On stratification diagrams, algorithmic spectrum estimates and vector-like pairs in F-theory

Martin Bies
Oxford University
June 16, 2020

With M. Cvetič, R. Donagi, L. Lin, M. Liu, F. Rühle - 2020.06***

Motivation

Obtain (MS)SM from String theory construction ...

- $E_{8} \times E_{8}$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [lbanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01],
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

. . . including vector-like spectra

- Why vector-like spectra? Higgs fields matter \& are characteristic feature of QFTs
- $E_{8} \times E_{8}$: [Bouchard Donagi '05], [Braun He Ovrut Pantev '05], [Bouchard Cvetic Donagi '06], [Anderson Gray Lukas Palti ' 10 \& '11], ...
- F-theory: [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

Outline

In this talk

- Recent progress to understand vector-like spectra in F-theory
- Based on
- Machine learning (c.f. L. Lin at String pheno 2020)
- Analytic insights (Brill Noether theory, stratifications ...)
- Today: Focus on analytics

Outline

(1) Revision: How to count vector-like spectra in F-theory?
(2) Analytics of jumps

Vector-like spectra in F-theory [M.B. Mayhhofer Pente Weigand '144], [M. B. Meyhtofer Weigand '17]. [m.B. '18]

- Gauge degrees localized on 7-branes $S \subset \mathcal{B}_{3}$
- Zero modes localized on matter curves $C_{\mathrm{R}} \subset S$
- G_{4}-flux and matter surface S_{R} define line bundle \mathcal{L}_{R} on C_{R}
- Vector-like pairs:

$$
\begin{gathered}
\text { massless chiral modes } \leftrightarrow h^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right) \\
\text { massless anti-chiral modes } \leftrightarrow h^{1}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)
\end{gathered}
$$

- Typically, $h^{i}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)$ hard to determine:
- By definition - non-topological data
- Oftentimes, \mathcal{L}_{R} not pullback from \mathcal{B}_{3}

Coherent sheaves on $\mathcal{B}_{\mathbf{3}} \leftrightarrow$ Freyd categories [S. Posur '17], [M.B., S. Posur '19]

- Deformation $C_{R} \rightarrow C_{R}^{\prime}$ can lead to jumps

$$
h^{i}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)=\left(h^{0}, h^{1}\right) \rightarrow h^{i}\left(C_{\mathbf{R}}^{\prime}, \mathcal{L}_{\mathbf{R}}^{\prime}\right)=\left(h^{0}+a, h^{1}+a\right)
$$

Strategy

Geometric setup

- Realistic F-theory geometries computationally too involved
\Rightarrow Learn from simpler geometries first
- Choice of geometry:

$$
\text { Curve } \leftrightarrow C(\mathrm{c})=V(P(\mathrm{c})) \text { hypersurface in } d P_{3}
$$

$$
\text { Line bundle } \leftrightarrow \mathcal{L}(\mathrm{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathrm{c})}
$$

Challenge

Find $h^{0}(C(\mathbf{c}), \mathcal{L}(\mathbf{c})) \equiv h^{0}(\mathbf{c})$ as function of the complex structure \mathbf{c}

How to find $h^{0}(C(\mathbf{c}), \mathcal{L}) \equiv h^{0}(\mathbf{c})$?

(1) Pullback line bundle admits Koszul resolution:

$$
0 \rightarrow \mathcal{O}_{d P_{3}}\left(D_{L}-D_{C}\right) \xrightarrow{P(\mathbf{c})} \mathcal{O}_{d P_{3}}\left(D_{L}\right) \rightarrow \mathcal{L} \rightarrow 0
$$

(2) Obtain long exact sequence in sheaf cohomology:

$$
\begin{aligned}
0 & H^{0}\left(D_{L}-D_{C}\right) \longrightarrow H^{0}\left(D_{L}\right) \longrightarrow H^{0}(\mathcal{L}) \\
& H^{1}\left(D_{L}-D_{C}\right) \longrightarrow H^{1}\left(D_{L}\right) \longrightarrow H^{1}(\mathcal{L}) \\
& H^{2}\left(D_{L}-D_{C}\right) \longrightarrow H^{2}\left(D_{L}\right) \longrightarrow 0 \longrightarrow 0
\end{aligned}
$$

(3) Sometimes: $0 \rightarrow H^{0}(\mathcal{L}) \rightarrow H^{1}\left(D_{L}-D_{C}\right) \xrightarrow{M_{\varphi}(\mathbf{c})} H^{1}\left(D_{L}\right) \rightarrow H^{1}(\mathcal{L}) \rightarrow 0$
(0) By exactness: $h^{0}(\mathcal{L})=\operatorname{ker}\left(M_{\varphi}(\mathbf{c})\right)$
\Rightarrow Study $\operatorname{ker}\left(M_{\varphi}(\mathbf{c})\right)$ as function of complex structure \mathbf{c}

Example: $g=3, \chi=1(d=3)$

- $C(\mathbf{c})=V(P(\mathbf{c}))$ and $P(\mathbf{c})=c_{1} x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4}+\cdots+c_{12} x_{3}^{2} x_{4} x_{5}^{3} x_{6}^{3}$
- For $D_{L}=H+2 E_{1}-2 E_{2}-E_{3}$ find

$$
0 \rightarrow H^{0}(\mathcal{L}) \rightarrow \mathbb{C}^{3} \xrightarrow{M_{\varphi}(\mathbf{c})} \mathbb{C}^{2} \rightarrow H^{1}(\mathcal{L}) \rightarrow 0, \quad M_{\varphi}=\left(\begin{array}{ccc}
c_{3} & c_{2} & c_{1} \\
0 & c_{12} & c_{11}
\end{array}\right)
$$

- $h^{0}(\mathcal{L})=3-\operatorname{rk}\left(M_{\varphi}(\mathbf{c})\right) \&$ stratification of curve geometries:

$\operatorname{rk}\left(M_{\varphi}\right)$	explicit condition	curve splitting
2	$\left(c_{3} c_{11}, c_{3} c_{12}, c_{2} c_{11}-c_{1} c_{12}\right) \neq \mathbf{0}$	C^{1}
1	$c_{3}=0, c_{2} c_{11}-c_{1} c_{12}=0$	C^{2}
1	$c_{1}=c_{2}=c_{3}=0$	$B_{2} \cup \mathbb{P}_{b}^{1}$
1	$c_{11}=c_{12}=0$	$\mathbb{P}_{a}^{1} \cup B_{1}$
0	$c_{1}=c_{2}=c_{3}=c_{11}=c_{12}=0$	$\mathbb{P}_{a}^{1} \cup A \cup \mathbb{P}_{b}^{1}$

Stratification diagram

Types of jumps

- Brill-Noether theory: C^{2} smooth, irreducible but line bundle divisor special
- Curve splittings: Factoring off $\mathbb{P}_{a}^{1}, \mathbb{P}_{b}^{1}$ leads to jump

Example 2: $g=5, \chi=0(d=4)$

- $P(c)=c_{1} x_{1}^{3} x_{2}^{4} x_{3}^{2} x_{4}^{2}+\cdots+c_{16} x_{3}^{3} x_{4} x_{5}^{4} x_{6}^{3}$

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$h^{0}\left(\mathcal{O}_{c_{1}}(p-q)\right)=0 \rightarrow h^{0}\left(\mathcal{O}_{c_{1}}(0)\right)=1$

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\}
\end{aligned}
$$

$$
h^{0}\left(\mathcal{O}_{c_{1}}(p-q)\right)=0 \quad \rightarrow \quad h^{0}\left(\mathcal{O}_{c_{1}}(0)\right)=1
$$

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\} \\
G_{0}^{1} & =\{\mathcal{L}, d=0, n=1\} \\
& \cong\{q=0 \in \mathbb{C} / \Lambda\}
\end{aligned}
$$

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\} \\
G_{0}^{1} & =\{\mathcal{L}, d=0, n=1\} \\
& \cong\{q=0 \in \mathbb{C} / \Lambda\}
\end{aligned}
$$

General picture

- Abel-Jacobi map gives $\varphi_{d}: \operatorname{Div}_{d}(C) \rightarrow \operatorname{Jac}(C) \cong \mathbb{C}^{g} / \Lambda$
- $G_{d}^{n}=\left\{\varphi_{d}(\mathcal{L}), h^{0}(C, \mathcal{L})=n\right\} \subseteq \operatorname{Jac}(C)$
- $\operatorname{dim} G_{d}^{n} \geq \rho(d, n, g)=g-n \cdot(n+\chi)$
- $\operatorname{dim} G_{d}^{n}=\rho$ for generic curves [1980 Grififiths, Harris]

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94] ..

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\} \\
G_{0}^{1} & =\{\mathcal{L}, d=0, n=1\} \\
& \cong\{q=0 \in \mathbb{C} / \Lambda\}
\end{aligned}
$$

General picture

- Abel-Jacobi map gives $\varphi_{d}: \operatorname{Div}_{d}(C) \rightarrow \operatorname{Jac}(C) \cong \mathbb{C}^{g} / \Lambda$
- $G_{d}^{n}=\left\{\varphi_{d}(\mathcal{L}), h^{0}(C, \mathcal{L})=n\right\} \subseteq \operatorname{Jac}(C)$
- $\operatorname{dim} G_{d}^{n} \geq \rho(d, n, g)=g-n \cdot(n+\chi)$
- $\operatorname{dim} G_{d}^{n}=\rho$ for generic curves [1980 Grififiths, Harris]

h^{0}	h^{1}	ρ
0	0	1
1	1	0
2	2	-3

Brill-Noether theory [1874 Brill, Noether] - more modem exposition in [Mumford '75]. [Grififiss, Harris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\} \\
G_{0}^{1} & =\{\mathcal{L}, d=0, n=1\} \\
& \cong\{q=0 \in \mathbb{C} / \Lambda\}
\end{aligned}
$$

General picture

- Abel-Jacobi map gives $\varphi_{d}: \operatorname{Div}_{d}(C) \rightarrow \operatorname{Jac}(C) \cong \mathbb{C}^{g} / \Lambda$
- $G_{d}^{n}=\left\{\varphi_{d}(\mathcal{L}), h^{0}(C, \mathcal{L})=n\right\} \subseteq \operatorname{Jac}(C)$
- $\operatorname{dim} G_{d}^{n} \geq \rho(d, n, g)=g-n \cdot(n+\chi)$
- $\operatorname{dim} G_{d}^{n}=\rho$ for generic curves [1980 Grifitiths, Harris]

h^{0}	h^{1}	ρ
0	0	1
1	1	0
2	2	-3

\Rightarrow Upper bound for h^{0} on generic curves [Watari, 16]

Gluing local sections

Gluing local sections

Gluing local sections

Gluing local sections II

Gluing local sections II

Gluing local sections II

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]
\Rightarrow Systematically overestimates \# of independent conditions
\Rightarrow Obtain underestimate \# of global sections
- Application to our data base:
- 83 pairs $\left(D_{C}, D_{L}\right)$ with complex structure deformations: $\sim 1.8 \times 10^{6}$ data sets
- Counting procedure can be applied to $\sim 38 \%$
- Accuracy ~ 98.5\%
- Lead-offs:
(1) Sufficient conditions for jump
(2) Algorithmic h^{0}-spectrum estimate

Motivation

Algorithmic estimate for h^{0}-spectrum

C

Motivation

Algorithmic estimate for h^{0}-spectrum

Algorithmic estimate for h^{0}-spectrum

https://github.com/homalg-project/SheafCohomologyOnToric Varieties

- Estimate h^{0}-spectrum from lower bounds at subset of nodes
- Implemented in package HOApproximator

Algorithmic estimate for h^{0}-spectrum

https://github.com/homalg-project/SheafCohomologyOnToric Varieties

- Estimate h^{0}-spectrum from lower bounds at subset of nodes
- Implemented in package HOApproximator
- Caveat: Check that \widetilde{C} is irreducible

Summary

- Computing vector-like spectra in global F-theory models is hard
- We study how vector-like spectrum changes over moduli space of curve (\leftrightarrow qualitatively different from prevous bundle cohomology studies)
- Insights from interplay between
- Machine learning techniques (decision trees)
- Analytic insights (Brill-Noether theory, stratification diagrams)
- Finding in $d P_{3}$: Factor off (rigid) $\mathbb{P}^{1} s \leftrightarrow$ jumps
- Results:
(1) Formulate sufficient condition for jump
(2) Implement quick (mostly based on topological data) h^{0}-spectrum approximator HOApproximator: https://github.com/homalg-project/SheafCohomologyOnToricVarieties/

Outlook

- Technical extensions:
- non-pullback bundle and "fractional" bundles
- stratification for several curves in one global F-theory model
- Conceptual:
- Vector-like spectra for pseudo-real representations
- Non-vertical G_{4} (flux moduli dependence!)
- (Geometric) symmetries protecting vector-like pairs
- Practical:
- model building
- (S)CFTs
- swampland program

Analysis of jumps
Thank you for your attention!

