> From F-theory Standard Models to Freyd Categories and back

> > Martin Bies

Oxford University

December 10, 2019

Overview

Presentation based on work with

• T. Weigand, C. Mayrhofer, C. Pehle

1402.5144, 1706.04616, 1706.08528, 1802.08860

- S. Posur 1909.00172
- M. Barakat, S. Gutsche, S. Posur, K. M. Saleh

Various gap and CAP-packages on https://github.com/homalg-project

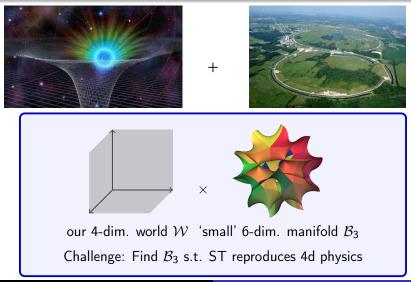
• M. Cvetič, L. Lin, M. Liu Work in progress

Outline

- Physics: Counting exact massless spectra in F-theory
- Mathematics: Monoidal structures on Freyd categories
- Physics: Applications to F-theory model building

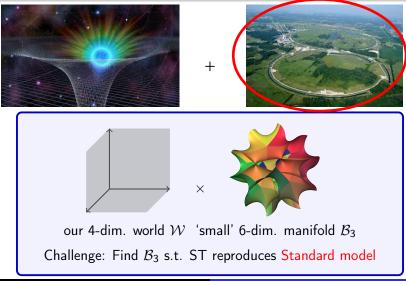
Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G_4 -fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

String theory = General relativity + Standard Model?



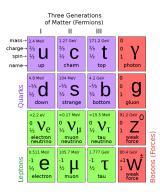
Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G_4 -fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

String theory = General relativity + Standard Model?



Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G_4 -fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

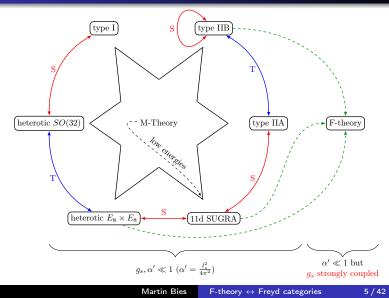
Exact massless spectra - what and why?



- For phenomenology:
 - number of Higgs doublets
 - amount of vector-like exotics
- Conceptually:
 - affects RG flow e.g. of couplings
 - enters Higgsing and transitions between vacua
 - depends on complex structure moduli
 - goes beyond rigid data
 - leads to rich mathematics (coherent sheaves, Freyd categories, monoidal structures, ...)

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Which type of string theory is best for constructing the SM?



Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G_4 -fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

SM constructions in perturbative string theory

- E₈ × E₈: [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], [Anderson Gray Lukas Palti '11 & '12], ...
- type II: [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...
- Exact vector-like spectra without exotics [Braun He Ovrut Pantev '05], [Bouchard Donagi '05]
- Difficulties:
 - global consistency
 - Yukawa couplings

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations \mathcal{G}_4 -fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

SM constructions in F-theory

- Geometrization: [Vafa '96], [Morrison Vafa '96]
 - Global consistency \leftrightarrow consistent elliptic fibration
 - Yukawa couplings ↔ intersections of matter curves [Donagi, Wijnholt '12], [Cvetic Lin Liu Zhang Zoccarato '19]
- SM constructions [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18]
- Most recently: A Quadrillion Standard Models from F-theory [Cvetič Halverson Lin Liu Tian '19]
- Vector-like spectra computed only in toy models [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]
- ⇒ Analyse spectra of *Quadrillion SMs* and find model without vector-like exotics

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

F-theory – Generalities

Defining data recent review: [Weigand '18]

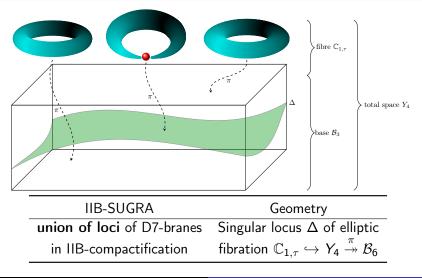
- Singular elliptic fibration π: Y₄ → B₃
 Origin: Interpret axio dilaton τ as complex structure of torus and fibre this torus over B₃
- Gauge background $G_4 \in H^{2,2}(Y_4)$ Origin: M-theory 3-form C_3 with $G_4 = dC_3$
- Additional non-geometric data (e.g. T-branes)

How to deal with singularities?

- Non-minimal [Lawrie Schafer-Nameki '12], [Apruzzi Heckman Morrison Tizzano '18], ...
- Minimal
 - Do not resolve them [Anderson Heckman Katz '13], [Collinucci Savelli '14], [Collinucci Giacomelli Savelli Valandro '16]
 - Resolve them (\leftrightarrow Coulomb branch of dual 3d M-theory)

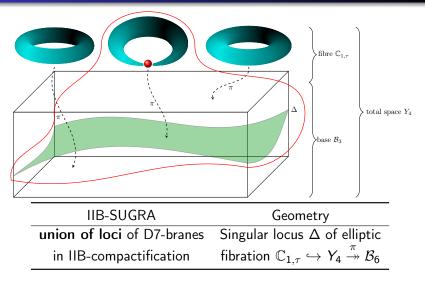
Motivation – what, why and how? Massless matter from P¹-fibrations Gd-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Singular elliptic fibration



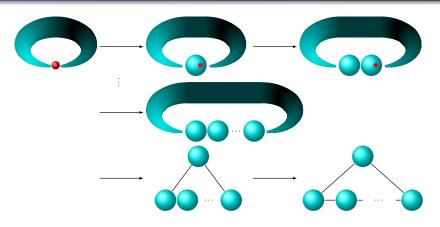
Motivation – what, why and how? Massless matter from P¹-fibrations Gd-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Singular elliptic fibration



Massless matter from \mathbb{P}^1 -fibrations

Cartoon of blow-up resolution

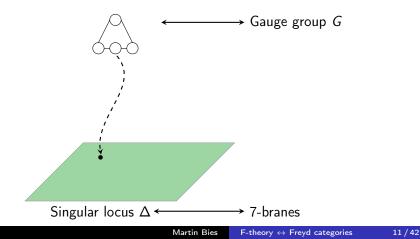


Martin Bies F-theory \leftrightarrow Freyd categories

Motivation – what, why and how? **Massless matter from** \mathbb{P}^1 -fibrations Ga-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11],

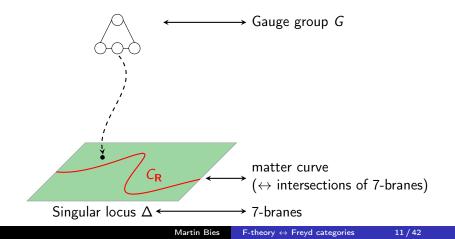
[Grassi,Halverson,Shaneson '13], [Cvetič,Klevers,Piragua,Taylor '15], [Anderson,Gray,Raghuram,Taylor '15],



Motivation – what, why and how? **Massless matter from** \mathbb{P}^1 -fibrations Ga-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11],

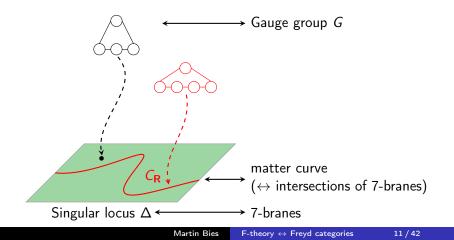
[Grassi,Halverson,Shaneson '13], [Cvetič,Klevers,Piragua,Taylor '15], [Anderson,Gray,Raghuram,Taylor '15],



Motivation – what, why and how? **Massless matter from** \mathbb{P}^1 -fibrations Ga-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11],

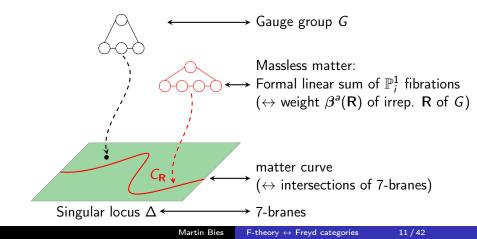
[Grassi,Halverson,Shaneson '13], [Cvetič,Klevers,Piragua,Taylor '15], [Anderson,Gray,Raghuram,Taylor '15],



Motivation – what, why and how? **Massless matter from** \mathbb{P}^1 -fibrations G_4 -fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11],

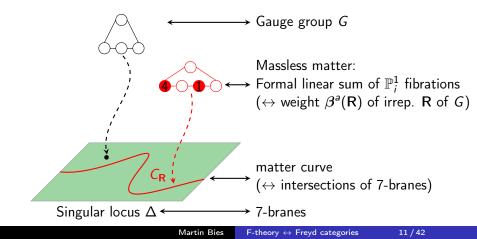
[Grassi,Halverson,Shaneson '13], [Cvetič,Klevers,Piragua,Taylor '15], [Anderson,Gray,Raghuram,Taylor '15],



Motivation – what, why and how? **Massless matter from** \mathbb{P}^1 -fibrations G_4 -fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

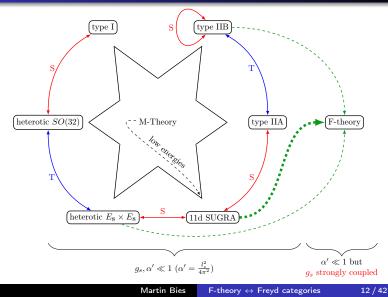
Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11],

[Grassi,Halverson,Shaneson '13], [Cvetič,Klevers,Piragua,Taylor '15], [Anderson,Gray,Raghuram,Taylor '15],



Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations **Ga-fluxes from Chow groups** Exact massless spectrum from sheaf cohomologies

G_4 -fluxes and M-theory 3-form C_3



Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations Ga-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Origin of G_4 -flux: M-theory 3-form C_3

11d SUGRA action ($G_4 = dC_3$)

$$S_{11D} = \frac{M_{11D}^9}{2} \int_{M_{11}} d^{11} x \left(\sqrt{-\det G} R - \frac{G_4 \wedge *G_4}{2} - \frac{C_3 \wedge G_4 \wedge G_4}{6} \right)$$

Consequence

• M2-branes couple electrically to 3-form gauge potential C_3

•
$$\mathit{G}_4 = \mathit{dC}_3 \in \mathit{H}^{2,2}(\hat{Y}_4)$$
 is field strength

Questions

- What specifies gauge data beyond field strength G₄?
- \Rightarrow Look for structure which combines information on
 - field strength $G_4 \in H^{2,2}(\hat{Y}_4)$
 - Wilson line d.o.f. $\oint C_3$

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations Ga-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Full gauge data from Deligne cohomology

Natural candidate in mathematics [Curio, Donagi '98], [Donagi, Wijnholt '12/13],

 $[{\it Anderson, Heckman, Katz~`13}],~[{\it Intriligator, Jockers, Mayr, Morrison, Plesser~`12}]$

$$0
ightarrow J^2(\hat{Y}_4) \hookrightarrow H^4_D(\hat{Y}_4,\mathbb{Z}(2)) \twoheadrightarrow H^{2,2}(\hat{Y}_4)
ightarrow 0$$

$$\begin{split} J^2(\hat{Y}_4) \simeq \frac{H^3(\hat{Y}_4,\mathbb{C})}{H^{2,1}(\hat{Y}_4) + H^3(\hat{Y}_4,\mathbb{Z}))} & \leftrightarrow \\ H^4_D(\hat{Y}_4,\mathbb{Z}(2)) & \leftrightarrow \\ H^{2,2}(\hat{Y}_4) & \leftrightarrow \end{split}$$

 $\begin{array}{ll} \leftrightarrow & \text{Wilson lines } \oint C_3 \\ \leftrightarrow & \text{full gauge data} \end{array}$

$$\rightarrow$$
 field strength G_4

Drawback

• $H_D^4(\hat{Y}_4,\mathbb{Z}(2))$ is hard to handle (practically)

 \Rightarrow Easy-to-work-with parametrisation: $CH^2(\hat{Y}_4)$ [Green Murre Voisin '94]

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations Ga-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Describe full G_4 -gauge data by $A \in CH^2(\hat{Y}_4)$

How does this parametrization work? [H. Esnault, E. Viehweg '88] – see also [Braun,Collinucci,Valandro '11]

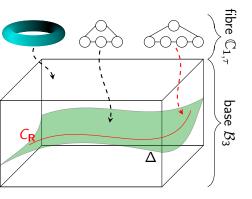
Definition of Chow group $CH^2(\hat{Y}_4)$

• Rational equivalence:

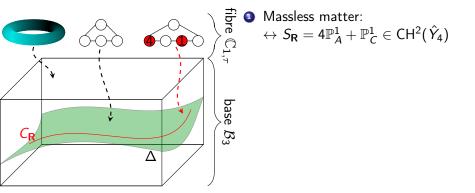
 $C_1 \sim C_2 \in Z_2(\hat{Y}_4)$ iff $C_1 - C_2$ is zero/pole of a rational function defined on 3-dim. irreducible subspace of \hat{Y}_4

• $CH^2(\hat{Y}_4) = \{ rational equivalence classes of 2-cycles \}$

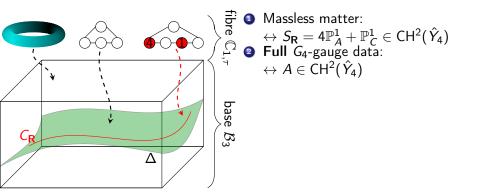
F-theory – gauge backgrounds and zero mode counting Monoidal structures on Freyd categories Applications to F-theory Standard Models Exact massless spectrum from sheaf cohomologies



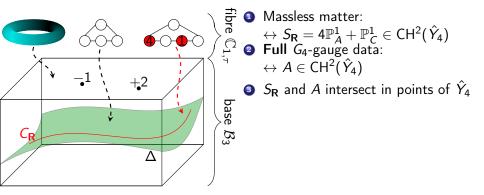
Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies



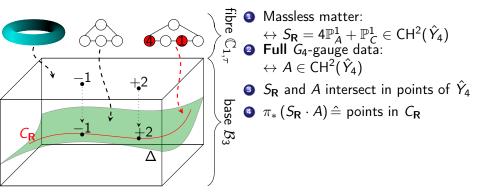
Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies



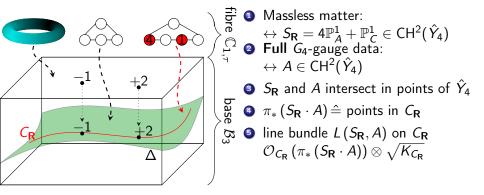
Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies



Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

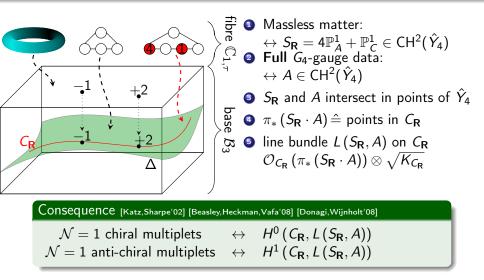


Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies



Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]



Martin Bies F-theory ↔ Freyd categories 16 / 42

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Towards coherent sheaves

Challenge: Sheaf cohomologies of $L(S_{\mathbf{R}}^{a}, A)$ hard to determine

- $L(S^a_{\mathbf{R}}, A)$ in general not pullback [M.B. Mayrhofer Weigand '17]
- Hypercharge flux must not be a pullback [Braun, Collinucci, Valandro '14]

Simplification: assume embedding $\iota \colon \hat{Y}_4 \hookrightarrow X$ in 'simple' space X

- Extend $L(S^a_{\mathbf{R}}, A)$ 'by zero' outside of matter curve $C_{\mathbf{R}}$
- $\begin{array}{l} \Rightarrow \mbox{ Obtain coherent sheaf } \mathcal{F} \in \mathfrak{Coh}(X), \mbox{ i.e. locally} \\ \mathcal{F}|_U \cong \operatorname{cok} \left(\left. \mathcal{O}_X^{\oplus I} \right|_U \xleftarrow{M} \left. \mathcal{O}_X^J \right|_U \right) \,, \end{array}$

M is s.t. \mathcal{F} matches $L(S^a_{\mathbf{R}}, A)$ on $C_{\mathbf{R}}$ and is otherwise trivial

• Example: Structure sheaf of $V(P) = \{P = 0\}$ is given by $\mathcal{O}_{V(P)} \cong \operatorname{cok} \left(\mathcal{O}_X \xleftarrow{P} \mathcal{O}_X \right)$

 \Rightarrow Q: Can we handle these sheaves for 'simple' spaces X?

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Toric varieties as ambient spaces

Why?

- Toric varieties form a very large class of geometries
- Many aspects of toric varieties are computationally under control, e.g. intersection theory

What? Example - projective space

•
$$\mathbb{P}^{n-1} = (\mathbb{C}^n - \{\mathbf{0}\})/\mathbb{C}^*$$
 with

$$\mathbb{C}^*$$
: $\lambda \cdot (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n)$.

- Coordinate ring (Cox ring): $S = \mathbb{C}[x_1, x_2, \dots, x_n]$, $\deg(x_i) = 1$
- Stanley-Reisner ideal ('forbidden locus'): $I_{SR} = \langle x_1 x_2 \cdots x_n \rangle$.

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Coherent sheaves on toric varieties

Sheafification functor [Cox Little Schenck '11] - see also [Barakat Lange-Hegermann '12]

- S-fpgrmod: category of finitely presented graded S-modules
- Any $A \in S$ -fpgrmod is of the form

$$A \cong \operatorname{cok} \left(\bigoplus_{i=1}^n S(d_i) \xleftarrow{M} \bigoplus_{j=1}^m S(e_j) \right)$$

Q: Does A ∈ S-fpgrmod correspond to coherent sheaf on X_Σ?
 A: Yes, there exists the sheafification functor

$$\widetilde{}: S ext{-fpgrmod} o \mathfrak{Coh} X_{\Sigma} \ , \ M \mapsto \widetilde{M} \qquad (S \mapsto \mathcal{O}_{X_{\Sigma}})$$

Consequence

S-fpgrmod models coherent sheaves on X_{Σ}

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

Towards Freyd categories and monoidal structures

Counting global sections on toric varieties [Cox Little Schenck '11], [Smith '98], [Blumenhagen Jurke Rahn Roschy '10], [M.B. '18]

•
$$H^0(X_{\Sigma}, \mathcal{F}) = \Gamma\left(\mathscr{H}_{om \mathcal{O}_{X_{\Sigma}}}(\mathcal{O}_{X_{\Sigma}}, \mathcal{F})\right)$$

Algebraic counterpart in S-fpgrmod:
 For suitable F, I ∈ S-fpgrmod with F̃ ≅ F and Ĩ ≅ O_{X_Σ} have

$$H^0(X_{\Sigma},\mathcal{F})\cong \underline{\operatorname{Hom}}_{\mathcal{S}}(I,\mathcal{F})_{=0}$$
.

Towards efficient computer models ...

- *S*-fpgrmod is a Freyd category
- Internal hom $\underline{\operatorname{Hom}}_S$ is part of monoidal structure
- ⇒ What can we learn about monoidal structures on Freyd categories?

Questions so far?

Motivation – what, why and how? Massless matter from \mathbb{P}^1 -fibrations G₄-fluxes from Chow groups Exact massless spectrum from sheaf cohomologies

- Massless matter in **resolved** elliptic fibration $\hat{Y}_4 \leftrightarrow \mathbb{P}^1$ -fibration over matter curve
- Parametrize G₄-flux beyond field strength
 ↔ Chow group CH²(Ŷ₄)
 (2_C-cycles modulo rational equivalence)
- Ount massless matter
 ↔ cohomologies of coherent sheaves
- Image: Second structure on A(A)
 Image: Second structure on A(A)
 Image: Second structure on A(A)

Martin Bies

What, why and how?

Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Freyd categories – generalities [P. Freyd '65], [A. Beligiannis '00]

Why are Freyd categories interesting?

- Completely constructive [Posur '17]
 - CAP-package Freyd categories
 - Computer models for coherent (toric) sheaves in *SheafCohomologyOnToricVarieties*
- Unified framework for f.p. (graded) modules and f.p. functors
- Iteration yields approach to free Abelian category

Any additive category A admits a Freyd category $\mathcal{A}(A)$ s.t.

 $\mathsf{A} \subseteq \mathcal{A}(\mathsf{A})$ and $\mathcal{A}(\mathsf{A})$ has cokernels

What, why and how?

Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Work by [M.B. Posur '19] – what and why?

What did we find?

Promonoidal structures on $\mathsf{A} \leftrightarrow$ monoidal structure on $\mathcal{A}(\mathsf{A})$

This is important because ...

- it provides tensor products of finitely presented functors
- it allows studies of monoidal structures on free Abelian categories [M. Prest '09]
- \bullet it offers simple approach to Day convolution $_{[B.\ Day\ '70\ \&\ '72]}$ in f.p. context
- it provides efficient structure for computer implementations of Freyd categories (in particular <u>Hom_S</u> for *S*-fpgrmod)

What, why and how?

Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

[M.B. Posur '19] – How?

How does the corresondance of (pro)monoidal structures arise?

Follows from multilinear 2-categorical universal property of Freyd categories: There exists an equivalence of categories

$$\operatorname{Hom}((\mathsf{A}_i)_{i\in\underline{n}},\mathsf{B})\simeq \mathscr{H}\!\mathit{om}^{\operatorname{r}}\left((\mathcal{A}(\mathsf{A}_i))_{i\in\underline{n}},\mathsf{B}
ight)$$

Program

- Constructive approach to Freyd categories
- Bilinear 2-categorical universal property
- O Application to (pro)monoidal structures

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Freyd categories – objects, morphisms and cokernels

Notation

- *a*, *b*, *c*, . . . are objects of **A**
- A, B, C, \ldots are objects of $\mathcal{A}(\mathbf{A})$

Objects

Be
$$a \xleftarrow{\rho_a} r_a \in Mor(\mathbf{A})$$
, then $A \equiv (a \xleftarrow{\rho_a} r_a) \in Obj(\mathcal{A}(\mathbf{A}))$

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Freyd categories – objects, morphisms and cokernels

Notation

- a, b, c, ... are objects of A
- A, B, C, \ldots are objects of $\mathcal{A}(\mathbf{A})$

Objects

Be
$$a \xleftarrow{\rho_a} r_a \in Mor(\mathbf{A})$$
, then $A \equiv (a \xleftarrow{\rho_a} r_a) \in Obj(\mathcal{A}(\mathbf{A}))$

Morphism
$$\{\alpha, \omega_{\alpha}\}$$
: $(a \stackrel{\rho_a}{\leftarrow} r_a) \rightarrow (b \stackrel{\rho_a}{\leftarrow} r_b)$

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Freyd categories – objects, morphisms and cokernels

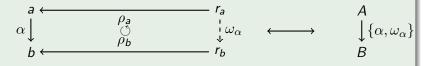
Notation

- a, b, c, ... are objects of A
- A, B, C, \ldots are objects of $\mathcal{A}(\mathbf{A})$

Objects

Be
$$a \xleftarrow{\rho_a} r_a \in Mor(A)$$
, then $A \equiv (a \xleftarrow{\rho_a} r_a) \in Obj(\mathcal{A}(A))$

Morphism $\{\alpha, \omega_{\alpha}\}$: $(a \stackrel{\rho_a}{\leftarrow} r_a) \rightarrow (b \stackrel{\rho_a}{\leftarrow} r_b)$



What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Freyd categories – objects, morphisms and cokernels

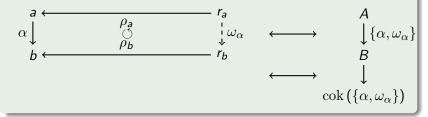
Notation

- a, b, c, ... are objects of A
- A, B, C, \ldots are objects of $\mathcal{A}(\mathbf{A})$

Objects

Be
$$a \xleftarrow{\rho_a} r_a \in Mor(A)$$
, then $A \equiv (a \xleftarrow{\rho_a} r_a) \in Obj(\mathcal{A}(A))$

Morphism $\{\alpha, \omega_{\alpha}\}$: $(a \stackrel{\rho_a}{\leftarrow} r_a) \rightarrow (b \stackrel{\rho_a}{\leftarrow} r_b)$



What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Freyd categories – objects, morphisms and cokernels

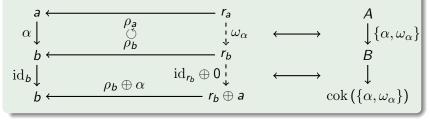
Notation

- a, b, c, ... are objects of A
- A, B, C, \ldots are objects of $\mathcal{A}(\mathbf{A})$

Objects

Be
$$a \xleftarrow{\rho_a} r_a \in \operatorname{Mor}(\mathsf{A})$$
, then $A \equiv (a \xleftarrow{\rho_a} r_a) \in \operatorname{Obj}(\mathcal{A}(\mathsf{A}))$

Morphism $\{\alpha, \omega_{\alpha}\}$: $(a \stackrel{\rho_a}{\leftarrow} r_a) \rightarrow (b \stackrel{\rho_a}{\leftarrow} r_b)$



What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

More constructions for $\mathcal{A}(\mathbf{A})$

Systematic analysis and implementation in CAP

- Systematic analysis [Posur '17]
- \Rightarrow Constructive approach to direct sums, pullbacks, ...

Central philosophy of CAP

- Derive complicated construction from simpler constructions (https://homalg-project.github.io/capdays-2018/ program/)
- Example: Pullback \leftrightarrow product + difference + kernel \bullet Details
- \Rightarrow Goal: Algorithms for monoidal structures of Freyd categories

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Definition of two categories

Category $Hom((A_i)_{i \in 1,2}, B)$

- Objects: Bilinear functors $A_1 \times A_2 \xrightarrow{F} B$
- Morphisms: Natural transformations

Category $\mathscr{H}om^{r}((\mathcal{A}(\mathsf{A}_{i}))_{i\in 1,2},\mathsf{B})$

• Objects: Bilinear functors $\mathcal{A}(\mathbf{A}_1) \times \mathcal{A}(\mathbf{A}_2) \xrightarrow{F} \mathbf{B}$ such that

$$0 \leftarrow F(\operatorname{cok}(\alpha_1), \operatorname{cok}(\alpha_2)) \leftarrow F(a_1, a_2) \xleftarrow{\begin{pmatrix} F(\operatorname{id}_{a_1}, \alpha_2) \\ F(\alpha_1, \operatorname{id}_{a_2}) \end{pmatrix}} \oplus F(a_1, b_2)$$

is exact for any two morphisms $a_1 \xleftarrow{lpha_1} b_1$, $a_2 \xleftarrow{lpha_2} b_2$

• Morphisms: Natural transformations

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Universal property and strategy of proof

Bilinear 2-categorical universal property of Freyd categories

There exists an equivalence of categories

$$\operatorname{Hom}((\mathsf{A}_i)_{i\in 1,2},\mathsf{B})\simeq \mathscr{Hom}^{\operatorname{r}}\left((\mathcal{A}(\mathsf{A}_i))_{i\in 1,2},\mathsf{B}
ight)$$

Revision: Equivalence of categories $C \simeq D$ consists of ...

- functor $F: C \to D$
- functor $G: D \to C$
- natural isomorphism
 ϵ: *FG* → id_D
 (among others *FG*(*X*) ≅ *X* for all objects *X* of *D*)
- natural isomorphism η: GF → id_C (among others GF(Y) ≅ Y for all objects Y of C)

28 / 42

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Strategy of proof • Details

- Hom((A_i)_{i∈1,2}, B) → *Hom*^r((A(A_i))_{i∈1,2}, B) : F → F̂
 Demand that for A₁ ∈ A(A_i) the following row is exact
 0 ← $\widehat{F}(A_1, A_2)$ ← F(a₁, a₂) ← F(a₁, a₂)
 F(a₁, a₂)
- **3** Show that for $F \in \operatorname{Hom}((A_i)_{i \in 1,2}, B)$: $F \cong \widehat{F}\Big|_{A_1 \times A_2}$

• Show that for $G \in \mathscr{H}om^{r}((\mathcal{A}(\mathbf{A}_{i}))_{i \in 1,2}, \mathbf{B}): G \cong (\widehat{G|_{\mathbf{A}_{1} \times \mathbf{A}_{2}}})$

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Algorithmic lift of $T: \mathbf{A} \times \mathbf{A} \rightarrow \mathcal{A}(\mathbf{A})$

Step 1: Fix notation:

• For $a_1, a_2 \in \mathrm{Obj}(\mathsf{A})$, denote $\mathcal{T}(a_1, a_2) \in \mathrm{Obj}(\mathcal{A}(\mathsf{A}))$ by

$$\left(g_T(a_1,a_2)\xleftarrow{\rho_T(a_1,a_2)}r_T(a_1,a_2)\right)$$

• For $a_1 \xleftarrow{\alpha_1} b_1$, $a_2 \xleftarrow{\alpha_2} b_2$, denote $T(\alpha, \beta) \in \operatorname{Mor}(\mathcal{A}(\mathsf{A}))$ by

$$g_{T}(b_{1}, b_{2}) \xleftarrow{\rho_{T}(b_{1}, b_{2})} r_{T}(b_{1}, b_{2})$$

$$\downarrow \delta_{T}(\alpha_{1}, \alpha_{2}) \circlearrowright \omega_{T}(\alpha_{1}, \alpha_{2}) \downarrow$$

$$g_{T}(a_{1}, a_{2}) \xleftarrow{\rho_{T}(a_{1}, a_{2})} r_{T}(a_{1}, a_{2})$$

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Algorithmic lift of $T: \mathbf{A} \times \mathbf{A} \rightarrow \mathcal{A}(\mathbf{A})$

Recall definition of $\hat{T}(A_1, A_2)$ from exact sequence

$$0 \longleftarrow \widehat{T}(A_1, A_2) \longleftarrow T(a_1, a_2) \xleftarrow{\begin{pmatrix} T(\mathrm{id}_{a_1}, \rho_{a_2}) \\ T(\rho_{a_1}, \mathrm{id}_{a_2}) \end{pmatrix}}{\oplus T(r_{a_1}, a_2)} \xrightarrow{T(a_1, r_{a_2})}{\oplus T(r_{a_1}, a_2)}$$

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Algorithmic lift of $T: \mathbf{A} \times \mathbf{A} \rightarrow \mathcal{A}(\mathbf{A})$

Recall definition of $\hat{T}(A_1, A_2)$ from exact sequence

$$0 \longleftarrow \widehat{T}(A_1, A_2) \longleftarrow T(a_1, a_2) \xleftarrow{\begin{pmatrix} T(\mathrm{id}_{a_1}, \rho_{a_2}) \\ T(\rho_{a_1}, \mathrm{id}_{a_2}) \end{pmatrix}}{\oplus T(r_{a_1}, a_2)} \xrightarrow{T(a_1, r_{a_2})}{\oplus T(r_{a_1}, a_2)}$$

Step 2: Express morphism by objects/morphisms in A

$$\hat{T}(A_1, A_2) = \operatorname{cok} \begin{pmatrix} g_T(a_1, r_{a_2}) & \begin{pmatrix} \rho_T(a_1, \rho_2) & \\ \rho_T(r_{a_1}, a_2) & & \rho_T(\rho_1, a_2) \end{pmatrix} \\ \downarrow \begin{pmatrix} \delta_T(\operatorname{id}_{a_1}, \rho_2) & \\ \delta_T(\rho_1, \operatorname{id}_{a_2}) \end{pmatrix} & \bigcirc \begin{pmatrix} \omega_T(\operatorname{id}_{a_1}, \rho_2) \\ \omega_T(\rho_1, \operatorname{id}_{a_2}) \end{pmatrix} \\ g_T(a_1, a_2) & & \rho_T(a_1, a_2) \end{pmatrix}$$

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

Algorithmic lift of $T: \mathbf{A} \times \mathbf{A} \rightarrow \mathcal{A}(\mathbf{A})$

Step 3: Final algorithm

$$\hat{T}(A_1, A_2) = \begin{pmatrix} g_T(a_1, a_2) \\ \delta_T(\operatorname{id}_{a_1, \rho_2}) \\ \delta_T(\rho_1, \operatorname{id}_{a_2}) \end{pmatrix} & r_T(a_1, a_2) \\ \oplus g_T(a_1, r_{a_2}) \\ \oplus g_T(r_{a_1}, a_2) \\ \oplus g_T(r_{a_1}, a_2) \end{pmatrix}$$

$$[\mathsf{For} \ \mathsf{a}_1, \mathsf{a}_2 \in \mathbf{A} \colon \ \mathsf{T}(\mathsf{a}_1, \mathsf{a}_2) = (\mathsf{g}_{\mathsf{T}}(\mathsf{a}_1, \mathsf{a}_2) \xleftarrow{\rho_{\mathsf{T}}(\mathsf{a}_1, \mathsf{a}_2)} \mathsf{r}_{\mathsf{T}}(\mathsf{a}_1, \mathsf{a}_2)) \]$$

Upshot

- $\bullet \ \mathcal{T} \colon \mathbf{A} \times \mathbf{A} \to \mathcal{A}(\mathbf{A}) \leftrightarrow \text{protensor product}$
- $\widehat{\mathcal{T}}: \mathcal{A}(\mathbf{A}) \times \mathcal{A}(\mathbf{A}) \to \mathcal{A}(\mathbf{A}) \leftrightarrow \text{tensor product}$
- \Rightarrow Extend systematically to (pro)monoidal structures

What and how?

What? Find algorithmic relations

- tensor product \leftrightarrow **pro**tensor product
- \bullet tensor unit \leftrightarrow protensor unit
- . . .

• internal-Hom $\underline{\widehat{\operatorname{Hom}}} \leftrightarrow \text{pro-internal}$ Hom $\underline{\operatorname{Hom}}$

How?

- **①** Consider monoidal structure on $\mathcal{A}(\mathbf{A})$
- Restrict to A by universal 2-categorical property
- ⇒ Promonoidal structure on A subject to restricted pentagonal identity, hexagonal identities, ...

Lift promonoidal structure on A to A(A) by universal
 2-categorical property

What, why and how?

Multilinear 2-categorical universal property

Application to (pro)monoidal structures

Questions so far?

What, why and how? Constructive approach to Freyd categories Multilinear 2-categorical universal property Application to (pro)monoidal structures

- Many proper promonoidal structures Examples
- Internal hom does not always extend Example
- A additive, closed monoidal category
 - \Rightarrow $\mathcal{A}(\mathbf{A})$ is additive, closed monoidal category
 - \Rightarrow Monoidal structures on $\mathcal{A}(\mathcal{A}(\mathbf{A})^{\mathsf{op}})^{\mathsf{op}}$
- Tensor products on Freyd categories \leftrightarrow Day convolution of f.p. functors [B. Day '70 & '72]
- Unified implementation of monoidal structures for f.p. (graded) modules and f.p. functors.
 → back to physics . . .

F-theory Pati-Salam models 4- and 3-family models

Strategy

Why Pati-Salam models?

- Computation in Quadrillion SMs [Cvetič Halverson Lin Liu Tian '19] hard (↔ complicated matter curves)
- Models can be Higgsed to Pati-Salam model (↔ simple geometry)
- \Rightarrow Focus on $(SU(4) \times SU(2)^2)/\mathbb{Z}_2$ -Pati-Salam models

Geometric realization

- B3 is toric 3-fold (from Kreuzer-Skarke list 9805190)
- Matter curves: $C_{\mathbf{R}} = V(P_1, P_2), \deg(P_i) = \overline{\mathcal{K}}_{B_3}$
- Matter representations: (4, 1, 2), (4, 2, 1), (6, 1, 1), (1, 2, 2)

F-theory Pati-Salam models 4- and 3-family models

Challenges

Challenge 1: Zero mode counting of real reps. (6, 1, 1), (1, 2, 2)

- No holomorphic matter surface with corresponding weights
- \Rightarrow Find 'normal' matter surfaces for special complex structure

Challenge 2: fractional pullbacks

• Spectrum of complex representation:

	representation	line bundle	chiralities	
	(4, 1, 2)	$\mathcal{O}_{\mathcal{C}_{(4,1,2)}}\left(\left(\frac{1}{2}-\frac{a}{4}\right)\left.\overline{\mathcal{K}}_{\mathcal{B}_{3}}\right _{\mathcal{C}_{R}}\right)$	$-\frac{a}{4}\overline{K}^3_{\mathcal{B}_3}$	
	(4, 2, 1)	$\mathcal{O}_{C_{(4,1,2)}}\left(\left(\frac{1}{2}-\frac{a}{4}\right)\overline{K}_{\mathcal{B}_{3}}\right _{C_{R}}\right)$ $\mathcal{O}_{C_{(4,2,1)}}\left(\left(\frac{1}{2}+\frac{a}{4}\right)\overline{K}_{\mathcal{B}_{3}}\right _{C_{R}}\right)$	$+rac{a}{4}\overline{K}^3_{\mathcal{B}_3}$	
$\Rightarrow \left(\frac{1}{2} \pm \frac{a}{4}\right) \overline{K}_{\mathcal{B}_3}\Big _{C_{\mathbf{P}}}$ defines divisor on $C_{\mathbf{R}}$ if Freed-Witten				
qu	antization is sati	sfied		

F-theory Pati-Salam models 4- and 3-family models

Simple starting point: 4 family models

Assumptions

- \bullet chirality ± 4 for reps. (4,1,2) and (4,2,1)
- $\frac{1}{2}\overline{K}_{\mathcal{B}_3}$ is a \mathbb{Z} -Cartier divisor of \mathcal{B}_3

Total of 408 admissible setups

space	$\overline{K}_{\mathcal{B}_3}^3$	number of triangulations
X_i^1	32	1
X_j^2	32	53
	÷	:
X _i ⁸	32	30
X_j^9	16	158

4- and 3-family models

Example – space X_1^1

Make sense of the *fractional* line bundles

• Fractional pullback:
$$\mathcal{L}_{(4,1,2)} = \mathcal{O}_{C_{(4,1,2)}} \left(\frac{3}{8} \overline{K}_{X_1^1} \Big|_{C_{(4,1,2)}} \right)$$

• Find
$$\overline{K}_{X_1^1} = 4V(x_1) + 2V(x_2)$$
, $V(x_2)|_{C_{(4,1,2)}} = \emptyset$ and

$$V(x_1)|_{C_{(4,1,2)}} = 8V(x_1, x_3, x_4) \equiv 8r$$

$$\Rightarrow \mathcal{L}_{(\mathbf{4},\mathbf{1},\mathbf{2})} = \mathcal{O}_{C_{(\mathbf{4},\mathbf{1},\mathbf{2})}}(12 \cdot r)$$

Compute their cohomologies

• Find $L_{(4,1,2)}, L_{(4,2,1)} \in S$ -fpgrmod such that $\mathcal{L}_{(4,1,2)} \cong L_{(4,1,2)}$

Use gap-package SheafCohomologyOnToricVarieties to find cohomologies (computer Plesken - Siegen university): $h^{i}(\mathcal{L}_{(4,1,2)}) = (5,9)$

Extend the search

F-theory Pati-Salam models 4- and 3-family models

Strategy

- Repeat analysis for other 4-family and 3-family models
- Sometimes the spectrum follows from pullback bundles!

F-theory Pati-Salam models 4- and 3-family models

Extend the search

Strategy

- Repeat analysis for other 4-family and 3-family models
- Sometimes the spectrum follows from pullback bundles!
- Find 3-family models with

$$h^{i}(\mathcal{L}_{(4,1,2)}) = (1,4), \qquad h^{i}(\mathcal{L}_{(4,2,1)}) = (4,1)$$

F-theory Pati-Salam models 4- and 3-family models

Extend the search

Strategy

- Repeat analysis for other 4-family and 3-family models
- Sometimes the spectrum follows from pullback bundles!
- Find 3-family models with

$$h^{i}(\mathcal{L}_{(4,1,2)}) = (1,4), \qquad h^{i}(\mathcal{L}_{(4,2,1)}) = (4,1)$$

F-theory Pati-Salam models 4- and 3-family models

Extend the search

Strategy

- Repeat analysis for other 4-family and 3-family models
- Sometimes the spectrum follows from pullback bundles!
- Find 3-family models with

$$h^{i}(\mathcal{L}_{(4,1,2)}) = (1,4), \qquad h^{i}(\mathcal{L}_{(4,2,1)}) = (4,1)$$

Phenomenological challenge: absence of vector-like exotics

- To Higgs the Pati-Salam model to the SM we require: one Higgs field in rep. (4, 2, 1) - none in (4, 1, 2)
- $\Rightarrow\,$ Modify these models to have spectrum (0,3) and (4,1) \ldots

F-theory Pati-Salam models 4- and 3-family models

Summary

- Count vector-like spectra 1402.5144, 1706.04616, 1706.08528, 1802.08860
 - G_4 -flux $\leftrightarrow A \in \mathrm{CH}^2(\hat{Y}_4)$
 - Massless matter \leftrightarrow cohomologies of $\mathcal{F} \in \mathfrak{Coh}(X_{\Sigma})$
- Computer model for $\mathfrak{Coh}(X_{\Sigma}) \leftrightarrow$ Freyd categories
 - Implementation in CAP-package Freyd categories
 - Analyse monoidal structures to improve efficiency 1909.00172
 - multilinear 2-categorical universal property
 - $\Rightarrow \ \textbf{Promonoidal structures} \leftrightarrow \text{monoidal structures}$
 - Approach matches Day convolution of f.p. functors
- Applications to Quadrillion SMs 1903.00009
 - Simpler: Analyse Pati-Salam model via toric Higgsing
 - Challenges:
 - No holomorphic matter surface with weights of real reps.
 - Fractional pullbacks (\leftrightarrow evaluate intersection product)
 - \Rightarrow Overcome (at special complex structure): 3-family models

(4, 1, 2): (1, 4) (4, 2, 1): (4, 1)

F-theory Pati-Salam models 4- and 3-family models

Outlook

Phenomenological challenge: Absence of exotics

- Assumption: Pati-Salam Higgs field in (4, 2, 1)
- \Rightarrow Desired spectrum without exotics

$$(4, 1, 2)$$
: $(0, 3)$, $(4, 2, 1)$: $(4, 1)$

• But our best models only satisfy

$$(4,1,2)$$
: $(1,4)$, $(4,2,1)$: $(4,1)$

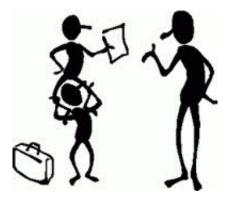
⇒ Systematics of adding/removing vector-like pairs? (Horizontal fluxes, tuning of complex structure, ...)

Mathematics

Tensor products on the free Abelian category

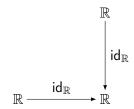
F-theory Pati-Salam models 4- and 3-family models

Thank you for your attention!



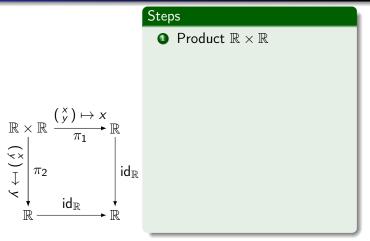
F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel



F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel



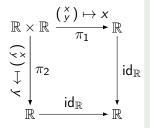
F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel

Steps

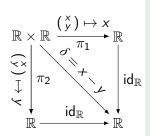
1 Product $\mathbb{R} \times \mathbb{R}$

$$\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \pi_1 \neq \mathsf{id}_{\mathbb{R}} \circ \pi_2$$



F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel

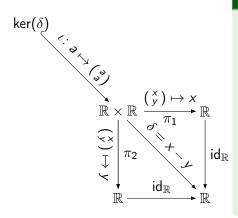


Steps

- **1** Product $\mathbb{R} \times \mathbb{R}$
- $\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \pi_1 \neq \mathsf{id}_{\mathbb{R}} \circ \pi_2$
- Consider difference $\delta = id_{\mathbb{R}} \circ \pi_1 - id_{\mathbb{R}} \circ \pi_2$

F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel

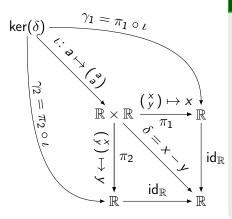


Steps

- **1** Product $\mathbb{R} \times \mathbb{R}$
- $\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \pi_1 \neq \mathsf{id}_{\mathbb{R}} \circ \pi_2$
- Consider difference $\delta = id_{\mathbb{R}} \circ \pi_1 - id_{\mathbb{R}} \circ \pi_2$
- Solution Kernel embedding $\iota: \ker(\delta) \cong \mathbb{R} \hookrightarrow \mathbb{R} \times \mathbb{R}$

F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel



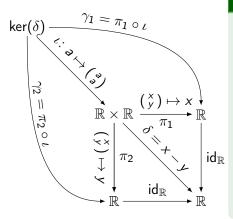
Steps

- **1** Product $\mathbb{R} \times \mathbb{R}$
- $\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \pi_1 \neq \mathsf{id}_{\mathbb{R}} \circ \pi_2$
- Consider difference $\delta = id_{\mathbb{R}} \circ \pi_1 - id_{\mathbb{R}} \circ \pi_2$
- S Kernel embedding $\iota: \ker(\delta) \cong \mathbb{R} \hookrightarrow \mathbb{R} \times \mathbb{R}$

• Define
$$\gamma_i := \pi_i \circ \iota$$

F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel



Steps

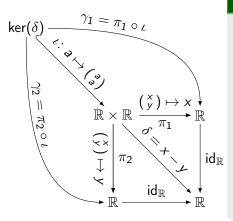
- $\bullet \ \mathsf{Product} \ \mathbb{R} \times \mathbb{R}$
- $\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \pi_1 \neq \mathsf{id}_{\mathbb{R}} \circ \pi_2$
- Consider difference $\delta = id_{\mathbb{R}} \circ \pi_1 - id_{\mathbb{R}} \circ \pi_2$
- Some the set of the s

• Define
$$\gamma_i := \pi_i \circ \iota$$

 $\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \gamma_1 = \mathsf{id}_{\mathbb{R}} \circ \gamma_2 \mathsf{ and} \\ (\mathsf{ker}(\delta), \gamma_1, \gamma_2) \mathsf{ satisfy} \\ \mathsf{universal property}$

F-theory Pati-Salam models 4- and 3-family models

CAP-philosophy: Pullback from product, difference, kernel



Steps

- $\bullet \quad \mathsf{Product} \ \mathbb{R} \times \mathbb{R}$
- $\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \pi_1 \neq \mathsf{id}_{\mathbb{R}} \circ \pi_2$
- Consider difference $\delta = id_{\mathbb{R}} \circ \pi_1 - id_{\mathbb{R}} \circ \pi_2$
- Some the set of the s

Define
$$\gamma_i := \pi_i \circ \iota$$

 $\Rightarrow \mathsf{id}_{\mathbb{R}} \circ \gamma_1 = \mathsf{id}_{\mathbb{R}} \circ \gamma_2 \mathsf{ and} \\ (\mathsf{ker}(\delta), \gamma_1, \gamma_2) \mathsf{ satisfy} \\ \mathsf{universal property}$

Many such derived algorithms available in CAP

https://github.com/homalg-project/CAP_project <<pre>GBack

42 / 42

F-theory Pati-Salam models 4- and 3-family models

Step 1: From $\operatorname{Hom}((\mathsf{A}_i)_{i\in 1,2},\mathsf{B})$ to $\mathscr{H}_{\mathit{om}}^{r}((\mathcal{A}(\mathsf{A}_i))_{i\in 1,2},\mathsf{B})$

- **1** Start with bilinear functor $F : \mathbf{A}_1 \times \mathbf{A}_2 \to \mathbf{B}$
- Consider objects $A_i = (a_i \stackrel{\rho_{a_i}}{\longleftarrow} r_{a_i}), B_i = (b_i \stackrel{\rho_{b_i}}{\longleftarrow} r_{b_i})$ and morphisms $A_i \stackrel{\{\alpha_i, \omega_i\}}{\longleftarrow} B_i$
- **3** Define $\hat{F}: \mathcal{A}(A_1) \times \mathcal{A}(A_2) \to B$ by exactness of the diagram

F-theory Pati-Salam models 4- and 3-family models

Step 2: Consequences and definition of restriction

Properties of $F\mapsto \widehat{F}$

- $\widehat{\mathrm{id}}_F = \mathrm{id}_{\widehat{F}}$ for all bilinear functors $F : \mathbf{A}_1 \times \mathbf{A}_2 \to \mathbf{B}$
- $\widehat{\nu \circ \mu} = \widehat{\nu} \circ \widehat{\mu}$ for all composable natural transformation ν , μ
- \Rightarrow Have a well-defined functor

$$\operatorname{Hom}((\mathsf{A}_i)_{i\in 1,2},\mathsf{B})\longrightarrow \mathscr{H}\!\mathit{em}^{\mathrm{r}}((\mathcal{A}(\mathsf{A}_i))_{i\in 1,2},\mathsf{B}): F\mapsto \widehat{F}$$

Definition of restriction

Let $\operatorname{emb} : \prod_{i \in 1,2} \mathbf{A}_i \hookrightarrow \prod_{i \in 1,2} \mathcal{A}(\mathbf{A}_i)$ denote componentwise embedding. Then consider

$$\mathscr{H}om^{\mathrm{r}}((\mathcal{A}(\mathsf{A}_{i}))_{i\in 1,2},\mathsf{B})\longrightarrow \mathrm{Hom}((\mathsf{A}_{i})_{i\in 1,2},\mathsf{B})$$

 $G\mapsto G|_{\mathsf{A}_{1} imes \mathsf{A}_{2}}:=G\circ\mathrm{emb}$

F-theory Pati-Salam models 4- and 3-family models

Step 3: Argue for natural isomorphisms • Back to strategy

• For $(a_1,a_2)\in {\sf A}_1 imes {\sf A}_2$ obtain natural isomorphism

$$\begin{split} \widehat{F}(\operatorname{emb}(a_1,a_2)) &\simeq \operatorname{cok} \left(F(a_1,a_2) \underbrace{\begin{pmatrix} F(\operatorname{id}_{a_1},0) \\ F(0,\operatorname{id}_{a_2}) \end{pmatrix}}_{\simeq \operatorname{cok} (F(a_1,a_2) \longleftarrow 0) \simeq F(a_1,a_2) \\ \end{split} \right) \end{split}$$

• For $(A_1,A_2)\in \mathcal{A}(\mathsf{A}_1) imes \mathcal{A}(\mathsf{A}_2)$ obtain natural isomorphism

$$\begin{aligned} G(A_1, A_2) &\simeq \operatorname{cok} \left(G(\operatorname{emb}(a_1, a_2)) \longleftarrow \begin{array}{c} G(\operatorname{emb}(a_1, b_2)) \\ \oplus G(\operatorname{emb}(b_1, a_2)) \end{array} \right) \\ &\simeq \operatorname{cok} \left(G|_{\mathbf{A}_1 \times \mathbf{A}_2}(a_1, a_2) \longleftarrow \begin{array}{c} G|_{\mathbf{A}_1 \times \mathbf{A}_2}(a_1, b_2) \\ \oplus G|_{\mathbf{A}_1 \times \mathbf{A}_2}(b_1, a_2) \end{array} \right) \\ &\simeq \widehat{G|_{\mathbf{A}_1 \times \mathbf{A}_2}}(A_1, A_2) \end{aligned}$$

F-theory Pati-Salam models 4- and 3-family models

Necessity of promonoidal structures

What?

There are promonoidal structures which are not monoidal.

Example in *R*-fpmod (*R* commutative ring)

• Every $M \in R$ -fpmod gives rise to a right-exact bilinear functor

 $T: R\text{-}\mathrm{fpmod} \times R\text{-}\mathrm{fpmod} \to R\text{-}\mathrm{fpmod} \,, \, (A,B) \mapsto A \otimes_R M \otimes_R B$

- \Rightarrow *R*-fpmod becomes semimonoidal category & *T* tensor product
 - Restriction to Rows_R gives prosemimonoidal structure
 - Protensor product of two objects in Rows_R lies outside of Rows_R whenever M is not a row module

Internal Homs do not always extend

- Consider $R = \mathbb{Q}[x_i, z | i \in \mathbb{N}]$ and $\mathbf{A} = \operatorname{Rows}_R$ with ordinary tensor product
- \Rightarrow Induced tensor product on *R*-fpmod is the ordinary tensor product
 - We argue that it has no right-adjoint:
 - $\operatorname{Hom}_R(R/\langle z \rangle, R) \cong \langle \{x_i | i \in \mathbb{N}\} \rangle$ not finitely presented
 - Assume there was f.p. $\underline{\operatorname{Hom}}_R$ on *R*-fpmod. Then:

•
$$\underline{\operatorname{Hom}}_{R}(R/\langle z \rangle, R) = \operatorname{cok}\left(R^{1 \times a} \xleftarrow{M} R^{1 \times b}\right)$$

• Tensor-Hom-adjunction implies

$$\begin{split} \operatorname{Hom}_{R}(R/\langle z\rangle,R) &\cong \operatorname{Hom}_{R}(1,\operatorname{\underline{Hom}}_{R}(R/\langle r\rangle,R)) \\ &\cong \operatorname{cok}\left(R^{1\times a}\xleftarrow{M} R^{1\times b}\right) \end{split}$$

 $\Rightarrow \text{ Contradiction: } \operatorname{Hom}_{R}(R/\langle z\rangle, R) \cong \langle \{x_{i} | i \in \mathbb{N}\} \rangle \text{ is$ **not** $f.p.}$

F-theory Pati-Salam models 4- and 3-family models

Koszul resolution I

Koszul resolution for $\mathcal{O}_{\Sigma}(D_S)$ with $D_S = \frac{1}{2} \overline{K}_{\mathcal{B}_3}|_{\Sigma}$

- Set $\mathcal{L} = \mathcal{O}_{\Sigma}\left(\frac{1}{2}\overline{K}_{\mathcal{B}_3}\right)$.
- Matter curve is complete intersection $\Sigma = \{P_1 = P_2 = 0\}$ $(\deg(P_i) = \overline{K}_{\mathcal{B}_3})$
- $\Rightarrow \text{ Have Koszul resolution } 0 \rightarrow \mathcal{V}_2 \xrightarrow{M_2} \mathcal{V}_1 \xrightarrow{M_1} \mathcal{L} \rightarrow \mathcal{L}|_{\Sigma} \rightarrow 0$ with

$$\mathcal{V}_2 = \mathcal{O}_{\mathcal{B}_3}\left(-rac{3}{2}\overline{\mathcal{K}}_{\mathcal{B}_3}
ight)\,,\qquad \mathcal{V}_1 = \mathcal{O}_{\mathcal{B}_3}\left(-rac{1}{2}\overline{\mathcal{K}}_{\mathcal{B}_3}
ight)^{\oplus 2}$$

Strategy

- Use cohomCalg (Blumenhagen et all 2010) and compute cohomologies of \mathcal{L} , \mathcal{V}_1 , \mathcal{V}_2

•

F-theory Pati-Salam models 4- and 3-family models

Koszul resolution II

For $\mathcal{B}_3 = X_1^1$ compute cohomologies of \mathcal{L} , \mathcal{V}_1 , \mathcal{V}_2

Non-trivial cohomologies are $h^3(X_1^1, \mathcal{V}_2) = 6$ and $h^0(X_1^1, \mathcal{L}) = 6$

Deduction of cohomologies of $\mathcal L$

• Introduce auxilliary sheaf I to split Kozsul resolution

$$\begin{split} 0 &\to \mathcal{V}_2 \to \mathcal{V}_1 \to I \to 0 \,, \qquad 0 \to I \to \mathcal{L} \to \mathcal{L}|_{\Sigma} \to 0 \,. \\ \bullet \text{ Use the two induced long exact sequences in cohomologies} \\ 0 \to h^0(\mathcal{V}_2) \to h^0(\mathcal{V}_1) \to h^0(I) \to h^1(\mathcal{V}_2) \to h^1(\mathcal{V}_1) \to \dots \\ 0 \to h^0(I) \to h^0(\mathcal{L}) \to h^0(\mathcal{L}|_{\Sigma}) \to h^1(I) \to h^1(\mathcal{L}) \to \dots \\ \Rightarrow h^0(I) = h^1(I) = h^3(I) = 0 \text{ and } h^2(I) = 6 \\ \Rightarrow h^0(\mathcal{L}|_{\Sigma}) = h^1(\mathcal{L}|_{\Sigma}) = 6 \end{split}$$