Root bundles: Applications to F-theory Standard model

Martin Bies

RPTU Kaiserslautern-Landau

String Math Conference Melbourne, Australia July 12, 2023

Based on work with M. Cvetič, R. Donagi, M. Liu, M. Ong 2102.10115, 2104.08297, 2205.00008, 2303.08144 & **2307.02535**.

Rep. R of $SU(3) \times SU(2) \times U(1)$	$n_{f R}=\#$ chiral superfields in rep $f R$	$n_{\overline{\mathbf{R}}} = \# ext{ chiral}$ superfields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} Chiral index \\ \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{array}$
$(3, 2)_{1/6}$			
$(1,2)_{-1/2}$			
$(\overline{3},1)_{-2/3}$			
$(\overline{3},1)_{1/3}$			
$(1,1)_1$			
How to compute?			

Rep. R of $SU(3) \times SU(2) \times U(1)$	$n_{\mathbf{R}}=\#$ chiral superfields in rep \mathbf{R}	$n_{\overline{\mathbf{R}}}=\#~{ m chiral}$ superfields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \text{Chiral index} \\ \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{array}$
$(3, 2)_{1/6}$			3
$(1,2)_{-1/2}$			3
$(\overline{\bf 3},{\bf 1})_{-2/3}$			3
$(\overline{3},1)_{1/3}$			3
$(1,1)_1$			3
How to compute?			

Rep. R of $SU(3) \times SU(2) \times U(1)$	$n_{f R}=\#$ chiral superfields in rep $f R$	$n_{\overline{\mathbf{R}}}=\#$ chiral superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
$(3, 2)_{1/6}$	3	0	3
$(1,2)_{-1/2}$	4	1	3
$(\overline{\bf 3}, {\bf 1})_{-2/3}$	3	0	3
$(\overline{3},1)_{1/3}$	3	0	3
$(1,1)_1$	3	0	3
How to compute?			

Rep. R of $SU(3) \times SU(2) \times U(1)$	$n_{\mathbf{R}}=\#$ chiral superfields in rep \mathbf{R}	$n_{\overline{\mathbf{R}}}=\#$ chiral superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
(3,2) _{1/6}	3	0	3
$(1,2)_{-1/2}$	4 (4, 1) = (3, 0) ⊕ (1,	3	
$(\overline{\bf 3}, {\bf 1})_{-2/3}$	3	0	3
$(\overline{3},1)_{1/3}$	3	0	3
(1,1) ₁	3	0	3
How to compute?			

Rep. R of $SU(3) \times SU(2) \times U(1)$	$n_{\mathbf{R}} = \#$ chiral superfields in rep \mathbf{R}	$n_{\overline{\mathbf{R}}} = \# ext{ chiral}$ superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
(3,2) _{1/6}	3	0	3
$(1,2)_{-1/2}$	4 (4, 1) = (3, 0) ⊕ (1,	3	
$(\overline{\bf 3},{\bf 1})_{-2/3}$	3	0	3
$(\overline{3},1)_{1/3}$	3	0	3
$(1,1)_1$	3	0	3
How to compute?			$\chi=\int\limits_{\mathcal{S}_{\mathbf{R}}}\mathcal{G}_{4}=3$ [Cvetič Halverson Lin Liu Tian '19]

Rep. R of $SU(3) \times SU(2) \times U(1)$	$n_{f R}=\#$ chiral superfields in rep $f R$	$n_{\overline{\mathbf{R}}}=\#$ chiral superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
$(3, 2)_{1/6}$	3	0	3
$(1,2)_{-1/2}$	4 (4, 1) = (3, 0) ⊕ (1,	3	
$({\bf \overline{3}},{\bf 1})_{-2/3}$	3	0	3
$(\overline{3},1)_{1/3}$	3	0	3
$(1,1)_1$	3	0	3
How to compute?	$h^0(\mathit{C}_{R}, \mathcal{L}_{R})$ [M.B. Mayrhofer Pehle Weigand " [M.B. '18] and r	$h^1(\mathcal{C}_{\mathbf{R}},\mathcal{L}_{\mathbf{R}})$ 14], [M.B. Mayrhofer Weigand '17] eferences therein	$\chi=\int\limits_{S_{\mathbf{R}}}G_{4}=3$ [Cvetič Halverson Lin Liu Tian '19]

Rep. R of $SU(3) \times SU(2) \times U(1)$	$n_{f R}=\#$ chiral superfields in rep $f R$	$n_{\overline{\mathbf{R}}}=\#$ chiral superfields in rep $\overline{\mathbf{R}}$	$\begin{pmatrix} \text{Chiral index} \\ \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{pmatrix}$
$(3, 2)_{1/6}$	3	0	3
$(1,2)_{-1/2}$	4 (4, 1) = (3, 0) ⊕ (1,	3	
$({\bf \overline{3}},{\bf 1})_{-2/3}$	3	0	3
$(\overline{3},1)_{1/3}$	3	0	3
$(1,1)_1$	3	0	3
How to compute?	$h^0(C_{f R},{\cal L}_{f R})$ [M.B. Mayrhofer Pehle Weigand " [M.B. '18] and r	$h^1(\mathit{C}_{R}, \mathcal{L}_{R})$ 14], [M.B. Mayrhofer Weigand '17] eferences therein	$ \begin{vmatrix} \chi = \deg \left(\mathcal{L}_{R} \right) - g \left(\mathcal{C}_{R} \right) + 1 \\ \chi = \int_{\mathcal{S}_{R}} \mathcal{G}_{4} = 3 \\ \text{[Cvetič Halverson Lin Liu Tian '19]} \end{aligned} $

Challenges for vector-like spectra in F-theory QSMs

General findings

- Matter in rep. **R** localized on smooth, irreducible matter curve $C_{\mathbf{R}}$ of genus g.
- It holds $\mathcal{L}_{R} = \mathcal{S} \otimes \mathcal{F}_{R}$ [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]
 - ${\cal S}$ is one of the 2^{2g} spin bundles on ${\it C}_{{\sf R}}$. [Atiyah '71], [Mumford '71]
 - $\mathcal{F}_{\mathbf{R}}$ a contribution from the G_4 -flux.

$$\Rightarrow$$
 Compute $n_{\mathbf{R}} = h^0(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$ and $n_{\overline{\mathbf{R}}} = h^1(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$.

Challenges for vector-like spectra in F-theory QSMs

General findings

- Matter in rep. **R** localized on smooth, irreducible matter curve $C_{\mathbf{R}}$ of genus g.
- It holds $\mathcal{L}_{R} = \mathcal{S} \otimes \mathcal{F}_{R}$ [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]
 - ${\cal S}$ is one of the 2^{2g} spin bundles on ${\it C}_{{\sf R}}$. [Atiyah '71], [Mumford '71]
 - $\mathcal{F}_{\mathbf{R}}$ a contribution from the G_4 -flux.

$$\Rightarrow$$
 Compute $n_{\mathbf{R}} = h^0(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$ and $n_{\overline{\mathbf{R}}} = h^1(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$.

Challenges

- $n_{\mathbf{R}}$, $n_{\overline{\mathbf{R}}}$ depend on choice of spin bundle. Which S is compatible with the physics?
- In QSMs, cannot (yet) find unique $\mathcal{F}_{\mathbf{R}}$. [M.B. Cvetič Donagi Liu Ong '21]
- Both points fairly tricky to address.
 - \rightarrow Instead, formulate necessary conditions and study their solutions.

For
$$(3, 2)_{1/6}$$
, find **necessary** condition: $\mathcal{L}_{(3,2)_{1/6}} = \sqrt[20]{\mathcal{K}_{C_{(3,2)_{1/6}}}^{\otimes 16}}$

(Constraint stated for base 3-folds B_3 with $K_{B_3}^3 = 10$. See [M.B. Cvetič Donagi Liu Ong '21] for constraints in bases B_3 with other $K_{B_3}^3$.)

- Has 20^{12} solutions \leftrightarrow Infinitely many line bundles with $\chi = 3$. \rightarrow Highly non-trivial constraint.
- Likely, not all solutions physical (↔ necessary condition).
 → To be addressed in future work.
- \Rightarrow Goal: Compute $h^0(\mathcal{C}_{(\mathbf{3},\mathbf{2})_{1/6}},\mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}})$ for all 20^{12} solutions.

For
$$(\mathbf{3},\mathbf{2})_{1/6}$$
, find **necessary** condition: $\mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}} = \sqrt[20]{\mathcal{K}_{\mathcal{C}_{(\mathbf{3},\mathbf{2})_{1/6}}}^{\otimes 16}}$

(Constraint stated for base 3-folds B_3 with $K_{B_3}^3 = 10$. See [M.B. Cvetič Donagi Liu Ong '21] for constraints in bases B_3 with other $K_{B_3}^3$.)

- Has 20^{12} solutions \leftrightarrow Infinitely many line bundles with $\chi = 3$. \rightarrow Highly non-trivial constraint.
- Likely, not all solutions physical (↔ necessary condition).
 → To be addressed in future work.
- \Rightarrow Goal: Compute $h^0(\mathcal{C}_{(\mathbf{3},\mathbf{2})_{1/6}},\mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}})$ for all 20^{12} solutions.

Challenges

- Hard to construct solutions $\mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}}$ on smooth, irreducible curve.
- $h^0(\mathcal{C}_{(\mathbf{3},\mathbf{2})_{1/6}},\mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}})$ may depend on complex structure.

Approximation by limit roots [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

• F-theory QSMs admit canonical nodal matter curve C^{\bullet}_{R} [M.B. Cvetič Liu '21]

• F-theory QSMs admit canonical nodal matter curve C[•]_R [M.B. Cvetič Liu '21]

(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y = 0$.)

• Limit root bundles on C_{R}^{\bullet} well understood [Jarves '98], [Caporaso Casagrande Cornalba '04].

- Limit root bundles on C_{R}^{\bullet} well understood [Jarves '98], [Caporaso Casagrande Cornalba '04].
 - Explicit description from bi-weighted graphs.
 - Enumeration of **all** limit roots is combinatoric challenge (\leftrightarrow computer program).

(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y = 0$.)

Enumerate all limit roots with computer and **try to** find h^0 .

(https://github.com/Julia-meets-String-Theory/RootCounter)

- Limit root bundles on $C_{\mathbf{R}}^{\bullet}$ well understood [Jarves '98], [Caporaso Casagrande Cornalba '04].
 - Explicit description from bi-weighted graphs.
 - Enumeration of **all** limit roots is combinatoric challenge (\leftrightarrow computer program).

(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y = 0$.)

Enumerate all limit roots with computer and **try to** find h^0 .

(https://github.com/Julia-meets-String-Theory/RootCounter)

- Limit root bundles on $C_{\mathbf{R}}^{\bullet}$ well understood [Jarves '98], [Caporaso Casagrande Cornalba '04].
 - Explicit description from bi-weighted graphs.
 - Enumeration of **all** limit roots is combinatoric challenge (\leftrightarrow computer program).
 - Upper semicontinuity: $h^0(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}) \leq h^0(C_{\mathbf{R}}^{\bullet}, \mathcal{L}_{\mathbf{R}}^{\bullet}).$

(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y = 0$.)

(https://github.com/Julia-meets-String-Theory/RootCounter)

- Limit root bundles on $C_{\mathbf{R}}^{\bullet}$ well understood [Jarves '98], [Caporaso Casagrande Cornalba '04].
 - Explicit description from bi-weighted graphs.
 - Enumeration of **all** limit roots is combinatoric challenge (\leftrightarrow computer program).
 - Upper semicontinuity: $h^0(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}) \leq h^0(C_{\mathbf{R}}^{\bullet}, \mathcal{L}_{\mathbf{R}}^{\bullet}).$

Line bundle *L* s.t. $L|_{C_i} = \mathcal{O}_{\mathbb{P}^1}(d_i)$

Line bundle *L* s.t. $L|_{C_i} = \mathcal{O}_{\mathbb{P}^1}(0)$

Brill-Noether numbers of $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$ in QSMs [M.B. Cvetič Liu '21]

QSM-family (polytope)	$ h^0 = 3$	$h^0 \geq 3$	$h^{0} = 4$	$h^0 \ge 4$	$ h^0 = 5$	$h^0 \ge 5$	$ h^0=6$	$h^0 \ge 6$
Δ_8°	57.3	?	?	?	?	?	?	?

Brill-Noether numbers of $(\overline{\mathbf{3}},\mathbf{2})_{1/6}$ in QSMs [M.B. Cvetič Liu '21]

QSM-family (polytope)	$ h^0 = 3$	$h^0 \geq 3$	$ h^0 = 4$	$h^0 \ge 4$	$h^0 = 5$	$h^0 \ge 5$	$ h^0 = 6$	$h^0 \ge 6$
Δ_8°	57.3	?	?	?	?	?	?	?
Δ_4°	53.6	?	?	?	?	?	?	?
Δ°_{134}	48.7	?	?	?	?	?	?	?
$\Delta_{128}^\circ,\ \Delta_{130}^\circ,\ \Delta_{136}^\circ,\ \Delta_{236}^\circ$	42.0	?	?	?	?	?	?	?
Δ°_{88}	61.1	?	?	?	?	?	?	?
Δ°_{110}	57.8	?	?	?	?	?	?	?
Δ°_{272} , Δ°_{274}	57.5	?	?	?	?	?	?	?
Δ°_{387}	57.3	?	?	?	?	?	?	?
$\Delta^\circ_{798},\ \Delta^\circ_{808},\ \Delta^\circ_{810},\ \Delta^\circ_{812}$	54.0	?	?	?	?	?	?	?
Δ°_{254}	54.7	?	?	?	?	?	?	?
Δ_{52}°	54.7	?	?	?	?	?	?	?
Δ°_{302}	54.7	?	?	?	?	?	?	?
Δ°_{786}	51.3	?	?	?	?	?	?	?
Δ°_{762}	51.3	?	?	?	?	?	?	?
Δ°_{417}	51.3	?	?	?	?	?	?	?
Δ°_{838}	51.3	?	?	?	?	?	?	?
Δ°_{782}	51.3	?	?	?	?	?	?	?
$\Delta^{\circ}_{377}, \Delta^{\circ}_{499}, \Delta^{\circ}_{503}$	48.2	?	?	?	?	?	?	?
Δ°_{1348}	48.2	?	?	?	?	?	?	?
Δ°_{882} , Δ°_{856}	48.2	?	?	?	?	?	?	?
Δ°_{1340}	45.2	?	?	?	?	?	?	?
Δ°_{1879}	45.2	?	?	?	?	?	?	?
Δ°_{1384}	42.5	?	?	?	?	?	?	?

Brill-Noether numbers of $(\overline{\mathbf{3}},\mathbf{2})_{1/6}$ in QSMs [M.B. Cvetič Donagi Ong '22]

QSM-family (polytope)	$ h^0 = 3$	$h^0 \geq 3$	$ h^0 = 4$	$h^0 \ge 4$	$h^0 = 5$	$h^0 \ge 5$	$ h^0 = 6$	$h^0 \ge 6$
Δ_8°	76.4	23.6						
Δ_4°	99.0	1.0						
Δ°_{134}	99.8	0.2						
$\Delta_{128}^{\circ}, \ \Delta_{130}^{\circ}, \ \Delta_{136}^{\circ}, \ \Delta_{236}^{\circ}$	99.9	0.1						
Δ°_{88}	74.9	22.1	2.5	0.5	0.0	0.0		
Δ°_{110}	82.4	14.1	3.1	0.4	0.0			
Δ°_{272} , Δ°_{274}	78.1	18.0	3.4	0.5	0.0	0.0		
Δ°_{387}	73.8	21.9	3.5	0.7	0.0	0.0		
$\Delta^{\circ}_{798}, \ \Delta^{\circ}_{808}, \ \Delta^{\circ}_{810}, \ \Delta^{\circ}_{812}$	77.0	17.9	4.4	0.7	0.0	0.0		
Δ°_{254}	95.9	0.5	3.5	0.0	0.0	0.0		
Δ_{52}°	95.3	0.7	3.9	0.0	0.0	0.0		
Δ°_{302}	95.9	0.5	3.5	0.0	0.0			
Δ°_{786}	94.8	0.3	4.8	0.0	0.0	0.0		
Δ°_{762}	94.8	0.3	4.9	0.0	0.0	0.0		
Δ°_{417}	94.8	0.3	4.8	0.0	0.0	0.0	0.0	
Δ°_{838}	94.7	0.3	5.0	0.0	0.0	0.0		
Δ°_{782}	94.6	0.3	5.0	0.0	0.0	0.0		
$\Delta^{\circ}_{377}, \Delta^{\circ}_{499}, \Delta^{\circ}_{503}$	93.4	0.2	6.2	0.0	0.1	0.0		
Δ°_{1348}	93.7	0.0	6.2	0.0	0.1		0.0	
Δ°_{882} , Δ°_{856}	93.4	0.3	6.2	0.0	0.1	0.0	0.0	
Δ°_{1340}	92.3	0.0	7.6	0.0	0.1		0.0	
Δ°_{1879}	92.3	0.0	7.5	0.0	0.1		0.0	
Δ°_{1384}	90.9	0.0	8.9	0.0	0.2		0.0	

Martin Bies Root bundles: Applications to F-theory Standard model

Brill-Noether numbers of $(\overline{\mathbf{3}},\mathbf{2})_{1/6}$ in QSMs [M.B. Cvetič Donagi Ong '23]

QSM-family (polytope)	$ h^0 = 3$	$h^0 \geq 3$	$h^0 = 4$	$h^0 \ge 4$	$h^0 = 5$	$h^0 \ge 5$	$h^{0} = 6$	$h^0 \ge 6$
Δ_8°	99.9421		0.0579					
Δ_4°	99.9952		0.0048					
Δ°_{134}	99.9952		0.0048					
$\Delta_{128}^\circ,\Delta_{130}^\circ,\Delta_{136}^\circ,\Delta_{236}^\circ$	99.9952		0.0048					
Δ_{88}°	96.6700	0.3361	2.9850		0.0089			
Δ°_{110}	95.6268	0.8372	3.5179	0.0050	0.0131			
Δ°_{272} , Δ°_{274}	95.5097	0.5155	3.9552	0.0016	0.0180			
Δ°_{387}	95.1923	0.4981	4.2773		0.0323			
Δ°_{798} , Δ°_{808} , Δ°_{810} , Δ°_{812}	93.8268	0.8795	5.2390	0.0029	0.0518			
Δ°_{254}	96.3942	0.0687	3.5193	0.0003	0.0175			
Δ_{52}°	96.0587	0.0171	3.9066	0.0000	0.0176			
Δ°_{302}	96.3960	0.0636	3.5222	0.0001	0.0181			
Δ°_{786}	95.0714	0.0393	4.8466	0.0002	0.0425			
Δ°_{762}	95.0167	0.0369	4.9052	0.0005	0.0407			
Δ°_{417}	95.0745	0.0433	4.8389	0.0003	0.0429		0.0001	
Δ°_{838}	94.9092	0.0215	5.0216	0.0000	0.0477			
Δ°_{782}	94.9019	0.0161	5.0359	0.0000	0.0461			
$\Delta^{\circ}_{377}, \Delta^{\circ}_{499}, \Delta^{\circ}_{503}$	93.6500	0.0347	6.2312	0.0005	0.0836			
Δ°_{1348}	93.7075	0.0112	6.1978	0.0001	0.0833		0.0001	
Δ°_{882} , Δ°_{856}	93.6546	0.0425	6.2190	0.0009	0.0825		0.0005	
Δ°_{1340}	92.2989	0.0064	7.5515	0.0001	0.1427		0.0004	
Δ°_{1879}	92.3015	0.0108	7.5447	0.0002	0.1421		0.0007	
Δ°_{1384}	90.8524	0.0031	8.9219	0.0001	0.2213		0.0012	

9/12

T1: Prune a leaf.

- Summary:
 - Pushed ability to tell h^0 for limit roots to the next level.
 - More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$.

- Summary:
 - Pushed ability to tell h^0 for limit roots to the next level.
 - More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$.
- Outlook:
 - Physics advances:
 - $\bullet\,$ Which spin bundles ${\cal S}$ on the matter curves are compatible with the compactification?
 - Which \mathcal{F}_R are induced from G_4 -flux in F-theory QSMs?
 - Understand the smoothing $C^{\bullet}_{\mathsf{R}} \to C_{\mathsf{R}}$ from Yukawa interactions?

- Summary:
 - Pushed ability to tell h^0 for limit roots to the next level.
 - More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$.
- Outlook:
 - Physics advances:
 - $\bullet\,$ Which spin bundles ${\cal S}$ on the matter curves are compatible with the compactification?
 - Which \mathcal{F}_R are induced from G_4 -flux in F-theory QSMs?
 - Understand the smoothing $C^{\bullet}_{\mathsf{R}} \to C_{\mathsf{R}}$ from Yukawa interactions?
 - Mathematics advances:
 - Formulate Brill-Noether theory of (limit) roots on nodal curves.
 - \leftrightarrow Gain inspiration from machine learning techniques?
 - Applications in cryptography?

- Summary:
 - Pushed ability to tell h^0 for limit roots to the next level.
 - More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$.
- Outlook:
 - Physics advances:
 - $\bullet\,$ Which spin bundles ${\cal S}$ on the matter curves are compatible with the compactification?
 - Which \mathcal{F}_R are induced from G_4 -flux in F-theory QSMs?
 - Understand the smoothing $C_{R}^{\bullet} \rightarrow C_{R}$ from Yukawa interactions?
 - Mathematics advances:
 - Formulate Brill-Noether theory of (limit) roots on nodal curves.
 - \leftrightarrow Gain inspiration from machine learning techniques?
 - Applications in cryptography?
 - Software advances:
 - Speedups to make computations feasable for roots on Higgs curve.
 - Integrate RootCounter into FTheoryTools/OSCAR.

- Summary:
 - Pushed ability to tell h^0 for limit roots to the next level.
 - More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$.
- Outlook:
 - Physics advances:
 - $\bullet\,$ Which spin bundles ${\cal S}$ on the matter curves are compatible with the compactification?
 - Which \mathcal{F}_R are induced from G_4 -flux in F-theory QSMs?
 - Understand the smoothing $C^{\bullet}_{\mathsf{R}} \to C_{\mathsf{R}}$ from Yukawa interactions?
 - Mathematics advances:
 - Formulate Brill-Noether theory of (limit) roots on nodal curves.
 - \leftrightarrow Gain inspiration from machine learning techniques?
 - Applications in cryptography?
 - Software advances:
 - Speedups to make computations feasable for roots on Higgs curve.
 - Integrate RootCounter into FTheoryTools/OSCAR. (cf. my poster)

- Summary:
 - Pushed ability to tell h^0 for limit roots to the next level.
 - More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$.
- Outlook:
 - Physics advances:
 - $\bullet\,$ Which spin bundles ${\cal S}$ on the matter curves are compatible with the compactification?
 - Which \mathcal{F}_R are induced from G_4 -flux in F-theory QSMs?
 - Understand the smoothing $C^{\bullet}_{\mathsf{R}} \to C_{\mathsf{R}}$ from Yukawa interactions?
 - Mathematics advances:
 - Formulate Brill-Noether theory of (limit) roots on nodal curves.
 - $\leftrightarrow \text{ Gain inspiration from machine learning techniques?}$
 - Applications in cryptography?
 - Software advances:
 - Speedups to make computations feasable for roots on Higgs curve.
 - Integrate RootCounter into FTheoryTools/OSCAR. (cf. my poster)

Thank you for your attention!

Improvements – more details

- First estimates computed in [M.B. Cvetič Liu '21]:
 - Enumerate **full blow-up** limit roots with $h^0 = 3$.
 - No estimate for uncertainties.

Improvements – more details

- First estimates computed in [M.B. Cvetič Liu '21]:
 - Enumerate **full blow-up** limit roots with $h^0 = 3$.
 - No estimate for uncertainties.
- Ø Refinement/extension in [M.B. Cvetič Donagi Ong '22]:
 - Enumerate all limit roots.
 - *h*⁰-computation from line bundle cohomology on rational **tree-like** nodal curves.

Improvements – more details

- First estimates computed in [M.B. Cvetič Liu '21]:
 - Enumerate **full blow-up** limit roots with $h^0 = 3$.
 - No estimate for uncertainties.
- Ø Refinement/extension in [M.B. Cvetič Donagi Ong '22]:
 - Enumerate all limit roots.
 - h⁰-computation from line bundle cohomology on rational tree-like nodal curves.
- Set more refinements [M.B. Cvetič Donagi Ong '23]:
 - *h*⁰-computation on rational and elliptic **circuits**.
 - Achieved by 3-step procedure:
 - Prune trees,
 - Remove internal edges,
 - Olassification of terminal circuits and their line bundle cohomologies.
 - $\Rightarrow~$ Optimal results: Refinements require geometric data that is currently not available.

(Required refined data: Descent data of line bundles, divisor on elliptic components.)