examples, higher levels of abstraction and the need for
interdisciplinary methods. The TRR 195 aims at taking a leading role in meeting these
challenges.
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F-theory: An interdisciplinary application for the SFB-TRR 195
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F-theory: Background and Motivation (More details: [Weigand ‘18])

Passion from Undergrad: String theory as a unifying theory of all natural phenomena.

String Landscape: A vast solution set to string theory.
Research Goal: Discern solutions aligned with observed particle physics.

(Cosmological implications are largely ignored in my work.)

Focus: F-theory – solutions to string theory with a strong geometric backbone.
Progress: Still uncovering the depths of F-theory.
Strategy:

F-theory

Mathematics Computer tools

OSCAR,
root counter, . . .

Group and
Representation Theory

Polyhedral and
Tropical Geometry

Algebraic and
Commutative Geometry

Number Theory
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Groups meets F-theory
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Groups meet F-theory: Gauge Groups

Groups reveal symmetries and simplify problems in physics.
Gauge Groups:

▶ Lagrangian: Functional, which determines system dynamics when minimized.
▶ Gauge: Regulates redundant degrees of freedom in the Lagrangian.
▶ Gauge group: Mappings between gauges.
▶ Gauge group of electromagnetism, weak, and strong force: SU(3)C × SU(2)W × U(1)Y .
▶ Quantum field theories and string theory based on group principles.

→ Particles classified by gauge group representation theory.
⇒ Gauge groups: Key to F-theory.
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Groups meet F-theory: Gauge Groups from Elliptic Fibrations (Details: [Weigand ‘18])

Axio-dilaton τ : Key to F-theory, a section of a holomorphic SL(2,Z) bundle.
Value of τ at spacetime point sets complex structure of an elliptic curve.

⇒ Value of τ/choice of elliptic curve varies with spacetime point.
⇒ Elliptic fibration: Book-keeping device of axio-dilaton τ

Crucial: Gauge group in F-theory from singularities of elliptic fibration. (Cf. Kodaira classification)
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Groups meet F-theory: Weierstrass Models

Consider the weighted projective space P2,3,1 with coordinates [x : y : z ].
An elliptic curve in Weierstrass form (f , g ∈ C):

C = {[x : y : z ] ∈ P2,3,1 | y2 − x3 − fxz4 − gz6 = 0}

C becomes singular when 4f 3 + 27g2 = 0.
To construct an elliptic fibration over base B, we use sections:

f ∈ H0(B, K⊗4
B ), g ∈ H0(B, K⊗6

B ) .(
This implies x ∈ H0(B, K⊗2

B ), y ∈ H0(B, K⊗3
B ), z ∈ H0(B, OB ).

)
▶ Singularities appear at ∆ = {p ∈ B | 4f (p)3 + 27g(p)2 = 0}.
▶ Gauge group set by vanishing orders of

(
f , g , 4f 3 + 27g2)

at ∆:
Weierstrass table in OSCAR documentation.
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https://docs.oscar-system.org/stable/Experimental/FTheoryTools/weierstrass/


Groups meet F-theory: Tate Models
Often, we seek elliptic fibration with singularities corresponding to a chosen gauge group G .
Typically, this is easier with Tate models:

Define Tate model similar to Weierstrass model, but use ai ∈ H0(B, K⊗i
B ) and

PT = y2 + a1xyz + a3yz3 − x3 − a2x2z2 − a4xz4 − a6z6 .

Recover Weierstrass model:

b2 = 4a2 + a2
1 , b4 = 2a4 + a1a3 , b6 = 4a6 + a2

3 ,

f = −b2
2 − 24b4

48 , g = b3
2 − 36b2b4 + 216b6

864 , PW = y2 − x3 − fxz4 − gz6 .

(Conversely, expressing a Weierstrass model as a Tate model is generally possible only locally.)

▶ Singularities appear at ∆ = {p ∈ B | 4f (p)3 + 27g(p)2 = 0}.
▶ Gauge group set by vanishing orders of (a1, a2, a3, a4, a6) at ∆:

Tate table in OSCAR documentation.
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Groups meet F-theory: An example of a Tate model [Krause Mayrhofer Weigand ‘11]

Goal: Engineer an SU(5) Tate model with singularity over {w = 0} ⊂ B.
1 Look up vanishing orders from Tate table: (0, 1, 2, 3, 5).
2 Factor ai ∈ H0(B, K⊗i

B ) accordingly (assuming this is possible):

a1 = a1 , a2 = a2,1w , a3 = a3,2w2 , a4 = a4,3w3 , a6 = a6,5w5 .

⇒ Voila! Global Tate model with SU(5) singularity over {w = 0}.
Make a yet more special choice [Krause Mayrhofer Weigand ‘11]

a1 = a1 , a2 = a2,1w , a3 = a3,2w2 , a4 = a4,3w3 , a6 ≡ 0 .

→ Enhances gauge group to SU(5) × U(1) (↔ Mordell-Weil group of elliptic fibration).
→ This will be our working example for most of this talk.
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Groups meet F-theory: An OSCAR example

With OSCAR we create this SU(5) × U(1) global Tate model as follows:
base_ring, (a10, a21, a32, a43, a65, w) = QQ["a10", "a21", "a32", "a43", "a65", "w"]
base_grading = [1 2 3 4 6 0; 0 -1 -2 -3 -5 1]
a1 = a10
a2 = a21 * w
a3 = a32 * w^2
a4 = a43 * w^3
a6 = a65 * w^5
ais = [a1, a2, a3, a4, a6]
t = global_tate_model(base_ring, base_grading, 3, ais)
t2 = global_tate_model(base_ring, base_grading, 3, ais; toric_sample = false)

Note: For t we create a particular geometry as base space – a special toric space.
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Toric geometry meets F-theory
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Toric geometry meets F-theory: An Overview [Cox, Little, Schenk ‘11]

A toric variety is an algebraic variety containing an algebraic torus (C∗)n as an open dense
subset, such that the action of the torus on itself extends to the whole variety.

Key Insight:
▶ Defined by combinatorial data from convex polyhedral cones.
▶ Analyzed with polyhedral geometry and combinatorics.

Applications:

▶ Algebraic Geometry:
⋆ Intersection theory, Chow ring, sheaf cohomology and more.

▶ Mirror Symmetry: [Cox, Katz ‘99]

⋆ Deep connection in string theory and algebraic geometry.
⋆ Relies of reflexive lattice polytope and its polar dual.

▶ Geometric Modeling:
⋆ Useful in computer-aided geometric design.
⋆ Foundation for many OSCAR constructions of F-theory models.

(1, 0)

(0, 1)

(−
1,−

1)

σ1σ2

σ3

Fan of the 2-dimensional projective space P2

with three maximal cones σ1, σ2, and σ3.

See also M.B. & L. Kastner, Toric Geometry in OSCAR, ComputerAlgebraRundbrief #72, 2023.
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Toric geometry meets F-theory: Mirror Symmetry and F-theory QSMs

Mirror Symmetry: Relates physics/geometry of
pairs of Calabi-Yau manifolds.

Polar dual: Many constructions use toric geometry.
Via triangulation, a toric variety is defined by a
reflexive lattice polytope P ∈ Rd . The mirror is the
polar dual polytope P◦ with ⟨P, P◦⟩ ≥ −1.
Kreuzer-Skarke list: Complete list of all 3- and
4-dim. reflexive lattice polytopes.
[Kreuzer, Skarke ‘98], [Kreuzer, Skarke ‘00]

F-theory QSMs [Cvetič Halverson Ling Liu Tian ‘19]: O(1015)
F-theory solutions with attractive pyhsics features.

▶ Based on 708 3-dim. reflexive polytopes.
▶ Triangulation yields O(1015) different toric spaces.

(−
1,

−
1,

−
1)

(2, −1, −1)

(−1, 2, −1)
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Toric geometry meets F-theory: Finding Bases for F-theory Models

F-theory models often explore fibrations over families of bases.
Identifying a specific base geometry aids refined studies.

We approximate a “generic” member of the family with toric geometry:
base_ring, (a10, a21, a32, a43, a65, w) = QQ["a10", "a21", "a32", "a43", "a65", "w"]
base_grading = [1 2 3 4 6 0; 0 -1 -2 -3 -5 1]
a1 = a10
a2 = a21 * w
a3 = a32 * w^2
a4 = a43 * w^3
a6 = a65 * w^5
ais = [a1, a2, a3, a4, a6]
t = global_tate_model(base_ring, base_grading, 3, ais)

⇒ Task: Find a 3-dim. toric variety without torus factor and such that its Cox ring
S = Q [a10, a21, a32, a43, a65, w , ] is graded by base_grading.
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Toric geometry meets F-theory: Bases for F-theory tools II

julia> cox_ring(base_space(t))
Multivariate polynomial ring in 6 variables over QQ graded by

a10 -> [1 0]
a21 -> [2 -1]
a32 -> [3 -2]
a43 -> [4 -3]
a65 -> [6 -5]
w -> [0 1]

julia> stanley_reisner_ideal(base_space(t))
ideal(a32*a43*a65, a10*a21*w, a21*a43*a65*w, a21*a32*a65*w, a21*a32*a43*w, a10*a32*a43*w,

a10*a21*a43*a65, a10*a21*a32*a65, a10*a21*a32*a43, a10*a43*a65*w, a10*a32*a65*w)

Stricter rule: To replicate literature results, base must “behave” like 3-dim. affine space.
Issue: The generators a32a43a65 and a10a21w of the Stanley-Reisner ideal conflict.

⇒ Need for geometries beyond the toric regime?
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Toric geometry meets F-theory: (Toric) Resolutions (More details: [Weigand ‘18])

Recall: Starting point in F-theory is a singular elliptic fibration.
▶ It is hard off the physics from the singular geometry.
▶ Common approach: Resolve the singularities & study the smoothed-out geometry.

Key demand: We seek a crepant resolution.
▶ As long as elliptic fibration remains Calabi-Yau (↔ crepant), physics remains “similar”.
▶ Crepancy largely ignored in resolution algorithms.
▶ Crepancy prevents resolution of Q-factorial terminal singularities.

Vanilla scneario: Sequence of toric blowups is sufficient.
▶ The SU(5) × U(1) global Tate model discussed before has this feature. [Krause Mayrhofer Weigand ‘11]

▶ Idea: Set up a database for such findings? Already in place in OSCAR!
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Toric geometry meets F-theory: Blowups II

julia> m = literature_model(arxiv_id = "1109.3454", equation = "3.1");

julia> cox_ring(resolve(m, 1))
Multivariate polynomial ring in 13 variables over QQ graded by

a1 -> [1 0 0 0 0 0 0 0]
a21 -> [0 1 0 0 0 0 0 0]
a32 -> [-1 2 0 0 0 0 0 0]
a43 -> [-2 3 0 0 0 0 0 0]
w -> [0 0 1 0 0 0 0 0]
x -> [0 0 0 1 0 0 0 0]
y -> [0 0 0 0 1 0 0 0]
z -> [0 0 0 0 0 1 0 0]
e1 -> [0 0 0 0 0 0 1 0]
e4 -> [0 0 0 0 0 0 0 1]
e2 -> [1 -1 -1 -1 1 -1 -1 0]
e3 -> [1 0 0 1 -1 1 0 -1]
s -> [-2 2 2 -1 0 2 1 1]
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Algebraic geometry meets F-theory

F-theory

Group and
Representation Theory

Polyhedral (and
Tropical) Geometry

Algebraic Geometry
and Commutative Algebra Number Theory

✓ ✓
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Algebraic Geometry meets F-theory: Desires and Attempts

Desires:
▶ Represent and analyze non-toric generic members of base families.
▶ Cover significant fraction of non-toric solutions to F-theory.
▶ Incorporate crepant resolution techniques, even if they exceed the toric scope.

(E.g. [Arena Jefferson Obinna ‘23])

Current work/ideas:
▶ Toric varieties should benefit from the functionality schemes offer.
▶ F-theory tools should accepts schemes as base.
▶ Study elliptic fibrations over family of bases → “Computational base moduli space”
▶ Models over “arbitrary” base must be evaluable at concrete base, be it toric or a scheme.

⇒ WIP with Anne Frühbis-Krüger, Andrew Turner, Matthias Zach.

⇒ Eventually, back to decipher the physics encoded in those geometries.
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Number theory touches F-theory

F-theory

Group and
Representation Theory

Polyhedral (and
Tropical) Geometry

Algebraic Geometry
and Commutative Algebra Number Theory

✓ ✓

✓

Martin Bies F-Theory: Exemplifying OSCAR’s Pursuit for Multidisciplinary Excellence 21/29



Number Theory touches F-theory: Why root bundles on nodal curves?

F-theory QSMs: 1015 solutions with promising relations to particle physics.

Missing information: Count of Higgs pairs (↔ Physics Nobel Prize).
Detailed study in recent years.

[M.B. Cvetič Donagi Liu Ong ‘21], [M.B. Cvetič Liu ‘21], [M.B. Cvetič Donagi Ong ‘22], [M.B. ‘23], [M.B. Cvetič Donagi Liu Ong ‘23]

Leads to root bundles on nodal curves:
▶ Each QSM has canonical, nodal curve C•. (Origin: Toric K3 desingularizations. Locally, Nodal singularity: {x · y = 0}.)

▶ Physics should pick P• ∈ Pic(C•) s.t. h0(C•, P•) is Higgs pair count.
▶ Current understanding: r ∈ Z≥2, E• ∈ Pic(C•) set by F-theory geometry, s.t.

r · P• = E .

Gives r2g candidates for P• (g = arithmetic genus of C•).
⇒ Determine h0(C•, P•) for all r2g candidates P• to gain insights into F-theory QSM.
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Number Theory touches F-theory: An Example of Brill-Noether Numbers

(−
1,

−
1,

−
1)

(2, −1, −1)

(−1, 2, −1)

(−1, −1, 5)

∆◦
4

Goal: Enumerate all 128 solutions P• to 12P• = 12KC• and find their h0(C•, P•).

Results: (based on [Caporaso Casagrande Cornalba ‘07], but significantly extended)

▶ ’21 Update: 53.6% of 128 roots had 3 global sections. (All other roots untouched.)
▶ ’23 Update: h0(C•, P•) = 4 for 124 roots, and the rest has 3 sections.

Roots Count h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4

128 124 ·
(
124 − 1

)
0 124 0

▶ h0(C•, P•) may depend on finer than combinatorial data (descent data). For such cases we
compute an optimal lower bound an list them in every 2nd column.
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Results: (based on [Caporaso Casagrande Cornalba ‘07], but significantly extended)

▶ ’21 Update: 53.6% of 128 roots had 3 global sections. (All other roots untouched.)
▶ ’23 Update: h0(C•, P•) = 4 for 124 roots, and the rest has 3 sections.

Roots Count h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4

128 124 ·
(
124 − 1

)
0 124 0

▶ h0(C•, P•) may depend on finer than combinatorial data (descent data). For such cases we
compute an optimal lower bound an list them in every 2nd column.
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Number Theory touches F-theory: Brill-Noether numbers [M.B. Cvetič Liu ‘21]

QSM-family (polytope) h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4 h0 = 5 h0 ≥ 5 h0 = 6 h0 ≥ 6

∆◦
8 57.3 ? ? ? ? ? ? ?

∆◦
4 53.6 ? ? ? ? ? ? ?

∆◦
134 48.7 ? ? ? ? ? ? ?

∆◦
128, ∆◦

130, ∆◦
136, ∆◦

236 42.0 ? ? ? ? ? ? ?

∆◦
88 61.1 ? ? ? ? ? ? ?

∆◦
110 57.8 ? ? ? ? ? ? ?

∆◦
272, ∆◦

274 57.5 ? ? ? ? ? ? ?
∆◦

387 57.3 ? ? ? ? ? ? ?
∆◦

798, ∆◦
808, ∆◦

810, ∆◦
812 54.0 ? ? ? ? ? ? ?

∆◦
254 54.7 ? ? ? ? ? ? ?

∆◦
52 54.7 ? ? ? ? ? ? ?

∆◦
302 54.7 ? ? ? ? ? ? ?

∆◦
786 51.3 ? ? ? ? ? ? ?

∆◦
762 51.3 ? ? ? ? ? ? ?

∆◦
417 51.3 ? ? ? ? ? ? ?

∆◦
838 51.3 ? ? ? ? ? ? ?

∆◦
782 51.3 ? ? ? ? ? ? ?

∆◦
377, ∆◦

499, ∆◦
503 48.2 ? ? ? ? ? ? ?

∆◦
1348 48.2 ? ? ? ? ? ? ?

∆◦
882, ∆◦

856 48.2 ? ? ? ? ? ? ?
∆◦

1340 45.2 ? ? ? ? ? ? ?
∆◦

1879 45.2 ? ? ? ? ? ? ?
∆◦

1384 42.5 ? ? ? ? ? ? ?
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Number Theory touches F-theory: Brill-Noether numbers [M.B. Cvetič Donagi Ong ‘22]

QSM-family (polytope) h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4 h0 = 5 h0 ≥ 5 h0 = 6 h0 ≥ 6

∆◦
8 76.4 23.6

∆◦
4 99.0 1.0

∆◦
134 99.8 0.2

∆◦
128, ∆◦

130, ∆◦
136, ∆◦

236 99.9 0.1

∆◦
88 74.9 22.1 2.5 0.5 0.0 0.0

∆◦
110 82.4 14.1 3.1 0.4 0.0

∆◦
272, ∆◦

274 78.1 18.0 3.4 0.5 0.0 0.0
∆◦

387 73.8 21.9 3.5 0.7 0.0 0.0
∆◦

798, ∆◦
808, ∆◦

810, ∆◦
812 77.0 17.9 4.4 0.7 0.0 0.0

∆◦
254 95.9 0.5 3.5 0.0 0.0 0.0

∆◦
52 95.3 0.7 3.9 0.0 0.0 0.0

∆◦
302 95.9 0.5 3.5 0.0 0.0

∆◦
786 94.8 0.3 4.8 0.0 0.0 0.0

∆◦
762 94.8 0.3 4.9 0.0 0.0 0.0

∆◦
417 94.8 0.3 4.8 0.0 0.0 0.0 0.0

∆◦
838 94.7 0.3 5.0 0.0 0.0 0.0

∆◦
782 94.6 0.3 5.0 0.0 0.0 0.0

∆◦
377, ∆◦

499, ∆◦
503 93.4 0.2 6.2 0.0 0.1 0.0

∆◦
1348 93.7 0.0 6.2 0.0 0.1 0.0

∆◦
882, ∆◦

856 93.4 0.3 6.2 0.0 0.1 0.0 0.0
∆◦

1340 92.3 0.0 7.6 0.0 0.1 0.0
∆◦

1879 92.3 0.0 7.5 0.0 0.1 0.0
∆◦

1384 90.9 0.0 8.9 0.0 0.2 0.0
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Number Theory touches F-theory: Brill-Noether numbers [M.B. Cvetič Donagi Ong ‘23]

QSM-family (polytope) h0 = 3 h0 ≥ 3 h0 = 4 h0 ≥ 4 h0 = 5 h0 ≥ 5 h0 = 6 h0 ≥ 6

∆◦
8 99.9421 0.0579

∆◦
4 99.9952 0.0048

∆◦
134 99.9952 0.0048

∆◦
128, ∆◦

130, ∆◦
136, ∆◦

236 99.9952 0.0048

∆◦
88 96.6700 0.3361 2.9850 0.0089

∆◦
110 95.6268 0.8372 3.5179 0.0050 0.0131

∆◦
272, ∆◦

274 95.5097 0.5155 3.9552 0.0016 0.0180
∆◦

387 95.1923 0.4981 4.2773 0.0323
∆◦

798, ∆◦
808, ∆◦

810, ∆◦
812 93.8268 0.8795 5.2390 0.0029 0.0518

∆◦
254 96.3942 0.0687 3.5193 0.0003 0.0175

∆◦
52 96.0587 0.0171 3.9066 0.0000 0.0176

∆◦
302 96.3960 0.0636 3.5222 0.0001 0.0181

∆◦
786 95.0714 0.0393 4.8466 0.0002 0.0425

∆◦
762 95.0167 0.0369 4.9052 0.0005 0.0407

∆◦
417 95.0745 0.0433 4.8389 0.0003 0.0429 0.0001

∆◦
838 94.9092 0.0215 5.0216 0.0000 0.0477

∆◦
782 94.9019 0.0161 5.0359 0.0000 0.0461

∆◦
377, ∆◦

499, ∆◦
503 93.6500 0.0347 6.2312 0.0005 0.0836

∆◦
1348 93.7075 0.0112 6.1978 0.0001 0.0833 0.0001

∆◦
882, ∆◦

856 93.6546 0.0425 6.2190 0.0009 0.0825 0.0005
∆◦

1340 92.2989 0.0064 7.5515 0.0001 0.1427 0.0004
∆◦

1879 92.3015 0.0108 7.5447 0.0002 0.1421 0.0007
∆◦

1384 90.8524 0.0031 8.9219 0.0001 0.2213 0.0012
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Number Theory touches F-theory: Dual Graph ∆◦
254

1 3 2

4

05

20P• = 16KC•
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Number Theory touches F-theory: Summary and outlook

An F-theory inspired cryptosystem?
▶ Task: For a given integer partition, find graph and root constraint, s.t. the ensuing

Brill-Noether numbers match the given partition.
▶ Example: 128 = 124 ·

(
124 − 1

)
+ 0 + 124 + 0 (public key) leads to (private key)

12P• = 12KC•

▶ Daunting task! Inverse possible with tailor made software RootCounter.

Connection between graphs and Brill-Noether numbers begs to be investigated.
▶ Could benefit from machine learning tools and analytic/algebraic insights.
▶ Once systematics clear, we can apply this to complex curves, extending previous work.

⇒ Better approximation of F-theory QSMs’ Higgs counts (& vector-like spectra).
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Summary: F-TheoryTools – Summary and outlook

Initial challenge: Crepant resolution of singular elliptic fibration.
Crepant prevents resolving Q-factorial terminal singularities. Currently, apply entire
F-theory toolkit and assume non-resolvability should those standard methods fail.

Anticipated key features:
1 State-of-the-art resolution techniques, in particular beyond toric blowups.
2 Database for utilizing established literature constructions.

Post-2024 objective: Automate extracting physics from Ŷ4.
▶ Topological intersection numbers (↔ chiral spectrum).
▶ Intersection theory in the Chow ring (↔ vector-like spectra).
▶ Nodal curves and Brill-Noether numbers (↔ approx. Higgs counts for F-theory QSMs).
▶ Learn (some features) of the Mordell-Weil group (↔ Abelian gauge factors).
▶ Include powerful established techniques from the F-theory community.

(. . . [Ling Weigand ‘16], [Jefferson Taylor Turner ‘21], [Jefferson Turner ‘22], . . . )

⇒ Numerous exciting applications by extending and streamlining standard processes!

Thank you for your attention!
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