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Motivation

Obtain (MS)SM from String theory construction . . .

E8 × E8 [Candelas Horowitz Strominger Witten ’85], [Greene Kirklin Miron Ross ’86], [Braun He Ovrut Pantev ’05],

[Bouchard Donagi ’05], [Anderson Gray He Lukas ‘10], . . .

Type II [Berkooz Douglas Leigh ‘96], [Aldazabal Franco Ibanez Rabadan Uranga ‘00], [Ibanez Marchesano Rabadan ‘00],

[Blumenhagen Kors Lust Ott ‘01], [Cvetič Shiu Uranga ‘01],

F-theory [Krause Mayrhofer Weigand ‘12], [Cvetič Klevers Pena Oehlmann Reuter ‘15], [Lin Weigand ‘16], [Cvetič Lin Liu

Oehlmann ‘18], [Cvetič Halverson Lin Liu Tian ‘19], . . .

. . . including vector-like spectra
Why vector-like spectra? Higgs fields matter & are characteristic feature of QFTs
E8 × E8: [Bouchard Donagi ’05], [Braun He Ovrut Pantev ’05], [Bouchard Cvetic Donagi ’06], [Anderson Gray Lukas Palti

’10 & ’11], . . .

F-theory: [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]
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Outline

In this talk
Recent progress to understand vector-like spectra in F-theory
Based on

Machine learning (c.f. L. Lin at String pheno 2020)
Analytic insights (Brill Noether theory, stratifications . . . )

Today: Focus on analytics

Outline
1 Revision: How to count vector-like spectra in F-theory?
2 Analytics of jumps
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Vector-like spectra in F-theory [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

Gauge degrees localized on 7-branes S ⊂ B3

Zero modes localized on matter curves CR ⊂ S

G4-flux and matter surface SR define line bundle LR on CR

Vector-like pairs:
massless chiral modes ↔ h0(CR,LR)

massless anti-chiral modes ↔ h1(CR,LR)

Typically, hi (CR,LR) hard to determine:
By definition – non-topological data
Oftentimes, LR not pullback from B3
Coherent sheaves on B3 ↔ Freyd categories [ S. Posur ’17 ], [ M.B., S. Posur ’19 ]

Deformation CR → C ′
R can lead to jumps

hi (CR,LR) = (h0, h1)→ hi (C ′
R,L′

R) = (h0 + a, h1 + a)
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h0-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Strategy

Geometric setup
Realistic F-theory geometries computationally too involved

⇒ Learn from simpler geometries first
Choice of geometry:

Curve↔ C (c) = V (P(c)) hypersurface in dP3

Line bundle↔ L(c) = OdP3(DL)|C(c)

Challenge

Find h0 (C (c),L(c)) ≡ h0(c) as function of the complex structure c
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How to find h0 (C (c),L) ≡ h0(c)?

1 Pullback line bundle admits Koszul resolution:

0→ OdP3(DL − DC )
P(c)−−−→ OdP3(DL)→ L → 0

2 Obtain long exact sequence in sheaf cohomology:

0 H0 (DL − DC ) H0 (DL) H0 (L)

H1 (DL − DC ) H1 (DL) H1 (L)

H2 (DL − DC ) H2 (DL) 0 0

3 Sometimes: 0→ H0(L)→ H1(DL − DC )
Mϕ(c)−−−−→ H1(DL)→ H1(L)→ 0

4 By exactness: h0(L) = ker(Mϕ(c))

⇒ Study ker (Mϕ(c)) as function of complex structure c
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h0-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Example: g = 3, χ = 1 (d = 3)

C (c) = V (P(c)) and P(c) = c1x
3
1x

3
2x

2
3x4 + · · ·+ c12x

2
3x4x

3
5x

3
6

For DL = H + 2E1 − 2E2 − E3 find

0→ H0(L)→ C3 Mϕ(c)−−−−→ C2 → H1(L)→ 0 , Mϕ =
( c3 c2 c1

0 c12 c11

)
h0(L) = 3− rk(Mϕ(c)) & stratification of curve geometries:

rk(Mϕ) explicit condition curve splitting

2 (c3c11, c3c12, c2c11 − c1c12) 6= 0 C 1

1 c3 = 0, c2c11 − c1c12 = 0 C 2

1 c1 = c2 = c3 = 0 B2 ∪ P1
b

1 c11 = c12 = 0 P1
a ∪ B1

0 c1 = c2 = c3 = c11 = c12 = 0 P1
a ∪ A ∪ P1

b
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Stratification diagram

C 1

C 2P1
a ∪ B2 B1 ∪ P1

b

P1
a ∪ A ∪ P1

b

h0 = 1

h0 = 2

h0 = 3

Types of jumps

Brill-Noether theory: C 2 smooth, irreducible but line bundle divisor special
Curve splittings: Factoring off P1

a, P1
b leads to jump
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h0-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Example 2: g = 5, χ = 0 (d = 4)

P(c) = c1x
3
1x

4
2x

2
3x

2
4 +· · ·+c16x

3
3x4x

4
5x

3
6

DL = H + E1 − 4E2 + E3

Koszul resolution gives

h0(L) = 7− rk(Mϕ(c))

Mϕ =


c15 c11 c7 0 0 0 0
0 c10 c6 c3 c11 c7 0
c12 c6 c3 0 c7 0 0
0 c5 c2 0 c6 c3 c7
c8 c2 0 0 c3 0 0
0 c14 c11 c7 0 0 0
0 c1 0 0 c2 0 c3


⇒ Study rk(Mϕ(c)) as function of c

C 0

C 1

C 2

A3 ∪ D1

A3 ∪ D2 A3 ∪ A4 ∪ D3

A
(2)
3 ∪ D4

A
(3)
3 ∪ A5 ∪ D5 A

(2)
3 ∪ A4 ∪ D6

A
(3)
3 ∪ A4 ∪ A5 ∪ D7

h0 = 0

h0 = 1

h0 = 2

h0 = 3

h0 = 4

h0 = 5

h0 = 6

h0 = 7
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Brill-Noether theory [1874 Brill, Noether] – more modern exposition in [Mumford ’75], [Griffiths, Harris ’94] . . .

Example on torus C1 ∼= C/Λ = Jac(C1)

p

(−1) · q

h0 (OC1(p − q)) = 0 → h0 (OC1(0)) = 1

G 0
0 = {L , d = n = 0}
∼= {q ∈ C/Λ , q 6= 0}

G 1
0 = {L , d = 0, n = 1}
∼= {q = 0 ∈ C/Λ}

General picture

Abel-Jacobi map gives ϕd : Divd(C )→ Jac(C ) ∼= Cg/Λ

Gn
d =

{
ϕd(L) , h0(C ,L) = n

}
⊆ Jac(C )

dimGn
d ≥ ρ(d , n, g) = g − n · (n + χ)

dimGn
d = ρ for generic curves [1980 Griffiths, Harris]

⇒ Upper bound for h0 on generic curves [Watari, 16]

h0 h1 ρ

0 0 1
1 1 0
2 2 -3
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Gluing local sections

C 1

C 2P1
a ∪ B2 B1 ∪ P1

b

P1
a ∪ A ∪ P1

b

h0 = 1

h0 = 2

h0 = 3

deg
(
L|P1a

)
= −2

g(P1
a) = 0

h0
(
L|P1a

)
= 0

deg
(
L|B2

)
= 5

g(B2) = 2

h0 (L|B2

)
= 4
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Gluing local sections II

C 1

C 2P1
a ∪ B2 B1 ∪ P1

b

P1
a ∪ A ∪ P1

b

h0 = 1

h0 = 2

h0 = 3

deg (L|A) = 7

g(A) = 0

h0 (L|A) = 8

deg
(
L|P1b

)
= −2

g(P1
b) = 0

h0
(
L|P1b

)
= 0

deg
(
L|P1a

)
= −2

g(P1
a) = 0

h0
(
L|P1a

)
= 0
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Quality assessment of counting procedure

Quick: Uses only topological data (genus, chiral index)
But: Relative position of bundle divisor and intersections of curve components
matters [Cayley 1889, Bacharach 1886]

⇒ Systematically overestimates # of independent conditions
⇒ Obtain underestimate # of global sections

Application to our data base:
83 pairs (DC ,DL) with complex structure deformations: ∼ 1.8× 106 data sets
Counting procedure can be applied to ∼ 38%
Accuracy ∼ 98.5%

Lead-offs:
1 Sufficient conditions for jump
2 Algorithmic h0-spectrum estimate
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Algorithmic estimate for h0-spectrum

C

V (x1) ∪ C̃ . . . V (x6) ∪ C̃

V (x2
1 ) ∪ C̃ . . . V (x1) ∪ V (x6) ∪ C̃ . . . V (x5) ∪ V (x6) ∪ C̃ V (x2

6 ) ∪ C̃
...

...
...

...

Max. degenerate curves

https://github.com/homalg-project/SheafCohomologyOnToricVarieties

Estimate h0-spectrum from lower bounds at subset of nodes
Implemented in package H0Approximator

Caveat: Check that C̃ is irreducible
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Summary

Computing vector-like spectra in global F-theory models is hard
We study how vector-like spectrum changes over moduli space of curve
(↔ qualitatively different from prevous bundle cohomology studies)
Insights from interplay between

Machine learning techniques (decision trees)
Analytic insights (Brill-Noether theory, stratification diagrams)

Finding in dP3: Factor off (rigid) P1s ↔ jumps
Results:

1 Formulate sufficient condition for jump
2 Implement quick (mostly based on topological data) h0-spectrum approximator

H0Approximator: https://github.com/homalg-project/SheafCohomologyOnToricVarieties/
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Outlook

Technical extensions:

non-pullback bundle and “fractional” bundles
stratification for several curves in one global F-theory model

Conceptual:

Vector-like spectra for pseudo-real representations
Non-vertical G4 (flux moduli dependence!)
(Geometric) symmetries protecting vector-like pairs

Practical:

model building
(S)CFTs
swampland program
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Thank you for your attention!
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