On stratification diagrams, algorithmic spectrum estimates and vector-like pairs in F-theory

Martin Bies

Oxford University

June 16, 2020

With M. Cvetič, R. Donagi, L. Lin, M. Liu, F. Rühle - 2020.06***

Motivation

Obtain (MS)SM from String theory construction

- $E_8 \times E_8$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01],
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

... including vector-like spectra

- Why vector-like spectra? Higgs fields matter & are characteristic feature of QFTs
- $E_8 imes E_8$: [Bouchard Donagi '05], [Braun He Ovrut Pantev '05], [Bouchard Cvetic Donagi '06], [Anderson Gray Lukas Palti '10 & '11], ...
- F-theory: [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

Martin Bies

Outline

In this talk

- Recent progress to understand vector-like spectra in F-theory
- Based on
 - Machine learning (c.f. L. Lin at String pheno 2020)
 - Analytic insights (Brill Noether theory, stratifications ...)
- Today: Focus on analytics

Outline

- Revision: How to count vector-like spectra in F-theory?
- Analytics of jumps

Vector-like spectra in F-theory [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- \bullet Gauge degrees localized on 7-branes ${\it S} \subset {\it B}_3$
- \bullet Zero modes localized on matter curves $\mathit{C}_{R} \subset \mathit{S}$
- G_4 -flux and matter surface S_R define line bundle \mathcal{L}_R on C_R
- Vector-like pairs:

massless chiral modes $\leftrightarrow h^0(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$ massless anti-chiral modes $\leftrightarrow h^1(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$

- Typically, $h^i(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$ hard to determine:
 - By definition non-topological data
 - \bullet Oftentimes, \mathcal{L}_{R} not pullback from \mathcal{B}_{3}

Coherent sheaves on $\mathcal{B}_{\bm{3}}$ \leftrightarrow Freyd categories [S. Posur '17], [M.B., S. Posur '19]

• Deformation $C_{\mathsf{R}} \rightarrow C_{\mathsf{R}}'$ can lead to jumps

$$h^{i}(\mathcal{C}_{\mathsf{R}},\mathcal{L}_{\mathsf{R}})=(h^{0},h^{1})\rightarrow h^{i}(\mathcal{C}_{\mathsf{R}}^{\prime},\mathcal{L}_{\mathsf{R}}^{\prime})=(h^{0}+a,h^{1}+a)$$

h⁰-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Strategy

Geometric setup

- Realistic F-theory geometries computationally too involved
- \Rightarrow Learn from simpler geometries first
 - Choice of geometry:

Curve $\leftrightarrow C(\mathbf{c}) = V(P(\mathbf{c}))$ hypersurface in dP_3 Line bundle $\leftrightarrow \mathcal{L}(\mathbf{c}) = \mathcal{O}_{dP_3}(D_L)|_{C(\mathbf{c})}$

Challenge

Find $h^0(C(\mathbf{c}), \mathcal{L}(\mathbf{c})) \equiv h^0(\mathbf{c})$ as function of the complex structure \mathbf{c}

h⁰-stratifications Jumps from Brill-Noether theory Jumps from curve splittings

How to find $h^0(C(\mathbf{c}), \mathcal{L}) \equiv h^0(\mathbf{c})$?

Pullback line bundle admits Koszul resolution:

$$0 \to \mathcal{O}_{dP_3}(D_L - D_C) \xrightarrow{P(\mathbf{c})} \mathcal{O}_{dP_3}(D_L) \to \mathcal{L} \to 0$$

Obtain long exact sequence in sheaf cohomology:

$$0 \longrightarrow H^{0}(D_{L} - D_{C}) \longrightarrow H^{0}(D_{L}) \longrightarrow H^{0}(\mathcal{L}) \xrightarrow{} \\ \downarrow H^{1}(D_{L} - D_{C}) \longrightarrow H^{1}(D_{L}) \longrightarrow H^{1}(\mathcal{L}) \xrightarrow{} \\ \downarrow H^{2}(D_{L} - D_{C}) \longrightarrow H^{2}(D_{L}) \longrightarrow 0 \longrightarrow 0$$

Sometimes: 0 → H⁰(L) → H¹(D_L − D_C) → M^ϕ(c) → H¹(D_L) → H¹(L) → 0
 By exactness: h⁰(L) = ker(M_φ(c))

 \Rightarrow Study ker ($M_{arphi}(\mathbf{c})$) as function of complex structure \mathbf{c}

h⁰-stratifications Jumps from Brill-Noether theory Jumps from curve splittings

Example: g = 3, $\chi = 1$ (d = 3)

•
$$C(\mathbf{c}) = V(P(\mathbf{c}))$$
 and $P(\mathbf{c}) = c_1 x_1^3 x_2^3 x_3^2 x_4 + \dots + c_{12} x_3^2 x_4 x_5^3 x_6^3$
• For $D_L = H + 2E_1 - 2E_2 - E_3$ find

$$0 o H^0(\mathcal{L}) o \mathbb{C}^3 \xrightarrow{M_arphi(\mathbf{c})} \mathbb{C}^2 o H^1(\mathcal{L}) o 0\,, \quad M_arphi = ig(egin{array}{ccc} c_3 & c_2 & c_1 \ 0 & c_{12} & c_{11} \end{array} ig)$$

• $h^0(\mathcal{L}) = 3 - \operatorname{rk}(M_{\varphi}(\mathbf{c}))$ & stratification of curve geometries:

$\mathrm{rk}(M_\varphi)$	explicit condition	curve splitting
2	$(c_3c_{11}, c_3c_{12}, c_2c_{11} - c_1c_{12}) \neq 0$	C^1
1	$c_3 = 0, \ c_2 c_{11} - c_1 c_{12} = 0$	<i>C</i> ²
1	$c_1=c_2=c_3=0$	$B_2 \cup \mathbb{P}^1_b$
1	$c_{11} = c_{12} = 0$	$\mathbb{P}^1_{a} \cup B_1$
0	$c_1 = c_2 = c_3 = c_{11} = c_{12} = 0$	$\mathbb{P}^1_a \cup A \cup \mathbb{P}^1_b$

Martin Bies

7 / 17

 Motivation
 h⁰-stratifications

 Analysis of jumps
 Jumps from Brill-Noether theory

 Summary and Outlook
 Jumps from curve splittings

Stratification diagram

Types of jumps

- Brill-Noether theory: C^2 smooth, irreducible but line bundle divisor special
- Curve splittings: Factoring off \mathbb{P}^1_a , \mathbb{P}^1_b leads to jump

h⁰-stratifications Jumps from Brill-Noether theo Jumps from curve splittings

Example 2: g = 5, $\chi = 0$ (d = 4)

•
$$P(\mathbf{c}) = c_1 x_1^3 x_2^4 x_3^2 x_4^2 + \dots + c_{16} x_3^3 x_4 x_5^4 x_6^3$$

- $D_L = H + E_1 4E_2 + E_3$
- Koszul resolution gives

$$M_{arphi}^0(\mathcal{L}) = 7 - \mathrm{rk}(M_{arphi}(\mathbf{c}))
onumber \ M_{arphi} = egin{pmatrix} c_{15} & c_{11} & c_7 & 0 & 0 & 0 & 0 \ 0 & c_{10} & c_6 & c_3 & c_{11} & c_7 & 0 \ c_{12} & c_6 & c_3 & 0 & c_7 & 0 & 0 \ 0 & c_5 & c_2 & 0 & c_6 & c_3 & c_7 \ c_8 & c_2 & 0 & 0 & c_3 & 0 & 0 \ 0 & c_{14} & c_{11} & c_7 & 0 & 0 & 0 \ 0 & c_1 & 0 & 0 & c_2 & 0 & c_3 \end{pmatrix}$$

 \Rightarrow Study $\operatorname{rk}(M_{\varphi}(\mathbf{c}))$ as function of \mathbf{c}

 Motivation
 h^0 -stratifications

 Analysis of jumps
 Jumps from Brill-Noether theory

 Summary and Outlook
 Jumps from curve splittings

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

 Motivation
 h^0 -stratifications

 Analysis of jumps
 Jumps from Brill-Noether theory

 Summary and Outlook
 Jumps from curve splittings

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94]

Motivation h⁰-str Analysis of jumps Jumps Summary and Outlook Jumps

h⁰-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94]

h⁰-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$ $(-1) \cdot q$ p $h^0(\mathcal{O}_{C_1}(p-q)) = 0 \rightarrow h^0(\mathcal{O}_{C_1}(0)) = 1$ $G_0^0 = \{\mathcal{L}, d = n = 0\}$ $\cong \{q \in \mathbb{C}/\Lambda, q \neq 0\}$ $G_0^1 = \{\mathcal{L}, d = 0, n = 1\}$ $\cong \{q = 0 \in \mathbb{C}/\Lambda\}$

General picture

- Abel-Jacobi map gives $\varphi_d \colon \operatorname{Div}_d(\mathcal{C}) \to \operatorname{Jac}(\mathcal{C}) \cong \mathbb{C}^g / \Lambda$
- $G_d^n = \{\varphi_d(\mathcal{L}), h^0(\mathcal{C}, \mathcal{L}) = n\} \subseteq \operatorname{Jac}(\mathcal{C})$
- dim $G_d^n \ge \rho(d, n, g) = g n \cdot (n + \chi)$
- $\dim G^n_d =
 ho$ for generic curves [1980 Griffiths, Harris]

h⁰-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$ $(-1) \cdot q$ p $(-1) \cdot q$ $(-1) \cdot q$

General picture

• Abel-Jacobi map gives $\varphi_d \colon \operatorname{Div}_d(\mathcal{C}) \to \operatorname{Jac}(\mathcal{C}) \cong \mathbb{C}^g / \Lambda$

•
$$G_d^n = \{\varphi_d(\mathcal{L}), h^0(\mathcal{C}, \mathcal{L}) = n\} \subseteq \operatorname{Jac}(\mathcal{C})$$

• dim $G_d^n \ge \rho(d, n, g) = g - n \cdot (n + \chi)$

• $\dim G_d^n =
ho$ for generic curves [1980 Griffiths, Harris]

$$\begin{array}{c|ccc} h^0 & h^1 & \rho \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 2 & -3 \end{array}$$

h⁰-stratifications
Jumps from Brill-Noether theory
Jumps from curve splittings

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94]

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$ $(-1) \cdot q$ p $(-1) \cdot q$ $(-1) \cdot q$

General picture

• Abel-Jacobi map gives $\varphi_d \colon \operatorname{Div}_d(\mathcal{C}) \to \operatorname{Jac}(\mathcal{C}) \cong \mathbb{C}^g / \Lambda$

•
$$G_d^n = \{\varphi_d(\mathcal{L}), h^0(\mathcal{C}, \mathcal{L}) = n\} \subseteq \operatorname{Jac}(\mathcal{C})$$

- dim $G_d^n \ge \rho(d, n, g) = g n \cdot (n + \chi)$
- $\dim G_d^n =
 ho$ for generic curves [1980 Griffiths, Harris]
- \Rightarrow Upper bound for h^0 on generic curves [Watari, 16]

h ⁰	h^1	ρ
0	0	1
1	1	0
2	2	-3

Motivation h⁰-stratifications Analysis of jumps Jumps from Brill-Noether theo Summary and Outlook Jumps from curve splittings

Gluing *local* sections

Motivation h⁰-stratifications Analysis of jumps Summary and Outlook Jumps from curve splittings

Gluing *local* sections

Motivation h⁰-stratifications Analysis of jumps Jumps from Brill-Noether tl Summary and Outlook Jumps from curve splittings

Gluing *local* sections

Motivation h⁰-stratifications Analysis of jumps Jumps from Brill-Noether theory Summary and Outlook Jumps from curve splittings

Gluing *local* sections II

 Motivation
 h⁰-stratifications

 Analysis of jumps
 Jumps from Brill-Noether theory

 Summary and Outlook
 Jumps from curve splittings

Gluing *local* sections II

Motivation h⁰-stratifications Analysis of jumps Jumps from Brill-Noether theory Summary and Outlook Jumps from curve splittings

Gluing *local* sections II

Martin Bies

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]
- $\Rightarrow\,$ Systematically **over**estimates # of independent conditions
- \Rightarrow Obtain **under**estimate **#** of global sections
 - Application to our data base:
 - 83 pairs (D_C, D_L) with complex structure deformations: $\sim 1.8 imes 10^6$ data sets
 - $\bullet\,$ Counting procedure can be applied to $\sim 38\%$
 - Accuracy $\sim 98.5\%$
 - Lead-offs:
 - Sufficient conditions for jump
 - **2** Algorithmic h^0 -spectrum estimate

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

Algorithmic estimate for h^0 -spectrum

С

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

Algorithmic estimate for h^0 -spectrum

https://github.com/homalg-project/SheafCohomologyOnToricVarieties

- Estimate h⁰-spectrum from lower bounds at subset of nodes
- Implemented in package *H0Approximator*

h⁰-stratifications
 Jumps from Brill-Noether theory
 Jumps from curve splittings

Algorithmic estimate for h^0 -spectrum

https://github.com/homalg-project/SheafCohomologyOnToricVarieties

- Estimate h⁰-spectrum from lower bounds at subset of nodes
- Implemented in package H0Approximator
- Caveat: Check that \widetilde{C} is irreducible

Summary

- Computing vector-like spectra in global F-theory models is hard
- We study how vector-like spectrum changes over moduli space of curve (\leftrightarrow qualitatively different from prevous bundle cohomology studies)
- Insights from interplay between
 - Machine learning techniques (decision trees)
 - Analytic insights (Brill-Noether theory, stratification diagrams)
- Finding in dP_3 : Factor off (rigid) \mathbb{P}^1 s \leftrightarrow jumps
- Results:
 - I Formulate sufficient condition for jump
 - Implement quick (mostly based on topological data) h⁰-spectrum approximator H0Approximator: https://github.com/homalg-project/SheafCohomologyOnToricVarieties/

Outlook

- Technical extensions:
 - non-pullback bundle and "fractional" bundles
 - stratification for several curves in one global F-theory model
- Conceptual:
 - Vector-like spectra for pseudo-real representations
 - Non-vertical G₄ (flux moduli dependence!)
 - (Geometric) symmetries protecting vector-like pairs
- Practical:
 - model building
 - (S)CFTs
 - swampland program

Thank you for your attention!

