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Presentation based on work with ...
e T. Weigand, C. Mayrhofer, C. Pehle

1402.5144, 1706.04616, 1706.08528, 1802.08860
@ S. Posur 1900.00172

o M. Barakat, S. Gutsche, S. Posur, K. M. Saleh

Various gap and CAP-packages on https://github.com/homalg-project

(*] M CVetlé, L Lin, M Llu Work in progress

@ Physics: Counting exact massless spectra in F-theory

@ Mathematics: Monoidal structures on Freyd categories
@ Physics: Applications to F-theory model building
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

String theory = General relativity + Standard Model?

our 4-dim. world W ‘small’ 6-dim. manifold B3

Challenge: Find B3 s.t. ST reproduces 4d physics
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Exact massless spectra - what and why?

@ For phenomenology:
Three Generations
of Matter (Fermions)
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e goes beyond rigid data

leads to rich mathematics

(coherent sheaves, Freyd categories,

monoidal structures, ...)
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F-theory — gauge backgrounds and zero mode counting

Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

Which type of string theory is best for constructing the SM?

gs, o/ <1 (o =

Martin Bies
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o < 1 but
) gs strongly coupled
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

SM constructions in perturbative string theory

] E8 X E8 [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86],
[Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas ‘10], [Anderson
Gray Lukas Palti '11 & '12], ...

(] type II [Berkooz Douglas Leigh ‘96], [Aldazabal Franco Ibanez Rabadan Uranga ‘00], [Ibanez
Marchesano Rabadan ‘00], [Blumenhagen Kors Lust Ott ‘01], [Cveti¢ Shiu Uranga ‘01], ...

@ Exact VeCtor—Iike SpeCtra W|thOUt exotics [Braun He Ovrut Pantev '05],
[Bouchard Donagi '05]

o Difficulties:

e global consistency
e Yukawa couplings
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

SM constructions in F-theory

o Geometrization: [Vafa ‘96], [Morrison Vafa ‘96]

o Global consistency <> consistent elliptic fibration
e Yukawa couplings < intersections of matter curves
[Donagi, Wijnholt ‘12], [Cvetic Lin Liu Zhang Zoccarato ‘19]

@ SM constructions [Krause Mayrhofer Weigand ‘12], [Cveti& Klevers Pena Ochlmann
Reuter '15], [Lin Weigand ‘16], [Cveti¢ Lin Liu Oehlmann ‘18]

@ Most recently: A Quadrillion Standard Models from F-theory
[Cveti€ Halverson Lin Liu Tian ‘19]

@ Vector-like spectra computed only in toy models [m.B. Mayrhofer

Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

= Analyse spectra of Quadrillion SMs and find model without
vector-like exotics
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

F-theory — Generalities

Defining QB e wavan [Weigand ‘18]

e Singular elliptic fibration 7: Yy — Bs
Origin: Interpret axio dilaton 7 as complex structure of torus
and fibre this torus over Bs

o Gauge background G, € H>2(Y;)
Origin: M-theory 3-form C3 with G4 = dCs

e Additional non-geometric data (e.g. T-branes)

How to deal with singularities?

] Non—minimal [Lawrie Schafer-Nameki ‘12], [Apruzzi Heckman Morrison Tizzano ‘18], ...

e Minimal
e Do not resolve them [Anderson Heckman Katz ‘13], [Collinucci Savelli ‘14],

[Collinucci Giacomelli Savelli Valandro ‘16]

o Resolve them («+» Coulomb branch of dual 3d M-theory)
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F-theory — gauge backgrounds and zero mode counting

Motivation — what, why and how?
Massless matter from P -fibrations

Gg-fluxes from Chow groups
Singular elliptic fibration

Exact massless spectrum from sheaf cohomologies

fibre Cy »
'.l “‘ Py .
;
\ TN
= — . " A total space Y}
“\‘ - v base Bs
[IB-SUGRA Geometry
union of loci of D7-branes  Singular locus A of elliptic
in [IB-compactification

fibration Cy., < Y4 — Bg
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F-theory — gauge backgrounds and zero mode counting

Motivation — what, why and how?

Massless matter from P -fibrations
Gg-fluxes from Chow groups
Singular elliptic fibration

Exact massless spectrum from sheaf cohomologies

S-Y :
'.l “‘ ) ,-;T‘/
;

\ TN

= —— ‘\ 14 total space Y}
“\‘ - v base Bs
[IB-SUGRA Geometry

union of loci of D7-branes  Singular locus A of elliptic
in [IB-compactification

fibration Cy., < Y4 — Bg
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. Motivation — wha hy and how?
F-theory — gauge backgrounds and zero mode counting Massless matter from PY-fibrations
Ga-fluxes from Chow groups
Exact massless spectrum from sheaf cohomologies

Cartoon of blow-up resolution

In general obtain ...
affine Dynkin diagrams of A-, B-, C-, D-, E-, F4 and G,-type
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Motivation — what, why and how?
Massless matter from P -fibrations

Gg-fluxes from Chow groups

F-theory — gauge backgrounds and zero mode counting
Exact massless spectrum from sheaf cohomologies

MaSS|eSS matter [Katz Vafa '96], [Witten ‘96], [Grassi,Morrison ‘00 & ‘11], [Morrison, Taylor ‘11],

[Grassi,Halverson,Shaneson ‘13], [Cveti¢,Klevers,Piragua, Taylor ‘15], [Anderson,Gray,Raghuram, Taylor ‘15],

[Klevers, Taylor ‘16], [Klevers,Morrison,Raghuram, Taylor ‘17], ...

ii <« Gauge group G

Singular locus A «—— > 7-branes
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. Motivation — what, why and how?
F-theory — gauge backgrounds and zero mode countin, ' 21 g .
Yy ~ gaug g€ g Massless matter from P-fibrations
Gg-fluxes from Chow groups
Exact massless spectrum from sheaf cohomologies

Gy-fluxes and M-theory 3-form C3

y
'
'

(type HA) R }(F-th'eory)
* A

T
'
1

el (ol B o' <1 but
gs,d/ <1 (o = 355) gs strongly coupled
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Origin of Gy-flux: M-theory 3-form Cj
11d SUGRA action (G4 = dG3)

M9
Siip = 71215) / dx <\/MR _ G /\2*G4 _GA G64 A G4>
M1

Consequence

@ M2-branes couple electrically to 3-form gauge potential C3
o Gy = dC3 € H?2(Y,) is field strength

@ What specifies gauge data beyond field strength G;?
= Look for structure which combines information on

o field strength G, € H22(Y,)
o Wilson line d.o.f. § G
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Full gauge data from Deligne cohomology

Natural candidate in mathematics [curio,Donagi 98], [Donagi,Wijnholt ‘12/13],

[Anderson,Heckman,Katz ‘13], [Intriligator,Jockers,Mayr,Morrison,Plesser ‘12]

0 — J2(Ys) = HAE(Ya, Z(2)) - H*2(Y4) = 0

A~ H3 )A/ ,(C 5 .
J2(Yy) ~ H2a1(\74)(+l':3()\74,2)) <> Wilson lines § C3
Hé(\Aﬁ,Z(Z)) < full gauge data
H2(Yy) + field strength G,

o H}(Ya,Z(2)) is hard to handle (practically)

= Easy—tO—WOI’k—With parametrisation: CH2(§\/4) [Green Murre Voisin ‘94]
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

Describe full G4-gauge data by A € CH?(Yy)

F-theory — gauge backgrounds and zero mode counting

How does thls parametrization Work? [ H. Esnault, E. Viehweg ‘88] — see also

[Braun,Collinucci,Valandro ‘11]

0 —— CH2,(Y4) — CH(Y,) — H22(Ya) ——— 0

hom

lAJ l%

Definition of Chow group CH?(Y4)

e Rational equivaIAence:
G ~ G € Zp(Ya) iff G& — G, is zero/pole of a rational
function defined on 3-dim. irreducible subspace of Y;

o CH2(Y,) = {rational equivalence classes of 2-cycles}
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F-theory — gauge backgrounds and zero mode counting

Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

ReCI pe [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

Martin Bies
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

ReCI pe [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

Erh' @ Massless matter:
ED 0o ehen rh SRR
- ‘. r
¥ \\ !
\I i o
C//\_/ oam
N
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

ReCI pe [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

=
o
g
)
Q
A
\]

@ Massless matter:

< Sp = 4PY + PL € CH(V4)
@ Full G4-gauge data:
. ‘ ! o Ac CH?(Y,)

¢

€g sseq
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

ReCI pe [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

=
o
g
)
Q
A
\]

@ Massless matter:
< Sg = 4P + PL € CH?(Y,)
@ Full G4-gauge data:

. ‘ ! — Ae CHA(Y,)
A _.1 \\ 19 n
3 . i © Sgr and A intersect in points of Yy
[
v / 2
S|
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. Motivation — what, why and how?
F-theory — gauge backgrounds and zero mode countin, ' 21 g .
Yy ~ gaug g€ g Massless matter from P-fibrations
Gg-fluxes from Chow groups
Exact massless spectrum from sheaf cohomologies

ReCI pe [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

Massless matter:

< Sg = 4P + PL € CH?(Y,)
Full G4-gauge data:

~ ‘ ! « A€ CH?(Y))

Sr and A intersect in points of Y,
7« (SR - A) = points in Cr

© O

“1) 24qy

© 0

€g sseq
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. Motivation — what, why and how?
F-theory — gauge backgrounds and zero mode countin, ' 21 g .
Yy ~ gaug g€ g Massless matter from P-fibrations
Gg-fluxes from Chow groups
Exact massless spectrum from sheaf cohomologies

ReCI pe [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

Massless matter:

< Sp = 4PY + PL € CH(V4)
Full G4-gauge data:

. ‘ o Ac CH?(Y,)

+17) a.qy
© ©

’ \‘\ 2 ) @ Sg and A intersect in points of Yj
/v—i\ﬁgj / %— Q 7. (Sg-A)= points in Cr
C}i’///__’l\g'g/ = O line bundle L (Sr,A) on Cgr
” Y Ocy (m (Sr - A) @ \/Ke
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

ReCI pe [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

g

& o oo )]
. ; \ Q

\ T \I 1‘

@ Massless matter:
< Sg = 4P + PL € CH?(Y,)
@ Full G4-gauge data:

Yo L, & A€ CH(Y,) )
’ \‘\ * . © Sgr and A intersect in points of Yy
/v—i\ﬁgj / %— Q 7. (Sg-A)= points in Cr
C}i’///__’l\g'g/ = O line bundle L (Sr,A) on Cgr
; A Ocy (74 (Sr - A) ® /Kc

Conseq UENCE [Katz,Sharpe'02] [Beasley,Heckman,Vafa‘'08] [Donagi, Wijnholt'08]

N =1 chiral multiplets < HO(CRr,L(SRr,A))
N =1 anti-chiral multiplets <+ H!(Cr, L(Sr,A))
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Towards coherent sheaves

Challenge: Sheaf cohomologies of L(S§, A) hard to determine
@ L(S§,A) in general not pullback m.s. Mayrhofer Weigand '17]

@ Hypercharge flux must not be a pullback [graun, collinucci, Valandro ‘14]

Simplification: assume embedding ¢: Y4 < X in ‘simple’ space X

o Extend L(S§,A) ‘by zero' outside of matter curve Cgr
= Obtain coherent sheaf F € €oh(X), i.e. locally
o ol M »J
Fly = cok (OF (U il (’)X‘U) ,
M is s.t. F matches L(S§,A) on Cr and is otherwise trivial
e Example: Structure sheaf of V(P) = {P = 0} is given by
P
O\/(p) = cok (OX — Ox>

= Q: Can we handle these sheaves for ‘simple’ spaces X7
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Toric varieties as ambient spaces

@ Toric varieties form a very large class of geometries

@ Many aspects of toric varieties are computationally under
control, e.g. intersection theory

What? Example — projective space

o P~ = (C" - {0})/C* with

C X (X1, yxn) = (Ax1, ..., Axn)

e Coordinate ring (Cox ring): S = C[x1, x2, . .., xa], deg(x;)

o Stanley-Reisner ideal (‘forbidden locus'): g = (x1x2 - - - - - Xn

Martin Bies F-theory <> Freyd categories 18 /42



Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Coherent sheaves on toric varieties

Sheaﬁﬁcation fU NCLOr [Cox Little Schenck ‘11] — see also [Barakat Lange-Hegermann ‘12]
e S-fpgrmod: category of finitely presented graded S-modules
@ Any A € S-fpgrmod is of the form

@ Q: Does A € S-fpgrmod correspond to coherent sheaf on Xs7
A: Yes, there exists the sheafification functor

~: S-fpgrmod — €ohXs , M= M (S~ Ox,)

Consequence

S-fpgrmod models coherent sheaves on Xy

Martin Bies F-theory <> Freyd categories



Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Towards Freyd categories and monoidal structures

Counting global sections on toric varieties [cox Little Schenck ‘11], [Smith ‘o8],

[Blumenhagen Jurke Rahn Roschy ‘10], [M.B. ‘18]
o HO(Xs, F) =T (Homoy (Oxe, F))

@ Algebraic counterpart in S-fpgrmod:
For suitable F,/ € S-fpgrmod with F = F and I = Ox, have

H°(Xs, F) = Homg (/, F)_,

Towards efficient computer models . ..

o S-fpgrmod is a Freyd category

@ Internal hom Homg is part of monoidal structure

= What can we learn about monoidal structures on Freyd
categories?
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Motivation — what, why and how?

Massless matter from P-fibrations

Gg-fluxes from Chow groups

Exact massless spectrum from sheaf cohomologies

F-theory — gauge backgrounds and zero mode counting

Questions so far?

© Massless matter in resolved elliptic fibration Y
< Pl-fibration over matter curve
@ Parametrize G4-flux beyond field strength
+ Chow group CH?(Y)
(2¢-cycles modulo rational equivalence)
© Count massless matter
++ cohomologies of coherent sheaves

@ Explicit computations in toric spaces
Coherent sheaf <> Object in Freyd category A(A)
Sheaf cohomologies <>  Monoidal structure on A(A)
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What, why and how?

Constructive approach to Freyd categories
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Monoidal structures on Freyd categories

Freyd categories — generalities (. rreyd ‘ss), [a. Beligiannis ‘00]

Why are Freyd categories interesting?

o Completely constructive [posur ‘17]
e CAP-package Freyd categories
o Computer models for coherent (toric) sheaves in
SheafCohomologyOn ToricVarieties

@ Unified framework for f.p. (graded) modules and f.p. functors

@ lteration yields approach to free Abelian category

Any additive category A admits a Freyd category A(A) s.t.

A C A(A) and A(A) has cokernels
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https://github.com/homalg-project/CAP_project/tree/master/FreydCategoriesForCAP
https://github.com/homalg-project/SheafCohomologyOnToricVarieties

What, why and how?

Constructive approach to Freyd categories
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Work by [M.B. Posur ‘19] — what and why?

Monoidal structures on Freyd categories

What did we find?

Promonoidal structures on A < monoidal structure on A(A)

This is important because ...

@ it provides tensor products of finitely presented functors

o it allows studies of monoidal structures on free Abelian
categories [M. prest ‘09]

o it offers simple approach to Day convolution [g. pay 70 & 72] in
f.p. context

@ it provides efficient structure for computer implementations of
Freyd categories (in particular Homg for S-fpgrmod)
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What, why and how?
L . Constructive approach to Freyd categories
Monoidal structures on Freyd categories o . .
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

[M.B. Posur '19] — How?

How does the corresondance of (pro)monoidal structures arise?

Follows from multilinear 2-categorical universal property of
Freyd categories: There exists an equivalence of categories

Hom((A))ien, B) = Hom" ((A(A))iens B)

© Constructive approach to Freyd categories
@ Bilinear 2-categorical universal property

© Application to (pro)monoidal structures

Martin Bies F-theory <> Freyd categories 24 /42



What, why and how?
Monoidal structures on Freyd categories Comsruaive eppend i [Fia ciegaics

Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Freyd categories — objects, morphisms and cokernels

@ a,b,c,... are objects of A

e A B,C,... are objects of A(A)

v

Beadr, e Mor(A), then A= (a & ra) € Obj(A(A))
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What, why and how?
. . Constructive approach to Freyd categories
Monoidal structures on Freyd categories tructive app! X 4 gort
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Freyd categories — objects, morphisms and cokernels

@ a,b,c,... are objects of A

e A B,C,... are objects of A(A)

Be a &2 r, € Mor(A), then A= (a £ r,) € Obj(A(A))

Morphism {o, wa}: (a &2 r)) — (b &2 1)

a

Pa A
—  |{owa)
Pb p
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What, why and how?
. . Constructive approach to Freyd categories
Monoidal structures on Freyd categories tructive app! X 4 gort
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

More constructions for A(A)

Systematic analysis and implementation in CAP
@ Systematic analysis [posur 17]
= Constructive approach to direct sums, pullbacks, ...

@ Implementation in CAP-package

Central philosophy of CAP

@ Derive complicated construction from simpler constructions
(https://homalg-project.github.io/capdays-2018/ program/)
@ Example: Pullback < product + difference + kernel

= Goal: Algorithms for monoidal structures of Freyd categories
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What, why and how?
. . Constructi h to Freyd cat i
Monoidal structures on Freyd categories ONSErUCtive approach to Treyc categories
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Definition of two categories

Category Hom((Aj)jc1.2,B)

@ Objects: Bilinear functors A; x Aj B

@ Morphisms: Natural transformations

Category H2osn" ((A(A}))ic1,2, B)

@ Objects: Bilinear functors A(A;) x A(A>) £, B such that

F(ida, ,a2)
(F(all,id:z ) F(ar, br)
e 5]
F(bl, 32)

0 < F(cok(a1), cok(an)) + F(a1, a2)

is exact for any two morphisms a; EL by, a2 by
@ Morphisms: Natural transformations
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What, why and how?
L . Constructive approach to Freyd categories
Monoidal structures on Freyd categories s p h
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Universal property and strategy of proof

Bilinear 2-categorical universal property of Freyd categories
There exists an equivalence of categories

Hom((Ai)ic1,2, B) = H2x" ((A(A)))ic1,2, B)

Revision: Equivalence of categories C ~ D consists of ...
e functor F: C — D

o functor G: D — C

@ natural isomorphism e: FG — idp

(among others FG(X) = X for all objects X of D)
@ natural isomorphism n: GF — id¢

(among others GF(Y) = Y for all objects Y of C)
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What, why and how?

N . Constructive approach to Freyd categories

Monoidal structures on Freyd categories s pp p rey =
Multilinear 2-categorical universal property

Application to (pro)monoidal structures

Strategy of proof ciEE=

© Hom((A))ic12,B) = " ((A(A}))ic12,B) : F— F
Demand that for A; € A(A;) the following row is exact

(FEidalvpaZ;>

~ F(pay ,iday F(a , Fa

0 F(A1,Ay) «— Fla1, ) —— @F((;a ;2)
19

Q S ((.A(A,‘)),ELQ, B) — Hom((A,-),-eLg, B) G~ G‘A1><A2
Restrict the given functor G to A; x As.

© Show that for F € Hom((A,-),-eLg, B): F F

A1><A2

o —

@ Show that for G € 2" ((A(Ai))ie12,B): G = (Gla, xn,)
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What, why and how?

. . Constructive approach to Freyd categories

Monoidal structures on Freyd categories s pp p rey &
Multilinear 2-categorical universal property

Application to (pro)monoidal structures

Algorithmic lift of T: A x A — A(A)

Step 1: Fix notation:

@ For aj, a € Obj(A), denote T (a1, a2) € Obj(.A(A)) by
<gT(31732) griaz) fT(31,32)> :
o For a; &% by, ap <% by, denote T(a, 8) € Mor(A(A)) by

gr(b1, b2) rr (b1, by)
p1(b1, b2) |

or(ar,a0) O wr(ag,a)

p1(a1, a2) v
gr(a1, a2) rr(at, a2)
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What, why and how?
. . Constructive approach to Freyd categories
Monoidal structures on Freyd categories s pp p rey =
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Algorithmic lift of T: A x A — A(A)

Recall definition of 'f'(Al, Az) from exact sequence

( T(idal 7932) )
T (pay ,iday) T(al, raz)
#

0— ?(AlaAZ) — T(al’a2) @T(ra 32)
19
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What, why and how?

Constructive approach to Freyd categories
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Algorithmic lift of T: A x A — A(A)

Monoidal structures on Freyd categories

Recall definition of 'f'(Al, Az) from exact sequence

( T(idal 7932) )
T (pay ,iday) T(al, raz)
#

0— ?(AlaAZ) — T(al’a2) @T(ra 32)
19

Step 2: Express morphism by objects/morphisms in A

(pT(alap2) )
gT(alaraz) PT(P1732) rT(a]_,faz)
@gT(ralaaZ) @rr(ral,az)

'f'(Al,Ag) = cok <6T(idal,pz)> o (w-,—(idal,pz)> :

57 (p1,iday) wr(p1,iday)

gr(a1, a2) rr(ai, a2)
p1(a1, a2)
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What, why and how?

Constructive approach to Freyd categories
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Monoidal structures on Freyd categories

Algorithmic lift of T: A x A — A(A)

Step 3: Final algorithm

p1(a1,a2)
§T(ida}:p2) rT(31> 32)

d7(p1,iday)

T(A1,A2) = | gr(a1, a2) ®gr(at, ra)

@gT(rala 32)

[For a1, a2 € A: T(a1,a2) = (gr(a1, a2) LrlaLz2) rr(a1, a2)) |
o T:Ax A — A(A) < protensor product
o T: A(A) x A(A) = A(A) < tensor product

= Extend systematically to (pro)monoidal structures
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What, why and how?

Constructive approach to Freyd categories
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Monoidal structures on Freyd categories

What and how?

What? Find algorithmic relations

@ tensor product <> protensor product
@ tensor unit <> protensor unit
° ...

. === .
@ internal-Hom Hom < pro-internal Hom Hom

@ Consider monoidal structure on A(A)

@ Restrict to A by universal 2-categorical property

= Promonoidal structure on A subject to restricted pentagonal
identity, hexagonal identities, ...

@ Lift promonoidal structure on A to A(A) by universal
2-categorical property
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What, why and how?

Constructive approach to Freyd categories
Multilinear 2-categorical universal property
Application to (pro)monoidal structures

Monoidal structures on Freyd categories

Questions so far?

®

Many proper promonoidal structures

Internal hom does not always extend .—

A additive, closed monoidal category
= A(A) is additive, closed monoidal category
= Monoidal structures on A(A(A)°P)°P
Tensor products on Freyd categories
> Day convolution of f.p. functors [5. pay ‘70 & '72]

®

®

Unified implementation of monoidal structures
for f.p. (graded) modules and f.p. functors.
— back to physics . ..

[
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F-theory Pati-Salam models

Applications to F-theory Standard Models 4 e Eximilly mecdls

Strategy

Why Pati-Salam models?

o Computation in Quadrillion SMs [cvetic Halverson Lin Liu Tian '19] hard
(+» complicated matter curves)

@ Models can be Higgsed to Pati-Salam model
(<> simple geometry)

= Focus on (SU(4) x SU(2)?)/Z,-Pati-Salam models

Geometric realization

@ Bs is toric 3-fold (from Kreuzer-Skarke list ozos190)
e Matter curves: Cg = V(P1, P2), deg(P;) = Kp,
o Matter representations: (4,1,2), (4,2,1), (6,1,1), (1,2,2)
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F-theory Pati-Salam models

Applications to F-theory Standard Models 4 e Eximilly mecdls

Challenges

Challenge 1: Zero mode counting of real reps. (6,1,1), (1,2,2)
@ No holomorphic matter surface with corresponding weights

= Find ‘normal’ matter surfaces for special complex structure

Challenge 2: fractional pullbacks

@ Spectrum of complex representation:

representation line bundle chiralities
1 — —3
(4,1,2) OC(4,1,2) (5 - %) KB3‘CR —4Ks,
1 e —3
(4,2,1) OC(4,2,1) (§ + %) KB3’CR +2K83
= (% e %) W33}CR defines divisor on Cg if Freed-Witten
quantization is satisfied
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F-theory Pati-Salam models

Applications to F-theory Standard Models é el SHiily o

Simple starting point: 4 family models

o chirality 4 for reps. (4,1,2) and (4,2,1)
o 3Kp, is a Z-Cartier divisor of B3

Total of 408 admissible setups

space W?% number of triangulations
X 32 1
Xj2 32 53
Xj8 32 30
X? 16 158
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F-theory Pati-Salam models

Applications to F-theory Standard Models é el SHiily o

Example — space X{

Make sense of the fractional line bundles

o Fractional pullback: L412) = G (g K x1

e Find inl =4V(x1) +2V(x), V(X2)|C(4,1,2) -

V(x1) =8V/(x1,x3,x4) = 8r

|C(4,1,2)

= L@a1,2) =0y, (12-1)

Compute their cohomologies

O Find L(47172), L(47271) € S-fpgrmod such that £(471’2) = L(471’2)

@ Use gap-package SheafCohomologyOn ToricVarieties to find
cohomologies (computer Plesken — Siegen university):
h'(La1,2) = (5,9)
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F-theory Pati-Salam models

Applications to F-theory Standard Models é el SHiily o

Extend the search

Strategy

@ Repeat analysis for other 4-family and 3-family models

@ Sometimes the spectrum follows from pullback bundles!
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F-theory Pati-Salam models

Applications to F-theory Standard Models é el SHiily o

Extend the search

@ Repeat analysis for other 4-family and 3-family models

@ Sometimes the spectrum follows from pullback bundles!

@ Find 3-family models with

h(Laaz) = (1,4), h(La21)) = (4,1)
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Extend the search

@ Repeat analysis for other 4-family and 3-family models

@ Sometimes the spectrum follows from pullback bundles!

@ Find 3-family models with

h(Laaz)=(1,4), h(La21)) = (4,1)
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F-theory Pati-Salam models

Applications to F-theory Standard Models é el SHiily o

Extend the search

@ Repeat analysis for other 4-family and 3-family models
@ Sometimes the spectrum follows from pullback bundles!

@ Find 3-family models with

h(Laaz)=(1,4), h(La21)) = (4,1)

Phenomenological challenge: absence of vector-like exotics

@ To Higgs the Pati-Salam model to the SM we require:
one Higgs field in rep. (4,2,1) — none in (4,1,2)
= Modify these models to have spectrum (0,3) and (4,1) ...
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F-theory Pati-Salam models

Applications to F-theory Standard Models é el SHiily o

Summary

@ Count vector-like spectra 14025144, 1706.04616, 1706.08528, 1802.08860
o Gi-flux > A e CH3(Y,)
o Massless matter <+ cohomologies of F € €oh(Xx)
e Computer model for €oh(Xy) <> Freyd categories
o Implementation in CAP-package Freyd categories
e Analyse monoidal structures to improve efficiency 1909.00172
o multilinear 2-categorical universal property
= Promonoidal structures <> monoidal structures
o Approach matches Day convolution of f.p. functors
@ Applications to Quadrillion SMs 1903 00009
e Simpler: Analyse Pati-Salam model via toric Higgsing
o Challenges:
@ No holomorphic matter surface with weights of real reps.
o Fractional pullbacks (<++ evaluate intersection product)
= Overcome (at special complex structure): 3-family models

(4,1,2): (1,4) (4,2,1): (4,1)
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F-theory Pati-Salam models

Applications to F-theory Standard Models é el SHiily o

Outlook

Phenomenological challenge: Absence of exotics

@ Assumption: Pati-Salam Higgs field in (4,2,1)

= Desired spectrum without exotics
(4,1,2): (0,3), (4,2,1): (4,1)

@ But our best models only satisfy
(4,1,2): (1,4), (4,2,1): (4,1)

= Systematics of adding/removing vector-like pairs?
(Horizontal fluxes, tuning of complex structure, ...)

Tensor products on the free Abelian category
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F-theory Pati-Salam models
4- and 3-family models

Applications to F-theory Standard Models

Thank you for your attention!

i 1
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F-theory Pati-Salam models

Applications to F-theory Standard Models 4 e Sy el

CAP-philosophy: Pullback from product, difference, kernel

idr

idr
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F-theory Pati-Salam models

Applications to F-theory Standard Models i e Sy el

CAP-philosophy: Pullback from product, difference, kernel

@ Product R x R

(y)—x
RxR ——R
x
<

id
R LI
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CAP-philosophy: Pullback from product, difference, kernel

@ Product R x R
= idgom 7& idg o >

(y)—x
RxR ——R
x
<

id
R LI
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F-theory Pati-Salam models

Applications to F-theory Standard Models i e Sy el

CAP-philosophy: Pullback from product, difference, kernel
@ Product R x R
= idgom 7& idg o >

@ Consider difference
5:idRO7T1—id]RO7T2
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F-theory Pati-Salam models
4- and 3-family models

Applications to F-theory Standard Models

CAP-philosophy: Pullback from product, difference, kernel

@ Product R x R
= idg o1 # idg o M2
@ Consider difference
0 =idgrom —idg oo
© Kernel embedding
t:ker(0) R —R xR
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F-theory Pati-Salam models
4- and 3-family models

Applications to F-theory Standard Models
CAP-philosophy: Pullback from product, difference, kernel
@ Product R x R
= idgom 7& idg o >
@ Consider difference

5:idRO7T1—id]RO7T2

© Kernel embedding
t:ker(0) R —R xR

@ Define v :=m; 01
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F-theory Pati-Salam models
4- and 3-family models

Applications to F-theory Standard Models

CAP-philosophy: Pullback from product, difference, kernel
Product R x R
= idg o1 # idg o M2
@ Consider difference
0 =idgrom —idg oo
© Kernel embedding
t:ker(0) R —R xR

@ Define v :=m; 01

= idg o~y; = idgr 02 and
(ker(4),71,72) satisfy
universal property
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F-theory Pati-Salam models
4- and 3-family models

Applications to F-theory Standard Models

CAP-philosophy: Pullback from product, difference, kernel
Product R x R
= idg o1 # idg o M2
@ Consider difference
0 =idgrom —idg oo
© Kernel embedding
t:ker(0) R —R xR

@ Define v :=m; 01

= idg o~y; = idgr 02 and
(ker(4),71,72) satisfy
universal property

Many such derived algorithms available in CAP
https://github.com/homalg-project/CAP _ project
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Step 1: From HOHI((A,‘),‘GLQ, B) e S ((A(A,‘)),'GLQ, B)

@ Start with bilinear functor F: A1 x A, — B
@ Consider objects A; = (a; L ra;), Bi = (bi 2 rp;) and
morphisms A; M B;

@ Define F: A(A;) x A(A;) — B by exactness of the diagram

—~ F o
0 —— F(A1, A)) — Fla1,a) ——— (21, 72)

F(iday ,0a5) @F(rau 32)
5) - (F(pal,idaz)) |
o —
- Q F(alvw& )
z © P © ( i F(wa1vo‘2)>
o B
S ~ (F(idbl,pbz)) !
:-/ F(pblvidbz) F([)]_7 rbz)
00— F(BlyB2)(_F(b17b2) @F(rbl,bz)
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Step 2: Consequences and definition of restriction

Properties of F — F

o idp = idp for all bilinear functors F : A; x A, — B
@ Vo i = v o[ for all composable natural transformation v, u

= Have a well-defined functor

HOIII((A,'),'€172, B) — %mr((.A(A,')),'eLQ, B) F— /F\

Definition of restriction

Let emb : [[;c; 5 Ai <> [[;c1 2 A(A/) denote componentwise
embedding. Then consider

Hoorm" ((A(A7))ic1,2, B) — Hom((A))ie1,2, B)
G — Gla,xA, := Goemb
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Step 3: Argue for natural isomorphisms CEmE=mED

@ For (a1,a2) € A1 x A, obtain natural isomorphism
(F(idal ,0))
F(Ovidaz) F(al,O)
@F(O, 32)

~

F(emb(as, az)) ~ cok | F(a1, a2)

~ cok (F(a1,a2) «— 0) ~ F(a1, a2)

e For (A1,Az) € A(A1) x A(A2) obtain natural isomorphism

G(A1, Ap) ~ cok <G(emb(a1, a)) +— @GG(ZIII:;{E‘(?[;,I)EB) )

G\Ale2 (a1, b2) >

~cok [ G
co < |Arxa, (a1, 32) +— @ Gla,xa, (b1, 22)

~ G|A1><A2(A17 A2)
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Necessity of promonoidal structures E®

There are promonoidal structures which are not monoidal.

Example in R-fpmod (R commutative ring)

e Every M € R-fpmod gives rise to a right-exact bilinear functor
T: R-fpmod x R-fpmod — R-fpmod, (A, B) — AQr M®gB

= R-fpmod becomes semimonoidal category & T tensor product
@ Restriction to Rowsg gives prosemimonoidal structure

@ Protensor product of two objects in Rowsg lies outside of
Rowsg whenever M is not a row module
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Internal Homs do not always extend ==

e Consider R = Q[x;, z|i € N] and A = Rowsg with ordinary
tensor product
= Induced tensor product on R-fpmod is the ordinary tensor
product
@ We argue that it has no right-adjoint:

o Homg(R/(z), R) = ({x;|i € N}) — not finitely presented
o Assume there was f.p. Homg on R-fpmod. Then:

e Homg(R/(z), R) = cok (RlXa A Rle>
e Tensor-Hom-adjunction implies

Homg(R/(z), R) = Homg(1, Homg(R/(r), R))
= cok (R*** ¢ k™)
= Contradiction: Homg(R/(z), R) = ({x;|i € N}) is not f.p.
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Koszul resolution |

Koszul resolution for Ox(Ds) with Ds = %?33‘2
o Set L =05 (3Kz,).

o Matter curve is complete intersection & = {P; = P> = 0}
(deg(Pi) = Kis,)

= Have Koszul resolution 0 — V> Mo, Vl L— Ly =0
with

3 1 \#
V2 = 063 <_2KB3> ) Vl = 033 <_2KB3) .

@ Use cohomCalg (Blumenhagen et all 2010) and compute cohomologies
of £, V1, V>

@ Try to deduce cohomologies of L
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Koszul resolution |l

For B3 = X{ compute cohomologies of £, V1, V2
Non-trivial cohomologies are h3(X{,V2) = 6 and hO(X}, L) =6

Deduction of cohomologies of £

@ Introduce auxilliary sheaf / to split Kozsul resolution

0=>Vo—= V1 =10, 0—>/—>L— L]y —0.

@ Use the two induced long exact sequences in cohomologies
0— M (Vo) = RO (V1) = (1) = Rt (W) = (V1) — ...

0— R (1) = h(L) = M2 (L) — A (1) = At (L) — ...

= ho(1) = h'(I) = h3(1) = 0 and h?*(I) = 6
= hO(L|s) = h(L]g)=6
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