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Motivation

Motivation

in (MS)SM
("] E8 X E8 [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05],
[Bouchard Donagi '05], [Anderson Gray He Lukas ‘10], ...

] Type 1 [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga ‘00], [Ibanez Marchesano Rabadan '00],

[Blumenhagen Kors Lust Ott ‘01], [Cveti¢ Shiu Uranga ‘01],

o F-theory [Krause Mayrhofer Weigand ‘12], [Cveti¢ Klevers Pena Oehlmann Reuter ‘15], [Lin Weigand ‘16], [Cveti¢ Lin Liu

Oehlmann ‘18], [Cveti¢ Halverson Lin Liu Tian ‘19], ...

...including vector-like spectra

@ Why vector-like spectra? Higgs fields matter & are characteristic feature of QFTs

*] ES X E8 [Bouchard Donagi '05], [Braun He Ovrut Pantev '05], [Bouchard Cvetic Donagi '06], [Anderson Gray Lukas Palti

'10 & '11], ...

("] F-theory: [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]
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Motivation

Outline

In this talk

@ Recent progress to understand vector-like spectra in F-theory

@ Based on
o Machine learning (c.f. L. Lin at String pheno 2020)
o Analytic insights (Brill Noether theory, stratifications ...)

@ Today: Focus on analytics

@ Revision: How to count vector-like spectra in F-theory?

@ Analytics of jumps
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Motivation

Vector—llke Spectra |n F'theory [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

Gauge degrees localized on 7-branes S C B3
Zero modes localized on matter curves Cr C S
Gy-flux and matter surface Sg define line bundle Lg on Cg
Vector-like pairs:
massless chiral modes <+ h%(Cg, LRr)
massless anti-chiral modes «+ h'(Cg, LR)

Typically, h(Cr, Lr) hard to determine:
o By definition — non-topological data
o Oftentimes, Lg not pullback from B;
Coherent sheaves on B3 <> Freyd categories [ S. Posur '17 ], [ M.B., S. Posur '19 ]
o Deformation Cr — C§ can lead to jumps

h'(Cr, Lr) = (h°, hY) — h'(Ch, LR) = (h° + a, h* + a)
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Strategy

Geometric setup

@ Realistic F-theory geometries computationally too involved

= Learn from simpler geometries first
@ Choice of geometry:
Curve <+ C(c) = V (P(c)) hypersurface in dP;
Line bundle <+ £(c) = Oap,(DL)| ¢ ()

Challenge
Find h° (C(c), £(c)) = h°(c) as function of the complex structure c
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

How to find h° (C(c), £) = h°(c)?

@ Pullback line bundle admits Koszul resolution:
0— Odp3(DL — Dc) ﬂE)—) Odp3(DL) —L—=0
@ Obtain long exact sequence in sheaf cohomology:

0— HO (DL— Dc) — HO (DL) — HO (,C) )

Q HY (D, — Dc) — H' (Dy) — H (L) 3

[>H2(DL—D(:)4>H2(DL)—’O*’O

© Sometimes: 0 — HO(L) — HY(D, — D¢) 2=,

Q@ By exactness: h°(L) = ker(M,(c))
= Study ker (M,(c)) as function of complex structure c
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Example: g =3, x =1 (d = 3)

e C(c) = V(P(c)) and P(c) = c1x¥x3x3xq + - - - + c1o8xaxexg
o For D, = H+ 2E; — 2, — E; find

0 H(L) - 2 2 L ey 50, M= (52 8)

0 ci2 a1

o h°(L) =3 —rk(M,(c)) & stratification of curve geometries:

k(M) explicit condition curve splitting
2 (c3c11, c3c12, c2c11 — c1c12) # 0 ct
1 C3 = 0, C2C11 — C1C12 = 0 C2
1 ca=c=ca=0 B2UP]B
1 C11:(312:0 ]P)‘l;UBl
0 co=c=ca=c1=c¢c2=0 P};UAUP%’
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Stratification diagram

I
[y
i)

hO

@) [hon
\ /

O — 3 PLUAUP]

Types of jumps

o Brill-Noether theory: C? smooth, irreducible but line bundle divisor special

o Curve splittings: Factoring off P%, P} leads to jump
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Example 2: g =5, x =0 (d = 4)

o P(c) = axixgx3xg+- -+ crexSxaxg xg
e D =H+ E —4E + E;3

@ Koszul resolution gives

K(L) = 7 — rk(M,(c))

casci1 ¢ 0 0 0O
0 cio 6 c3c11¢c7 O
M ci2 c6 i3 0 ¢z 00O
= 0 ¢ 2 0 ¢ c3 ¢7 2
v G ¢ 0 0 c; 00 h =5 AP U D,
0 ctaci1e7 0 0O Y — A4
0 0 0 0
“ @20 W=6 |ADUAUDs AP U Ay U De
= Study rk(M,(c)) as function of c (3)\ A
W=7 A3 UAsUAs U D7

Martin Bies 9/17



hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Brl | |' Noether theory [1874 Brill, Noether] — more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus C; = C/A = Jac(Gy)

p
h(Oc(p—q)=0 — h(0g(0)=1
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Brl | |' Noether theory [1874 Brill, Noether] — more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus C; = C/A = Jac(Gy)

G ={L,d=n=0}

) ={qeC/N, q#0}

W (Oc(p—q)=0 — h(0q(0)=1
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Brl | |' Noether theory [1874 Brill, Noether] — more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus C; = C/A = Jac(Gy)
Gd={L,d=n=0}
= {g€C/A, g0}
’ Gg={L,d=0,n=1}
h(Oq(p—q)=0 — h(0q(0)) =1 ~ {g=0¢€ C/A}
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hP-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

B” | |' NOether theory [1874 Brill, Noether] — more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus C; = C/A = Jac(Gy)

GO={L,d=n=0}

=~ {qeC/A, q#0}
Ge={L,d=0n=1}
W (Oq(p—q)=0 — h(Og(0)=1 ~ {g=0¢€ C/A}

p

General picture

@ Abel-Jacobi map gives ¢4: Divy(C) — Jac(C) = C&/A
o G ={pq4(L), H°(C,L)=n} C Jac(C)

e dimGjJ > p(d,n,g) =g —n-(n+x)

o dimGJ = p for generic curves (1980 Griffiths, Harris]
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hP-stratifications
Analysis of jumps Jumps from Brill-Noether theory
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B” | |' NOether theory [1874 Brill, Noether] — more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus C; = C/A = Jac(Gy)

GO={L,d=n=0}
=~ {qeC/A, q#0}
Ge={L,d=0n=1}
W (Oq(p—q)=0 — h(Og(0)=1 ~ {g=0¢€ C/A}

p

General picture

@ Abel-Jacobi map gives ¢4: Divy(C) — Jac(C) = C&/A

n 0 0 hl ‘ P
o GJ = {wa(L), h°(C,L) = n} C Jac(C)
o dimGj > p(d,n,g) =g —n-(n+x) 2 (1) (1)
o dimGJ = p for generic curves (1980 Griffiths, Harris] > 2|3
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hP-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

B” | |' NOether theory [1874 Brill, Noether] — more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus C; = C/A = Jac(Gy)

GO={L,d=n=0}

=~ {qeC/A, q#0}
Ge={L,d=0n=1}
W (Oq(p—q)=0 — h(Og(0)=1 ~ {g=0¢€ C/A}

p

General picture

@ Abel-Jacobi map gives ¢4: Divy(C) — Jac(C) = C&/A

n 0 0 hl ‘ P
o GJ = {wa(L), h°(C,L) = n} C Jac(C)
o dimGj > p(d,n,g) =g —n-(n+x) 2 (1) (1)
o dimGJ = p for generic curves (1980 Griffiths, Harris] > 2|3

= Upper bound for h° on generic curves (watari, 1]
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Gluing local sections

hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

W=2 |PLUB| [c?| |BiUP}
U / /
h =3 PLUAUP
Martin Bies 11 /17




hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Gluing local sections

B =2(|PLu B, [ca By UPL

h =3 PLUAUP
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Gluing local sections |l

M =2 PLUB, =3 B UP!

PLUAUP}

hO

Il
w
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Gluing local sections |l

M =2 PLUB, =3 B UP!

I
w
A
C
>
C
=
o~

hO
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Gluing local sections |l
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Quality assessment of counting procedure

@ Quick: Uses only topological data (genus, chiral index)
@ But: Relative position of bundle divisor and intersections of curve components
matters [cayley 1889, Bacharach 1886]
= Systematically overestimates # of independent conditions
= Obtain underestimate # of global sections

@ Application to our data base:
e 83 pairs (D¢, D;) with complex structure deformations: ~ 1.8 x 10° data sets
o Counting procedure can be applied to ~ 38%
e Accuracy ~ 98.5%

o Lead-offs:

@ Sufficient conditions for jump
@ Algorithmic h%-spectrum estimate
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Algorithmic estimate for h%-spectrum
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Algorithmic estimate for h%-spectrum

VR UC| [V UV(6) U C| | Vi) U V() U C|
‘ Max. degenerate curves ‘

Martin Bies 14 /17
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hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Algorithmic estimate for h%-spectrum

‘ Max. degenerate curves ‘

https://github.com/homalg-project/SheatCohomologyOn ToricVarieties

o Estimate h%-spectrum from lower bounds at subset of nodes

@ Implemented in package HOApproximator

Martin Bies 14 /17



hO-stratifications
Analysis of jumps Jumps from Brill-Noether theory
Jumps from curve splittings

Algorithmic estimate for h%-spectrum

‘ Max. degenerate curves ‘

https://github.com/homalg-project/SheatCohomologyOn ToricVarieties

o Estimate h%-spectrum from lower bounds at subset of nodes

@ Implemented in package HOApproximator
o Caveat: Check that C is irreducible
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Summary and Outlook

Summary

Computing vector-like spectra in global F-theory models is hard

We study how vector-like spectrum changes over moduli space of curve
(+> qualitatively different from prevous bundle cohomology studies)

Insights from interplay between

o Machine learning techniques (decision trees)
o Analytic insights (Brill-Noether theory, stratification diagrams)

Finding in dP3: Factor off (rigid) P's «+ jumps
Results:

@ Formulate sufficient condition for jump
@ Implement quick (mostly based on topological data) h°-spectrum approximator
HOApproximator: https://github.com/homalg-project/SheafCohomologyOnToricVarieties/
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Summary and Outlook

Outlook

@ Technical extensions:

e non-pullback bundle and “fractional” bundles
o stratification for several curves in one global F-theory model

o Conceptual:

o Vector-like spectra for pseudo-real representations

o Non-vertical G4 (flux moduli dependence!)

o (Geometric) symmetries protecting vector-like pairs
@ Practical:

e model building
o (S)CFTs
e swampland program
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Summary and Outlook

Thank you for your attention!

1
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