Root bundles: Applications to F-theory Standard model

Martin Bies
RPTU Kaiserslautern-Landau
String Math Conference
Melbourne, Australia
July 12, 2023

Based on work with M. Cvetič, R. Donagi, M. Liu, M. Ong 2102.10115, 2104.08297, 2205.00008, 2303.08144 \& 2307.02535.

Rep. \mathbf{R} of $S U(3) \times S U(2) \times U(1)$	$n_{\mathbf{R}}=$ \# chiral superfields in rep \mathbf{R}	$n_{\overline{\mathbf{R}}}=$ \# chiral superfields in rep $\overline{\mathbf{R}}$
$(\mathbf{3}, \mathbf{2})_{1 / 6}$		Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$(\mathbf{1}, \mathbf{2})_{-1 / 2}$		
$\left(\overline{\mathbf{3}, \mathbf{1})_{-2 / 3}}\right.$		
$\left(\overline{\mathbf{3}, \mathbf{1})_{1 / 3}}\right.$		
$(\mathbf{1}, \mathbf{1})_{1}$		
How to compute?		

Rep. \mathbf{R} of $S U(3) \times S U(2) \times U(1)$	$n_{\mathbf{R}}=$ \# chiral superfields in rep \mathbf{R}	$n_{\overline{\mathbf{R}}}=$ \# chiral superfields in rep $\overline{\mathbf{R}}$
$(\mathbf{3}, \mathbf{2})_{1 / 6}$		Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$(\mathbf{1}, \mathbf{2})_{-1 / 2}$		3
$\left(\overline{\mathbf{3}, \mathbf{1})_{-2 / 3}}\right.$		3
$(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}$		3
$(\mathbf{1}, \mathbf{1})_{1}$		3
How to compute?		

Rep. \mathbf{R} of $S U(3) \times S U(2) \times U(1)$	$n_{\mathbf{R}}=$ \# chiral superfields in rep \mathbf{R}	$n_{\overline{\mathbf{R}}}=$ \# chiral superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$(\mathbf{3}, \mathbf{2})_{1 / 6}$	3	0	3
$(\mathbf{1}, \mathbf{2})_{-1 / 2}$	4	1	3
$\left(\overline{\mathbf{3}, \mathbf{1})_{-2 / 3}}\right.$	3	0	3
$\left(\overline{\mathbf{3}, \mathbf{1})_{1 / 3}}\right.$	3	0	3
$(\mathbf{1}, \mathbf{1})_{1}$	3	0	3
How to compute?			

Rep. \mathbf{R} of $S U(3) \times S U(2) \times U(1)$	$n_{\mathbf{R}}=$ \# chiral superfields in rep \mathbf{R}	$n_{\overline{\mathbf{R}}}=$ \# chiral superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$(\mathbf{3}, \mathbf{2})_{1 / 6}$	3	0	3
$(\mathbf{1}, \mathbf{2})_{-1 / 2}$	4 $(4,1)=(3,0) \oplus(1,1)=$ eeptons + Higes	1	3
$\left(\overline{\mathbf{3}, \mathbf{1})_{-2 / 3}}\right.$	3	0	3
$\left(\overline{\mathbf{3}, \mathbf{1})_{1 / 3}}\right.$	3	0	3
$(\mathbf{1}, \mathbf{1})_{1}$	3	0	3
How to compute?			

Rep. \mathbf{R} of $S U(3) \times S U(2) \times U(1)$	$n_{\mathrm{R}}=\#$ chiral superfields in rep \mathbf{R}	$n_{\overline{\mathrm{R}}}=$ \# chiral superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathrm{R}}}$
$(3,2)_{1 / 6}$	3	0	3
$(1,2)_{-1 / 2}$	4 $(4,1)=(3,0) \oplus(1,1)$	$\begin{array}{r} 1 \\ 12)=\text { leptons }+ \text { Higess } \end{array}$	3
$(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$	3	0	3
$(\overline{3}, 1)_{1 / 3}$	3	0	3
$(1,1)_{1}$	3	0	3
How to compute?			$\chi=\int_{S_{R}} G_{4}=3$

Rep. \mathbf{R} of $S U(3) \times S U(2) \times U(1)$	$n_{\mathrm{R}}=\#$ chiral $\quad n_{\overline{\mathrm{R}}}=\#$ chiral superfields in rep \mathbf{R} superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathrm{R}}-n_{\overline{\mathrm{R}}}$
$(3,2)_{1 / 6}$	30	3
$(1,2)_{-1 / 2}$	$\begin{array}{lc} 4 & 1 \\ (4,1)=(3,0) \oplus(1,1)=\text { leptons }+ \text { Higss } \end{array}$	3
$(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$	30	3
$(\overline{3}, 1)_{1 / 3}$	30	3
$(1,1)_{1}$	30	3
How to compute?	$h^{0}\left(\mathcal{C}_{\mathrm{R}}, \mathcal{L}_{\mathrm{R}}\right) \quad h^{1}\left(\mathcal{C}_{\mathrm{R}}, \mathcal{L}_{\mathrm{R}}\right)$ [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17] [M.B. '18] and references therein	$\chi=\int_{S_{\mathrm{R}}} G_{4}=3$

Rep. R of $S U(3) \times S U(2) \times U(1)$	$n_{\mathrm{R}}=\#$ chiral $\quad n_{\overline{\mathrm{R}}}=\#$ chiral superfields in rep \mathbf{R} superfields in rep $\overline{\mathbf{R}}$	Chiral index $\chi=n_{\mathbf{R}}-n_{\overline{\mathbf{R}}}$
$(3,2)_{1 / 6}$	30	3
$(1,2)_{-1 / 2}$	$\begin{array}{cc} \hline 4 & 1 \\ (4,1)=(3,0) \oplus(1,1)=\text { eperons }+ \text { Higgs } \end{array}$	3
$(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$	30	3
$(\overline{3}, 1)_{1 / 3}$	3	3
$(1,1)_{1}$	3	3
How to compute?	$h^{0}\left(\mathcal{C}_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right) \quad h^{1}\left(\mathcal{C}_{\mathbf{R}}, \mathcal{L}_{\mathrm{R}}\right)$ [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17] [M.B. '18] and references therein	$\begin{gathered} \chi=\operatorname{deg}\left(\mathcal{L}_{\mathrm{R}}\right)-g\left(C_{\mathrm{R}}\right)+1 \\ \chi=\int_{S_{\mathbf{R}}} G_{4}=3 \end{gathered}$ [Cvetič Halverson Lin Liu Tian '19]

Challenges for vector-like spectra in F-theory QSMs

General findings

- Matter in rep. \mathbf{R} localized on smooth, irreducible matter curve $C_{\mathbf{R}}$ of genus g.
- It holds $\mathcal{L}_{\mathbf{R}}=\mathcal{S} \otimes \mathcal{F}_{\mathbf{R}}$ [M.B. Maythofer Pehle Weigand '14], [M.B. Maythofer Weigand '17], [M.B. '18]
- \mathcal{S} is one of the $2^{2 g}$ spin bundles on C_{R}. [Ativah '71], [Mumford '71]
- \mathcal{F}_{R} a contribution from the G_{4}-flux.
\Rightarrow Compute $n_{\mathbf{R}}=h^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$ and $n_{\overline{\mathbf{R}}}=h^{1}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$.

General findings

- Matter in rep. \mathbf{R} localized on smooth, irreducible matter curve $C_{\mathbf{R}}$ of genus g.
- It holds $\mathcal{L}_{\mathbf{R}}=\mathcal{S} \otimes \mathcal{F}_{\mathbf{R}}$ [M.B. Mayhthofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]
- \mathcal{S} is one of the $2^{2 g}$ spin bundles on $\mathcal{C}_{\mathbf{R}}$. [Atiyah '71], [Mumford '71]
- $\mathcal{F}_{\mathbf{R}}$ a contribution from the G_{4}-flux.
\Rightarrow Compute $n_{\mathbf{R}}=h^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$ and $n_{\overline{\mathbf{R}}}=h^{1}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$.

Challenges

- $n_{\mathbf{R}}, n_{\overline{\mathrm{R}}}$ depend on choice of spin bundle. Which \mathcal{S} is compatible with the physics?
- In QSMs, cannot (yet) find unique $\mathcal{F}_{\mathbf{R}}$. [M.B. Cvetić Donagi Liu Ong '21]
- Both points fairly tricky to address.
\rightarrow Instead, formulate necessary conditions and study their solutions.

For $(3,2)_{1 / 6}$, find necessary condition: $\mathcal{L}_{(3,2)_{1 / 6}}=\sqrt[20]{K_{C_{(3,2)_{1 / 6}}^{\otimes 16}}}$
(Constraint stated for base 3 -folds B_{3} with $K_{B_{3}}^{3}=10$. See [M.B. Cvetic Donagi Liu Ong '21] for constraints in bases B_{3} with other $K_{B_{3}}^{3}$.)

- Has 20^{12} solutions \leftrightarrow Infinitely many line bundles with $\chi=3$.
\rightarrow Highly non-trivial constraint.
- Likely, not all solutions physical (\leftrightarrow necessary condition). \rightarrow To be addressed in future work.
\Rightarrow Goal: Compute $h^{0}\left(\mathcal{C}_{(3,2)_{1 / 6}}, \mathcal{L}_{(3,2)_{1 / 6}}\right)$ for all 20^{12} solutions.

For $(3,2)_{1 / 6}$, find necessary condition: $\mathcal{L}_{(3,2)_{1 / 6}}=\sqrt[20]{K_{C_{(3,2)_{1 / 6}}}^{\otimes 16}}$
(Constraint stated for base 3 -folds B_{3} with $K_{B_{3}}^{3}=10$. See [M.B. Cvetić Donagi Liu Ong '21] for constraints in bases B_{3} with other $K_{B_{3}}^{3}$.)

- Has 20^{12} solutions \leftrightarrow Infinitely many line bundles with $\chi=3$. \rightarrow Highly non-trivial constraint.
- Likely, not all solutions physical (\leftrightarrow necessary condition). \rightarrow To be addressed in future work.
\Rightarrow Goal: Compute $h^{0}\left(\mathcal{C}_{(3,2)_{1 / 6}}, \mathcal{L}_{(3,2)_{1 / 6}}\right)$ for all 20^{12} solutions.

Challenges

- Hard to construct solutions $\mathcal{L}_{(3,2)_{1 / 6}}$ on smooth, irreducible curve.
- $h^{0}\left(\mathcal{C}_{(3,2)_{1 / 6}}, \mathcal{L}_{(3,2)_{1 / 6}}\right)$ may depend on complex structure.
- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [m.B. Cvetič Lu' ${ }^{\text {'21] }}$
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)
- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [m.B. Cvetič Lu' ${ }^{\text {'21] }}$
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)

- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [m.B. Cvetič Lu' ${ }^{\text {'21] }}$
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)

- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [м.B. Cvetić Lu' '21]
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)

- Limit root bundles on $\mathbf{C}_{\mathbf{R}}^{\bullet}$ well understood [Jarves '98], [Caporaso Casagrande Corralba '04].
- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [м.B. Cvetič Lu' '21]
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)

- Limit root bundles on C_{R}^{\bullet} well understood [Jarves '98], [Caporaso Casagrande Corralba '04].
- Explicit description from bi-weighted graphs.
- Enumeration of all limit roots is combinatoric challenge (\leftrightarrow computer program).
- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [M.B. Cvetič Liu'21]
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)

Enumerate all limit roots with computer and try to find h^{0}.
(https://github.com/Julia-meets-String-Theory/RootCounter)

- Limit root bundles on $C_{\mathbf{R}}^{\bullet}$ well understood [Jarves '98], [Caporaso Casagrande Corralba '04].
- Explicit description from bi-weighted graphs.
- Enumeration of all limit roots is combinatoric challenge (\leftrightarrow computer program).
- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [M.B. Cvetič Liu'21]
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)

Enumerate all limit roots with computer and try to find h^{0}.
(https://github.com/Julia-meets-String-Theory/RootCounter)

- Limit root bundles on $C_{\mathbf{R}}^{\bullet}$ well understood [Jarves '98], [Caporaso Casagrande Corralba '04].
- Explicit description from bi-weighted graphs.
- Enumeration of all limit roots is combinatoric challenge (\leftrightarrow computer program).
- Upper semicontinuity: $h^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right) \leq h^{0}\left(C_{\mathbf{R}}^{\bullet}, \mathcal{L}_{\mathbf{R}}^{\bullet}\right)$.
- F-theory QSMs admit canonical nodal matter curve $C_{\mathbf{R}}^{\bullet}$ [M.B. Cvetici Lu' '2]
(Nodal curve: At most finitely many nodal singularities, which in turn locally look like $x \cdot y=0$.)

Enumerate all limit roots with computer and try to find h^{0}.
(https://github.com/Julia-meets-String-Theory/RootCounter)

- Limit root bundles on $C_{\mathbf{R}}^{\bullet}$ well understood [Jarves '98], [Caporaso Casagrande Corralba '04].
- Explicit description from bi-weighted graphs.
- Enumeration of all limit roots is combinatoric challenge (\leftrightarrow computer program).
- Upper semicontinuity: $h^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right) \leq h^{0}\left(C_{\mathbf{R}}^{\bullet}, \mathcal{L}_{\mathbf{R}}^{\bullet}\right)$.

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}\left(d_{i}\right)$

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$
1
\vdots
\vdots
1
\vdots
1
P s.t. $P^{\otimes} 2=L$

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{C_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Interlude: Limit root bundles in a nutshell

Line bundle L s.t. $\left.L\right|_{c_{i}}=\mathcal{O}_{\mathbb{P}^{1}}(0)$

Interlude: Limit root bundles in a nutshell

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs [m.. cveetiz Liu '21]

QSM-family (polytope)	$h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	$h^{0}=5$	$h^{0} \geq 5$	$h^{0}=6$	$h^{0} \geq 6$
Δ_{8}°	57.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs [m.B. cretit Liu ${ }^{21]}$

QSM-family (polytope)	$h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	$h^{0}=5$	$h^{0} \geq 5$	$h^{0}=6$	$h^{0} \geq 6$
Δ_{8}°	57.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{4}°	53.6	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{134}°	48.7	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ}$	42.0	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{88}°	61.1	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{110}°	57.8	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\Delta_{272}^{\circ}, \Delta_{274}^{\circ}$	57.5	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{387}°	57.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\Delta_{798}^{\circ}, \Delta_{808}^{\circ}, \Delta_{810}^{\circ}, \Delta_{812}^{\circ}$	54.0	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{254}°	54.7	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{52}°	54.7	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{302}°	54.7	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{786}°	51.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{762}°	51.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{417}°	51.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{838}°	51.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{782}°	51.3	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\Delta_{377}^{\circ}, \Delta_{499}^{\circ}, \Delta_{503}^{\circ}$	48.2	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{1348}°	48.2	$?$	$?$	$?$	$?$	$?$	$?$	$?$
$\Delta_{882}^{\circ}, \Delta_{856}^{\circ}$	48.2	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{1340}°	45.2	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{1879}°	45.2	$?$	$?$	$?$	$?$	$?$	$?$	$?$
Δ_{1384}°	42.5	$?$	$?$	$?$	$?$	$?$	$?$	$?$

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs [m... cretiè Donagi Ong '22]

QSM-family (polytope)	$h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	$h^{0}=5$	$h^{0} \geq 5$	$h^{0}=6$	$h^{0} \geq 6$
Δ_{8}°	76.4	23.6						
Δ_{4}°	99.0	1.0						
Δ_{134}°	99.8	0.2						
$\Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ}$	99.9	0.1						
Δ_{88}°	74.9	22.1	2.5	0.5	0.0	0.0		
Δ_{110}°	82.4	14.1	3.1	0.4	0.0			
$\Delta_{272}^{\circ}, \Delta_{274}^{\circ}$	78.1	18.0	3.4	0.5	0.0	0.0		
Δ_{387}°	73.8	21.9	3.5	0.7	0.0	0.0		
$\Delta_{798}^{\circ}, \Delta_{808}^{\circ}, \Delta_{810}^{\circ}, \Delta_{812}^{\circ}$	77.0	17.9	4.4	0.7	0.0	0.0		
Δ_{254}°	95.9	0.5	3.5	0.0	0.0	0.0		
Δ_{52}^{5}	95.3	0.7	3.9	0.0	0.0	0.0		
Δ_{302}°	95.9	0.5	3.5	0.0	0.0			
Δ_{786}°	94.8	0.3	4.8	0.0	0.0	0.0		
Δ_{762}°	94.8	0.3	4.9	0.0	0.0	0.0		
Δ_{417}°	94.8	0.3	4.8	0.0	0.0	0.0	0.0	
Δ_{838}°	94.7	0.3	5.0	0.0	0.0	0.0		
Δ_{782}°	94.6	0.3	5.0	0.0	0.0	0.0		
$\Delta_{377}^{\circ}, \Delta_{499}^{\circ}, \Delta_{503}^{\circ}$	93.4	0.2	6.2	0.0	0.1	0.0		
Δ_{1348}°	93.7	0.0	6.2	0.0	0.1		0.0	
$\Delta_{882}^{\circ}, \Delta_{856}^{\circ}$	93.4	0.3	6.2	0.0	0.1	0.0	0.0	
Δ_{1340}°	92.3	0.0	7.6	0.0	0.1		0.0	
Δ_{1879}°	92.3	0.0	7.5	0.0	0.1		0.0	
Δ_{1384}°	90.9	0.0	8.9	0.0	0.2		0.0	

Brill-Noether numbers of $(\overline{3}, 2)_{1 / 6}$ in QSMs [m. $\mathrm{B}_{\text {. ceteit Donagi Ong '23] }}$

QSM-family (polytope)	$h^{0}=3$	$h^{0} \geq 3$	$h^{0}=4$	$h^{0} \geq 4$	$h^{0}=5$	$h^{0} \geq 5$	$h^{0}=$	$h^{0} \geq 6$
Δ_{8}°	99.9421		0.0579					
Δ_{4}°	99.9952		0.0048					
Δ_{134}°	99.9952		0.0048					
$\Delta_{128}^{\circ}, \Delta_{130}^{\circ}, \Delta_{136}^{\circ}, \Delta_{236}^{\circ}$	99.9952		0.0048					
Δ_{88}°	96.6700	0.3361	2.9850		0.0089			
Δ_{110}°	95.6268	0.8372	3.5179	0.0050	0.0131			
$\Delta_{272}^{\circ}, \Delta_{274}^{\circ}$	95.5097	0.5155	3.9552	0.0016	0.0180			
Δ_{387}°	95.1923	0.4981	4.2773		0.0323			
$\Delta_{798}^{\circ}, \Delta_{808}^{\circ}, \Delta_{810}^{\circ}, \Delta_{812}^{\circ}$	93.8268	0.8795	5.2390	0.0029	0.0518			
$\Delta^{\circ}{ }^{\circ} 4$	96.3942	0.0687	3.5193	0.0003	0.0175			
\triangle_{52}°	96.0587	0.0171	3.9066	0.0000	0.0176			
$\Delta^{\circ} \mathrm{O} 2$	96.3960	0.0636	3.5222	0.0001	0.0181			
$\Delta^{\circ}{ }_{86}$	95.0714	0.0393	4.8466	0.0002	0.0425			
Δ_{762}°	95.0167	0.0369	4.9052	0.0005	0.0407			
Δ_{417}°	95.0745	0.0433	4.8389	0.0003	0.0429		0.0001	
Δ_{838}°	94.9092	0.0215	5.0216	0.0000	0.0477			
Δ_{782}°	94.9019	0.0161	5.0359	0.0000	0.0461			
$\Delta_{377}^{\circ}, \Delta_{499}^{\circ}, \Delta_{503}^{\circ}$	93.6500	0.0347	6.2312	0.0005	0.0836			
$\Delta_{1348}^{\text {¢ }}$	93.7075	0.0112	6.1978	0.0001	0.0833		0.0001	
$\Delta_{882}^{\circ}, \Delta_{856}^{\circ}$	93.6546	0.0425	6.2190	0.0009	0.0825		0.0005	
Δ_{1340}	92.2989	0.0064	7.5515	0.0001	0.1427		0.0004	
Δ_{1879}°	92.3015	0.0108	7.5447	0.0002	0.1421		0.0007	
Δ_{1384}	90.8524	0.0031	8.9219	0.0001	0.2213		0.0012	

Line bundle cohomologies on rational circuits I

Line bundle cohomologies on rational circuits I

$T 1$: Prune a leaf.

Line bundle cohomologies on rational circuits I

T1: Prune a leaf. T2: Remove an interior edge.

Line bundle cohomologies on rational circuits I

T1: Prune a leaf. T2: Remove an interior edge.

Line bundle cohomologies on rational circuits I

T1: Prune a leaf. T2: Remove an interior edge.

Line bundle cohomologies on rational circuits I

T1: Prune a leaf. T2: Remove an interior edge.

Line bundle cohomologies on rational circuits I

T1: Prune a leaf. T2: Remove an interior edge.

Line bundle cohomologies on rational circuits I

T1: Prune a leaf. T2: Remove an interior edge.

Line bundle cohomologies on rational circuits II

Line bundle cohomologies on rational circuits II

(d)

Line bundle cohomologies on rational circuits II

Line bundle cohomologies on rational circuits II

Line bundle cohomologies on rational circuits II

(d)

Line bundle cohomologies on rational circuits II

Summary and outlook

- Summary:
- Pushed ability to tell h^{0} for limit roots to the next level.
- More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\mathbf{3}, 2)_{1 / 6}$.

Summary and outlook

- Summary:
- Pushed ability to tell h^{0} for limit roots to the next level.
- More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\mathbf{3}, \mathbf{2})_{1 / 6}$.
- Outlook:
- Physics advances:
- Which spin bundles \mathcal{S} on the matter curves are compatible with the compactification?
- Which \mathcal{F}_{R} are induced from G_{4}-flux in F-theory QSMs?
- Understand the smoothing $C_{R}^{\bullet} \rightarrow C_{R}$ from Yukawa interactions?
- Summary:
- Pushed ability to tell h^{0} for limit roots to the next level.
- More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6}$.
- Outlook:
- Physics advances:
- Which spin bundles \mathcal{S} on the matter curves are compatible with the compactification?
- Which $\mathcal{F}_{\mathbf{R}}$ are induced from G_{4}-flux in F-theory QSMs?
- Understand the smoothing $C_{R}^{\bullet} \rightarrow C_{R}$ from Yukawa interactions?
- Mathematics advances:
- Formulate Brill-Noether theory of (limit) roots on nodal curves.
\leftrightarrow Gain inspiration from machine learning techniques?
- Applications in cryptography?
- Summary:
- Pushed ability to tell h^{0} for limit roots to the next level.
- More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6}$.
- Outlook:
- Physics advances:
- Which spin bundles \mathcal{S} on the matter curves are compatible with the compactification?
- Which \mathcal{F}_{R} are induced from G_{4}-flux in F -theory QSMs ?
- Understand the smoothing $C_{R}^{\bullet} \rightarrow C_{R}$ from Yukawa interactions?
- Mathematics advances:
- Formulate Brill-Noether theory of (limit) roots on nodal curves.
\leftrightarrow Gain inspiration from machine learning techniques?
- Applications in cryptography?
- Software advances:
- Speedups to make computations feasable for roots on Higgs curve.
- Integrate RootCounter into FTheoryTools/OSCAR.
- Summary:
- Pushed ability to tell h^{0} for limit roots to the next level.
- More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6}$.
- Outlook:
- Physics advances:
- Which spin bundles \mathcal{S} on the matter curves are compatible with the compactification?
- Which \mathcal{F}_{R} are induced from G_{4}-flux in F -theory QSMs ?
- Understand the smoothing $C_{R}^{\bullet} \rightarrow C_{R}$ from Yukawa interactions?
- Mathematics advances:
- Formulate Brill-Noether theory of (limit) roots on nodal curves.
\leftrightarrow Gain inspiration from machine learning techniques?
- Applications in cryptography?
- Software advances:
- Speedups to make computations feasable for roots on Higgs curve.
- Integrate RootCounter into FTheoryTools/OSCAR. (cf. my poster)
- Summary:
- Pushed ability to tell h^{0} for limit roots to the next level.
- More than 93.91% of configs. of 33 QSM families have no exotics in rep. $(\overline{\mathbf{3}}, \mathbf{2})_{1 / 6}$.
- Outlook:
- Physics advances:
- Which spin bundles \mathcal{S} on the matter curves are compatible with the compactification?
- Which \mathcal{F}_{R} are induced from G_{4}-flux in F-theory QSMs?
- Understand the smoothing $C_{R}^{\bullet} \rightarrow C_{R}$ from Yukawa interactions?
- Mathematics advances:
- Formulate Brill-Noether theory of (limit) roots on nodal curves. \leftrightarrow Gain inspiration from machine learning techniques?
- Applications in cryptography?
- Software advances:
- Speedups to make computations feasable for roots on Higgs curve.

- Integrate RootCounter into FTheoryTools/OSCAR. (cf. my poster)

Thank you for your attention!

Improvements - more details

(1) First estimates computed in [M.B. Cvetič Liu '21]:

- Enumerate full blow-up limit roots with $h^{0}=3$.
- No estimate for uncertainties.
(1) First estimates computed in [M.B. Cvetič Liu '21]:
- Enumerate full blow-up limit roots with $h^{0}=3$.
- No estimate for uncertainties.
(2) Refinement/extension in [M.B. Cvetič Donagi Ong '22]:
- Enumerate all limit roots.
- h^{0}-computation from line bundle cohomology on rational tree-like nodal curves.

Improvements - more details

(1) First estimates computed in [M.B. Cvetič Liu '21]:

- Enumerate full blow-up limit roots with $h^{0}=3$.
- No estimate for uncertainties.
(2) Refinement/extension in [M.B. Cvetič Donagi Ong '22]:
- Enumerate all limit roots.
- h^{0}-computation from line bundle cohomology on rational tree-like nodal curves.
(3) Yet more refinements [M.B. Cvetič Donagi Ong '23]:
- h^{0}-computation on rational and elliptic circuits.
- Achieved by 3-step procedure:
(1) Prune trees,
(2) Remove internal edges,
(3) Classification of terminal circuits and their line bundle cohomologies.
\Rightarrow Optimal results: Refinements require geometric data that is currently not available. (Required refined data: Descent data of line bundles, divisor on elliptic components.)

