Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory

Martin Bies

University of Pennsylvania
October 19, 2020

With M. Cvetič, R. Donagi, L. Lin, M. Liu, F. Rühle - 2007.00009

Motivation

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- In particular: need (massless) vector-like pair(s) to accommodate the Higgs.
- More generally: vector-like spectrum is characteristic feature of 4d vaccum.

Motivation

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- In particular: need (massless) vector-like pair(s) to accommodate the Higgs.
- More generally: vector-like spectrum is characteristic feature of 4 d vaccum.
- F-theory is interesting cf. talk by Andrew Turner, 2017 TASI lectures by Weigand and Cvetić,
- describes strongly (in g_{S}) coupled IIB-string theory
- geometrizes physics beautifully in elliptic 4-fold $\pi: Y_{4} \rightarrow B_{3}$
- one quadrillion (MS)SM constructions known [Cvetićc Halverson Lin Liu Tian '19]

Motivation

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- In particular: need (massless) vector-like pair(s) to accommodate the Higgs.
- More generally: vector-like spectrum is characteristic feature of 4 d vaccum.
- F-theory is interesting cf. talk by Andrew Turner, 2017 TASI lectures by Weigand and Cveticic, ...
- describes strongly (in g_{S}) coupled IIB-string theory
- geometrizes physics beautifully in elliptic 4-fold $\pi: Y_{4} \rightarrow B_{3}$
- one quadrillion (MS)SM constructions known [Cvetićc Halverson Lin Liu Tian '19]
- Global F-theory compactifications: vector-like spectrum hard as non-topological

Motivation

- Classical problem of string pheno: find realization of (MS)SM in string landscape.
- In particular: need (massless) vector-like pair(s) to accommodate the Higgs.
- More generally: vector-like spectrum is characteristic feature of $4 d$ vaccum.
- F-theory is interesting cf. talk by Andrew Turner, 2017 TASI lectures by Weigand and Cveticic, ...
- describes strongly (in g_{S}) coupled IIB-string theory
- geometrizes physics beautifully in elliptic 4-fold $\pi: Y_{4} \rightarrow B_{3}$
- one quadrillion (MS)SM constructions known [Cvetic Halverson Lin Liu Tian '19]
- Global F-theory compactifications: vector-like spectrum hard as non-topological
\Rightarrow How can we control the vector-like spectrum in F-theory?

Outline and strategy

Outline and strategy

(1) Revision: Chiral and vector-like spectra in F-theory

Outline and strategy

(1) Revision: Chiral and vector-like spectra in F-theory
(2) Learn control of vector-like spectrum in simple geometries:

$$
\text { Curve } \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3}
$$

Line bundle $\leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}$

Outline and strategy

(1) Revision: Chiral and vector-like spectra in F-theory
(2) Learn control of vector-like spectrum in simple geometries:

$$
\begin{aligned}
\text { Curve } & \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3} \\
\text { Line bundle } & \leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}
\end{aligned}
$$

- with machine learning (decision trees)

Outline and strategy

(1) Revision: Chiral and vector-like spectra in F-theory
(2) Learn control of vector-like spectrum in simple geometries:

$$
\begin{aligned}
\text { Curve } & \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3} \\
\text { Line bundle } & \leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}
\end{aligned}
$$

- with machine learning (decision trees)
- with analytic tools (Brill-Noether theory, stratifications, ...)

Outline and strategy

(1) Revision: Chiral and vector-like spectra in F-theory
(2) Learn control of vector-like spectrum in simple geometries:

$$
\begin{aligned}
\text { Curve } & \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3} \\
\text { Line bundle } & \leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}
\end{aligned}
$$

- with machine learning (decision trees)
- with analytic tools (Brill-Noether theory, stratifications, ...)
(3) Comment on work in progress: Towards (MS)SMs

Outline and strategy

(1) Revision: Chiral and vector-like spectra in F-theory
(2) Learn control of vector-like spectrum in simple geometries:

$$
\begin{aligned}
\text { Curve } & \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3} \\
\text { Line bundle } & \leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}
\end{aligned}
$$

- with machine learning (decision trees)
- with analytic tools (Brill-Noether theory, stratifications, ...)
(3) Comment on work in progress: Towards (MS)SMs
(a) Summary and conclusion

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
(2) 3 generations of matter particles (\leftrightarrow exact chiral spectrum)

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
(2) 3 generations of matter particles (\leftrightarrow exact chiral spectrum)
(3) 1 Higgs (\leftrightarrow vector-like spectrum)

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
© 3 generations of matter particles (\leftrightarrow exact chiral spectrum)
© 1 Higgs (\leftrightarrow vector-like spectrum)

- Yukawa interactions, particle masses and hierarchy

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
(2) 3 generations of matter particles (\leftrightarrow exact chiral spectrum)
(3) 1 Higgs (\leftrightarrow vector-like spectrum)
(9) Yukawa interactions, particle masses and hierarchy
© BSM, dark energy, ...

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
(2) 3 generations of matter particles (\leftrightarrow exact chiral spectrum)
(3) 1 Higgs (\leftrightarrow vector-like spectrum)
(9) Yukawa interactions, particle masses and hierarchy
© BSM, dark energy, ...

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
(2) 3 generations of matter particles (\leftrightarrow exact chiral spectrum)
[Cvetič Halverson Lin Liu Tian '19], [Taylor Turner '19], [Raghuram Taylor Turner '19],
(3) 1 Higgs (\leftrightarrow vector-like spectrum)
(9) Yukawa interactions, particle masses and hierarchy [Cvetić Lin Liu Zhang Zoccarato '19]
(5) BSM, dark energy, ... [Heckman Lawrie Lin Zoccarato, '18], ...

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
(2) 3 generations of matter particles (\leftrightarrow exact chiral spectrum)
[Cvetič Halverson Lin Liu Tian '19], [Taylor Turner '19], [Raghuram Taylor Turner '19],
(3) 1 Higgs (\leftrightarrow vector-like spectrum) [м.в. Cveticic Donagi Lin Liu Ruehle '20]
(9) Yukawa interactions, particle masses and hierarchy [Cvetić Lin Liu Zhang Zoccarato '19]
(5) BSM, dark energy, ... [Heckman Lawrie Lin Zoccarato, '18], ...

Recipe for the Standard Model constructions

(1) Gauge group $S U(3) \times S U(2) \times U(1)$
(2) 3 generations of matter particles (\leftrightarrow exact chiral spectrum) [Cvetič Halverson Lin Liu Tian '19], [Taylor Turner '19], [Raghuram Taylor Turner '19],
1 Higgs (\leftrightarrow vector-like spectrum) [m.B. Cvetić Donagi Lin Liu Ruehle '20]
(9) Yukawa interactions, particle masses and hierarchy [Cvetić Lin Liu Zhang Zoccarato ' 19]
(5) BSM, dark energy, ... [Heckman Lawrie Lin Zoccarato, '18], ...

Chiral spectrum (\leftrightarrow number of generations)

Chiral spectrum (\leftrightarrow number of generations)

Chiral excess

- Fields: (co)kernel of operator (e.g. $\Delta \phi=0$)
- Chiral excess: $\chi=\operatorname{ind}(D)$ with D a Dirac operator:
$\operatorname{ker}(D): n \times$ chiral fields $\phi, \quad \operatorname{coker}(D): \bar{n} \times$ anti-chiral fields $\bar{\phi}$
$\Rightarrow \chi=n-\bar{n}$ [Atiyah-Singer index theorem]

Chiral spectrum (\leftrightarrow number of generations)

Chiral excess

- Fields: (co)kernel of operator (e.g. $\Delta \phi=0$)
- Chiral excess: $\chi=\operatorname{ind}(D)$ with D a Dirac operator:

$$
\operatorname{ker}(D): n \times \text { chiral fields } \phi, \quad \operatorname{coker}(D): \bar{n} \times \text { anti-chiral fields } \bar{\phi}
$$

$\Rightarrow \chi=n-\bar{n}$ [Atiyah-Singer index theorem]

String theory (MS)SM constructions with exact chiral spectrum

- $E_{8} \times E_{8}$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Mayorga Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], [Taylor Turner '19], [Raghuram Taylor Turner '19], ...

Vector-like spectrum ($\leftrightarrow 1$ Higgs)

Vector-like spectrum ($\leftrightarrow 1$ Higgs)

Chiral vs. vector-like spectrum

- Higgs doublet ϕ_{H} corresponds to pair $(\phi, \bar{\phi})$:

Irrep of $G_{S M}$	(n, \bar{n})	χ	Decomposition: Leptons + Higgs
$(\mathbf{1 , 2})_{-1 / 2}$	$(3,0)$	3	$(3,0)=(3,0) \oplus 0 \cdot(1,1)$
$(\mathbf{1}, \mathbf{2})_{-1 / 2}$	$(4,1)$	3	$(4,1)=(3,0) \oplus 1 \cdot(1,1)$

\Rightarrow Higgs not determined by χ, rather need $\operatorname{ker}(D)$.

Vector-like spectrum ($\leftrightarrow 1$ Higgs)

Chiral vs. vector-like spectrum

- Higgs doublet ϕ_{H} corresponds to pair $(\phi, \bar{\phi})$:

Irrep of $G_{S M}$	(n, \bar{n})	χ	Decomposition: Leptons + Higgs
$(\mathbf{1 , 2})_{-1 / 2}$	$(3,0)$	3	$(3,0)=(3,0) \oplus 0 \cdot(1,1)$
$(\mathbf{1 , 2})_{-1 / 2}$	$(4,1)$	3	$(4,1)=(3,0) \oplus 1 \cdot(1,1)$

\Rightarrow Higgs not determined by χ, rather need $\operatorname{ker}(D)$.
String theory (MS)SM constructions with exact vector-like spectrum
 '10\& '11]....

- F-theory: Preliminary works [M.B. Mayhofere Pehle Weigand ' 14], [M.B. May Mofer Weigand '17], [M.B. '18]. [M.B. Cvetic Donagi Lin Liu Ruehle ' 20]. Full construction not (yet) known.

Vector-like spectrum ($\leftrightarrow 1$ Higgs)

Chiral vs. vector-like spectrum

- Higgs doublet ϕ_{H} corresponds to pair $(\phi, \bar{\phi})$:

Irrep of $G_{S M}$	(n, \bar{n})	χ	Decomposition: Leptons + Higgs
$(\mathbf{1 , 2})_{-1 / 2}$	$(3,0)$	3	$(3,0)=(3,0) \oplus 0 \cdot(1,1)$
$(\mathbf{1 , 2})_{-1 / 2}$	$(4,1)$	3	$(4,1)=(3,0) \oplus 1 \cdot(1,1)$

\Rightarrow Higgs not determined by χ, rather need $\operatorname{ker}(D)$.
String theory (MS)SM constructions with exact vector-like spectrum
 '10\& '11]....

- F-theory: Preliminary works [M.B. Mayhofere Pehle Weizand '14]. [M.B. May Mofore Weigand '17], [M.B. '18]. [M.B. Cvetic Donagi Lin Liu Ruehle ' 20]. Full construction not (yet) known.

Chiral spectra in F-theory cf. talk by Andrew Turner, 2017 TASS I lectures by Weigand and Cvetic, ...

Chiral spectra in F-theory cf. talk by Andrew Turner, 2017 TASI lectures by Weigend and Cvetici,

Elliptic 4-fold Y_{4}, gauge group G and irreps R of G

- IIB: Identify profile of axio-dilaton $\tau=C_{0}+e^{i \phi}$ in presence of D7-branes
- Backreaction: Treat τ as complex structure modulus of elliptic curve
\Rightarrow Singular 4-fold $\pi: Y_{4} \rightarrow B_{3}$:
- Gauge group G : Singularities of Y_{4}
- Fields in irrep \mathbf{R} : Localize on curves $C_{\mathbf{R}} \subseteq B_{3}$
- Irrep. \mathbf{R} of $G: \mathbb{P}^{1}$-fibration over $C_{\mathbf{R}}$ - matter surface $S_{\mathbf{R}}$

Chiral spectra in F-theory cf. talk by Andrew Turner, 2017 TASI lectures by Weigend and Cvetici,

Elliptic 4-fold Y_{4}, gauge group G and irreps R of G

- IIB: Identify profile of axio-dilaton $\tau=C_{0}+e^{i \phi}$ in presence of D7-branes
- Backreaction: Treat τ as complex structure modulus of elliptic curve
\Rightarrow Singular 4-fold $\pi: Y_{4} \rightarrow B_{3}$:
- Gauge group G: Singularities of Y_{4}
- Fields in irrep \mathbf{R} : Localize on curves $C_{\mathbf{R}} \subseteq B_{3}$
- Irrep. \mathbf{R} of $G: \mathbb{P}^{1}$-fibration over C_{R} - matter surface S_{R}

Chiral spectrum of irrep R (more recently [Taylor Turner '19], [Raghuram Taylor Turner '19],

- Pick flux background $G_{4} \in H^{2,2}\left(Y_{4}\right)$
$\Rightarrow \chi=\int_{S_{R}} G_{4}$. [Donagi/Wijnholt, 09],[Braun/Collinucci/Valandro, 11], [Marsano/Schaefer-Nameki, 11],
[Krause/Mayrhofer/Weigand,11,12], [Grimm/Hayashi, 11], [Cvetič/Grimm/Klevers, 12], [Braun/Grimm/Keitel, 13],
[Cvetič/Grassi/Klevers/Piragua,13], [Borchmann/Mayrhofer/Palti/Weigand, 13], [Lin/Mayrhofer/Till/Weigand, 15],

Chiral spectra in F-theory cf. talk by Andrew Turner, 2017 TASI lectures by Weigend and Cvetici,

Elliptic 4-fold Y_{4}, gauge group G and irreps R of G

- IIB: Identify profile of axio-dilaton $\tau=C_{0}+e^{i \phi}$ in presence of D7-branes
- Backreaction: Treat τ as complex structure modulus of elliptic curve
\Rightarrow Singular 4-fold $\pi: Y_{4} \rightarrow B_{3}$:
- Gauge group G: Singularities of Y_{4}
- Fields in irrep \mathbf{R} : Localize on curves $C_{\mathbf{R}} \subseteq B_{3}$
- Irrep. \mathbf{R} of $G: \mathbb{P}^{1}$-fibration over C_{R} - matter surface S_{R}

Chiral spectrum of irrep R (more recently [Taylor Turner '19], [Raghuram Taylor Turner '19],

- Pick flux background $G_{4} \in H^{2,2}\left(Y_{4}\right)\left(\leftrightarrow d C_{3}\right.$ for M-theory 3-form potential)
$\Rightarrow \chi=\int_{S_{R}} G_{4}$. [Donagi/Wijnholt, 09],[Braun/Collinucci/Valandro, 11], [Marsano/Schaefer-Nameki, 11],
[Krause/Mayrhofer/Weigand,11,12], [Grimm/Hayashi, 11], [Cvetič/Grimm/Klevers, 12], [Braun/Grimm/Keitel, 13],
[Cvetič/Grassi/Klevers/Piragua,13], [Borchmann/Mayrhofer/Palti/Weigand, 13], [Lin/Mayrhofer/Till/Weigand, 15], ...

Vector-like spectra in F-theory

Gauge potential for field strength G_{4}

- $G_{4} \rightarrow A_{3} \in \mathrm{CH}^{2}\left(Y_{4}\right) \subseteq H_{D}^{2}\left(Y_{4}, \mathbb{Z}(2)\right)$ [Curio/Donagi, 98], [Donagi/Wijnholt,12,13],
[Anderson/Heckman/Katz, 13], [Intriligator,Jockers,Mayr,Morrison, Plesser '12]
- Consider $\mathcal{L}_{\mathbf{R}}=\pi^{*}\left(A_{3} \cdot S_{\mathbf{R}}\right) \otimes \mathcal{O}_{C_{\mathbf{R}}, \text { spin }} \in \operatorname{Pic}\left(C_{\mathbf{R}}\right)$
$\Rightarrow \mathcal{L}_{\mathbf{R}}$ counts vector-like spectra [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

$$
\text { chiral fields } \leftrightarrow H^{0}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right), \quad \text { anti-chiral fields } \leftrightarrow H^{1}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)
$$

Typically, $h^{i}\left(C_{R}, \mathcal{L}_{R}\right)$ hard to determine:

- Non-topological, i.e. deformation $C_{R} \rightarrow C_{R}^{\prime}$ can lead to jumps

$$
h^{i}\left(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}\right)=\left(h^{0}, h^{1}\right) \rightarrow h^{i}\left(C_{\mathbf{R}}^{\prime}, \mathcal{L}_{\mathbf{R}}^{\prime}\right)=\left(h^{0}+a, h^{1}+a\right)
$$

\Rightarrow Higgs pairs/exotic matter

Example: Line bundles in F-theory (MS)SM

curve	g	\mathcal{L}	d	BN-theory		
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	10	$\mathcal{L}_{(3,2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\otimes}$	12	h^{0} 3 4 4	$\begin{gathered} \hline h^{1} \\ 0 \\ 1 \\ 2 \end{gathered}$	ρ 10 6 0
$\begin{gathered} C_{(1,2)-1 / 2}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	82	$\mathcal{L}_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)_{-1 / 2}}^{\otimes 22}}^{\otimes \sim} \mathcal{O}_{C_{(1,2)-1 / 2}}\left(-30 \cdot Y_{1}\right)$	84	h^{0} 3 4 4 \vdots 10	$\begin{gathered} \hline h^{1} \\ 0 \\ 1 \\ \vdots \\ 7 \end{gathered}$	ρ 82 78 \vdots 12
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$						
\vdots	\because					

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& '11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.
\Rightarrow In general, L_{R} not pullback from B_{3}.

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& '11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.
\Rightarrow In general, L_{R} not pullback from B_{3}.
\Rightarrow Model as coherent sheaf and compute vector-like spectrum by Ext-groups [M.B., 17], [M.B./Posur, 19]

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.
\Rightarrow In general, L_{R} not pullback from B_{3}.
\Rightarrow Model as coherent sheaf and compute vector-like spectrum by Ext-groups [M.B., 17], [M.B./Posur, 19]
(9) In practice - very challenging to tell if divisors give isomorphic line bundles.

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.
\Rightarrow In general, L_{R} not pullback from B_{3}.
\Rightarrow Model as coherent sheaf and compute vector-like spectrum by Ext-groups [M.B., 17], [M.B./Posur, 19]
(9) In practice - very challenging to tell if divisors give isomorphic line bundles.
(5) Deformations of C_{R} and L_{R} can change vector-like spectrum.

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.
\Rightarrow In general, L_{R} not pullback from B_{3}.
\Rightarrow Model as coherent sheaf and compute vector-like spectrum by Ext-groups [M.B., 17], [M.B./Posur, 19]
(9) In practice - very challenging to tell if divisors give isomorphic line bundles.
(3) Deformations of C_{R} and L_{R} can change vector-like spectrum.
(0) In many (MS)SM constructions: L_{R} is root bundle (\sim generalized spin-bundle).

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{R}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.
\Rightarrow In general, L_{R} not pullback from B_{3}.
\Rightarrow Model as coherent sheaf and compute vector-like spectrum by Ext-groups [M.B., 17], [M.B./Posur, 19]
(9) In practice - very challenging to tell if divisors give isomorphic line bundles.
(3) Deformations of C_{R} and L_{R} can change vector-like spectrum.
(0) In many (MS)SM constructions: L_{R} is root bundle (\sim generalized spin-bundle).
- Too ambitious to solve all at the same time.

F-theory and heterotic challenges with vector-like spectra

- In heterotic compactifications [Anderson Gray Lukas Palti ' 10 \& ' 11 and subsequent works]
- X is (favourable) CICY 3-fold with known $\operatorname{Pic}(X)$
- $V \in \mathfrak{C o h}(X)$ is a pullback of vector bundle from toric ambient space
- F-theory situation qualitatively different:
(1) $C_{R}-$ smooth (or even singular) curve.
(2) $\operatorname{Pic}\left(C_{\mathbb{R}}\right)$ is continous $\left(\leftrightarrow \operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\right)$.
(3) L_{R} given by divisor $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in C_{\mathrm{R}}$ and $\lambda_{i} \in \mathbb{Z}$.
\Rightarrow In general, L_{R} not pullback from B_{3}.
\Rightarrow Model as coherent sheaf and compute vector-like spectrum by Ext-groups [M.B., 17], [м.B./Posur, 19]
(9) In practice - very challenging to tell if divisors give isomorphic line bundles.
(3) Deformations of C_{R} and L_{R} can change vector-like spectrum.
(0) In many (MS)SM constructions: L_{R} is root bundle (\sim generalized spin-bundle).
- Too ambitious to solve all at the same time.
\Rightarrow Focus on simpler situation first, then apply these lessons to involved scenarios.

Strategy

- Ignore root and non-pullback issues.
- Investigate how deformations of C_{R} changes vector-like spectrum.

Strategy

- Ignore root and non-pullback issues.
- Investigate how deformations of C_{R} changes vector-like spectrum.
- Simple geometric model:

$$
\text { Curve } \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3}
$$

$$
\text { Line bundle } \leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}
$$

Strategy

- Ignore root and non-pullback issues.
- Investigate how deformations of C_{R} changes vector-like spectrum.
- Simple geometric model:

$$
\text { Curve } \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3}
$$

$$
\text { Line bundle } \leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}
$$

- Tasks:
- Find $h^{0}(C(\mathbf{c}), \mathcal{L}(\mathbf{c})) \equiv h^{0}(\mathbf{c})$ as function of the parameters \mathbf{c}.
- Identify curve geometries for which $h^{0}(C(\mathbf{c}), \mathcal{L}(\mathbf{c}))$ jumps.

Strategy

- Ignore root and non-pullback issues.
- Investigate how deformations of C_{R} changes vector-like spectrum.
- Simple geometric model:

$$
\text { Curve } \leftrightarrow C(\mathbf{c})=V(P(\mathbf{c})) \text { hypersurface in } d P_{3}
$$

$$
\text { Line bundle } \leftrightarrow \mathcal{L}(\mathbf{c})=\left.\mathcal{O}_{d P_{3}}\left(D_{L}\right)\right|_{C(\mathbf{c})}
$$

- Tasks:
- Find $h^{0}(C(\mathbf{c}), \mathcal{L}(\mathbf{c})) \equiv h^{0}(\mathbf{c})$ as function of the parameters \mathbf{c}.
- Identify curve geometries for which $h^{0}(C(\mathbf{c}), \mathcal{L}(\mathbf{c}))$ jumps.
- Approaches:
(1) Use software to compute $h^{0}(\mathbf{c})$ and interpret the results with machine learning. (Surge of similar works, but mostly suited for heterotic ST [Ruehle, 17], [Klaewer/Schlechter, 18], [Larfors/Schneider, 19,20], [Brodie/Constantin/Deen/Lukas, 19])
(2) Find $h^{0}(\mathbf{c})$ from Koszul resolutions and interpret it with Brill-Noether theory.

Generating the data set

Generating the data set

(1) Use software to compute $h^{0}(C(\mathbf{c}), \mathcal{L})$ for different parameters \mathbf{c} :

Generating the data set

(1) Use software to compute $h^{0}(C(\mathbf{c}), \mathcal{L})$ for different parameters \mathbf{c} :

- https://github.com/homalg-project/ToricVarieties_project

Generating the data set

(1) Use software to compute $h^{0}(C(\mathbf{c}), \mathcal{L})$ for different parameters \mathbf{c} :

- https://github.com/homalg-project/ToricVarieties_project
- Input: Coefficients \mathbf{c} of polynomial $P(\mathbf{c})$ with $C(\mathbf{c})=V(P(\mathbf{c}))$

Generating the data set

(1) Use software to compute $h^{0}(C(\mathbf{c}), \mathcal{L})$ for different parameters \mathbf{c} :

- https://github.com/homalg-project/ToricVarieties_project
- Input: Coefficients \mathbf{c} of polynomial $P(\mathbf{c})$ with $C(\mathbf{c})=V(P(\mathbf{c}))$
- Output: $h^{0}(C(\mathbf{c}), \mathcal{L})$ for this choice of coefficients \mathbf{c}

Generating the data set

(1) Use software to compute $h^{0}(C(\mathbf{c}), \mathcal{L})$ for different parameters \mathbf{c} :

- https://github.com/homalg-project/ToricVarieties_project
- Input: Coefficients \mathbf{c} of polynomial $P(\mathbf{c})$ with $C(\mathbf{c})=V(P(\mathbf{c}))$
- Output: $h^{0}(C(\mathbf{c}), \mathcal{L})$ for this choice of coefficients \mathbf{c}
(2) Run computations for a few weeks at:
- Plesken.mathematik.uni-siegen.de,
- Oxford Hydra cluster,
- Google cloud.

Generating the data set

(1) Use software to compute $h^{0}(C(\mathbf{c}), \mathcal{L})$ for different parameters \mathbf{c} :

- https://github.com/homalg-project/ToricVarieties_project
- Input: Coefficients \mathbf{c} of polynomial $P(\mathbf{c})$ with $C(\mathbf{c})=V(P(\mathbf{c}))$
- Output: $h^{0}(C(\mathbf{c}), \mathcal{L})$ for this choice of coefficients \mathbf{c}
(2) Run computations for a few weeks at:
- Plesken.mathematik.uni-siegen.de,
- Oxford Hydra cluster,
- Google cloud.
\Rightarrow Database: https://github.com/Learning-line-bundle-cohomology.

Generating the data set

(1) Use software to compute $h^{0}(C(\mathbf{c}), \mathcal{L})$ for different parameters \mathbf{c} :

- https://github.com/homalg-project/ToricVarieties_project
- Input: Coefficients \mathbf{c} of polynomial $P(\mathbf{c})$ with $C(\mathbf{c})=V(P(\mathbf{c}))$
- Output: $h^{0}(C(\mathbf{c}), \mathcal{L})$ for this choice of coefficients \mathbf{c}
(2) Run computations for a few weeks at:
- Plesken.mathematik.uni-siegen.de,
- Oxford Hydra cluster,
- Google cloud.
\Rightarrow Database: https://github.com/Learning-line-bundle-cohomology.
(3) Interpret results with binary decision trees.

Decision trees

- Decision tree: directed, connected graph with unique root node.
- Binary tree: each node has either 0 or 2 sub-nodes.
- Nodes with no sub-nodes are 'leaves'.

Decision trees

- Decision tree: directed, connected graph with unique root node.
- Binary tree: each node has either 0 or 2 sub-nodes.
- Nodes with no sub-nodes are 'leaves'.
- Terminology:

Input: Features (e.g. coefficients c), Output: Classes (e.g. cohomology h^{0})

Decision trees

- Decision tree: directed, connected graph with unique root node.
- Binary tree: each node has either 0 or 2 sub-nodes.
- Nodes with no sub-nodes are 'leaves'.
- Terminology:

Input: Features (e.g. coefficients c), Output: Classes (e.g. cohomology h^{0})

- Impose splitting criteria at each node n :
$c_{j} \leq \kappa_{j}^{(n)}$: input assigned to left sub-node,
$c_{j}>\kappa_{j}^{(n)}$: input assigned to right sub-node

Decision trees

- Decision tree: directed, connected graph with unique root node.
- Binary tree: each node has either 0 or 2 sub-nodes.
- Nodes with no sub-nodes are 'leaves'.

$$
c_{1} \leq 0.5
$$

- Terminology:

Input: Features (e.g. coefficients c), Output: Classes (e.g. cohomology h^{0})

- Impose splitting criteria at each node n :
$c_{j} \leq \kappa_{j}^{(n)}$: input assigned to left sub-node,
$c_{j}>\kappa_{j}^{(n)}$: input assigned to right sub-node

Decision trees

- Decision tree: directed, connected graph with unique root node.
- Binary tree: each node has either 0 or 2 sub-nodes.
- Nodes with no sub-nodes are 'leaves'.

$$
c_{1} \leq 0.5
$$

- Terminology:

Input: Features (e.g. coefficients c), Output: Classes (e.g. cohomology h^{0})

- Impose splitting criteria at each node n :

$$
\begin{aligned}
& c_{j} \leq \kappa_{j}^{(n)}: \text { input assigned to left sub-node } \\
& c_{j}>\kappa_{j}^{(n)}: \text { input assigned to right sub-node }
\end{aligned}
$$

- Ideal classification: at leaves, all assigned inputs have same class.

Decision trees

- Decision tree: directed, connected graph with unique root node.
- Binary tree: each node has either 0 or 2 sub-nodes.
- Nodes with no sub-nodes are 'leaves'.

$$
c_{1} \leq 0.5
$$

- Terminology:

Input: Features (e.g. coefficients c), Output: Classes (e.g. cohomology h^{0})

- Impose splitting criteria at each node n :

$$
\begin{aligned}
& c_{j} \leq \kappa_{j}^{(n)}: \text { input assigned to left sub-node } \\
& c_{j}>\kappa_{j}^{(n)}: \text { input assigned to right sub-node }
\end{aligned}
$$

- Ideal classification: at leaves, all assigned inputs have same class.
- Failure: Gini impurity (\sim how many different classes are assigned to node).

Decision trees

- Decision tree: directed, connected graph with unique root node.
- Binary tree: each node has either 0 or 2 sub-nodes.
- Nodes with no sub-nodes are 'leaves'.

- Terminology:

Input: Features (e.g. coefficients c), Output: Classes (e.g. cohomology h^{0})

- Impose splitting criteria at each node n :

$$
\begin{aligned}
& c_{j} \leq \kappa_{j}^{(n)}: \text { input assigned to left sub-node } \\
& c_{j}>\kappa_{j}^{(n)}: \text { input assigned to right sub-node }
\end{aligned}
$$

- Ideal classification: at leaves, all assigned inputs have same class.
- Failure: Gini impurity (~ how many different classes are assigned to node).
- For training: minimize Gini impurity for given training data.

The data, features and classes

- Data:
- Hypersurface curves $C(\mathbf{c})=V(P(\mathbf{c}))$ in $d P_{3}$ with $1 \leq g \leq 6$.
- Coefficients $\mathbf{c}=\left\{c_{k}\right\}$ with $c_{k} \in\{0,1\}$.
- For each $C(\mathbf{c})$, consider 13 line bundles $L \in \operatorname{Pic}\left(d P_{3}\right)$ and compute $h^{0}\left(C(\mathbf{c}), L_{C(\mathbf{c})}\right)$
- $g=1$: Only 127 data points per bundle L.
- $g=6$: Roughly 260.000 data points per bundle L.

The data, features and classes

- Data:
- Hypersurface curves $C(\mathbf{c})=V(P(\mathbf{c}))$ in $d P_{3}$ with $1 \leq g \leq 6$.
- Coefficients $\mathbf{c}=\left\{c_{k}\right\}$ with $c_{k} \in\{0,1\}$.
- For each $C(\mathbf{c})$, consider 13 line bundles $L \in \operatorname{Pic}\left(d P_{3}\right)$ and compute $h^{0}\left(C(\mathbf{c}),\left.L\right|_{C(\mathbf{c})}\right)$
- $g=1$: Only 127 data points per bundle L.
- $g=6$: Roughly 260.000 data points per bundle L.
- Features:
- Coefficients c_{k},
- Split-type (topology of $C(\mathbf{c})$),
- Intersection $\left(\Gamma_{i} \cdot L\right.$, where Γ_{i} is component of $C(\mathbf{c})$ - line bundle degree on each $\left.\Gamma_{i}\right)$.

The data, features and classes

- Data:
- Hypersurface curves $C(\mathbf{c})=V(P(\mathbf{c}))$ in $d P_{3}$ with $1 \leq g \leq 6$.
- Coefficients $\mathbf{c}=\left\{c_{k}\right\}$ with $c_{k} \in\{0,1\}$.
- For each $C(\mathbf{c})$, consider 13 line bundles $L \in \operatorname{Pic}\left(d P_{3}\right)$ and compute $h^{0}\left(C(\mathbf{c}),\left.L\right|_{C(\mathbf{c})}\right)$
- $g=1$: Only 127 data points per bundle L.
- $g=6$: Roughly 260.000 data points per bundle L.
- Features:
- Coefficients c_{k},
- Split-type (topology of $C(\mathbf{c})$),
- Intersection ($\Gamma_{i} \cdot L$, where Γ_{i} is component of $C(\mathbf{c})$ - line bundle degree on each $\left.\Gamma_{i}\right)$.
- Classes:
- Generic: Minimal h^{0},
- Jump: Non-minimal h^{0}.

The data, features and classes

- Data:
- Hypersurface curves $C(\mathbf{c})=V(P(\mathbf{c}))$ in $d P_{3}$ with $1 \leq g \leq 6$.
- Coefficients $\mathbf{c}=\left\{c_{k}\right\}$ with $c_{k} \in\{0,1\}$.
- For each $C(\mathbf{c})$, consider 13 line bundles $L \in \operatorname{Pic}\left(d P_{3}\right)$ and compute $h^{0}\left(C(\mathbf{c}),\left.L\right|_{C(\mathbf{c})}\right)$
- $g=1$: Only 127 data points per bundle L.
- $g=6$: Roughly 260.000 data points per bundle L.
- Features:
- Coefficients c_{k},
- Split-type (topology of $C(\mathbf{c})$),
- Intersection ($\Gamma_{i} \cdot L$, where Γ_{i} is component of $C(\mathbf{c})$ - line bundle degree on each $\left.\Gamma_{i}\right)$.
- Classes:
- Generic: Minimal h^{0},
- Jump: Non-minimal h^{0}.
\Rightarrow Train tree to make implication 'feature' \Rightarrow 'class' (training-testing ratio: 90:10).

Motivation and outline

Machine learning approach

 Analytic approach
Example of tree trained on split-type $(g=3, d=3)$

Machine learning approach

Analytic approach

Average accuracy

Interpretation

- Training on coefficients:
- almost perfect performance,
- expected, since coefficients specify entire setup,
- no intuitive understanding.

Interpretation

- Training on coefficients:
- almost perfect performance,
- expected, since coefficients specify entire setup,
- no intuitive understanding.
- Topological criteria:
- work surprisingly well,
- (split-type + intersections) around and above 95% accuracy,
\Rightarrow Intuitive understanding and extrapologication to higher genus possible!
- Lesson: $h^{0}\left(C(\mathbf{c}), L_{C(\mathbf{c})}\right)$ more likely to jump if $C(\mathbf{c})=C(\mathbf{c}) \cup \mathbb{P}^{1}$.

Interpretation

- Training on coefficients:
- almost perfect performance,
- expected, since coefficients specify entire setup,
- no intuitive understanding.
- Topological criteria:
- work surprisingly well,
- (split-type + intersections) around and above 95% accuracy,
\Rightarrow Intuitive understanding and extrapologication to higher genus possible!
- Lesson: $h^{0}\left(C(\mathbf{c}), L_{C(\mathbf{c})}\right)$ more likely to jump if $C(\mathbf{c})=C(\mathbf{c}) \cup \mathbb{P}^{1}$.
- Failure of topological criteria:
- Other sources/origins of jumps in cohomology.
- Most likely under-represented due to bias in data set ($\leftrightarrow c_{i} \in\{0,1\}$).

Application to F-theory GUT model

- Geometry of 4-fold:
- $S U(5)$ supported on $S \cong d P_{3} \subseteq B_{3}$ [Beasley Heckman Vafa \&\&ll 'o9]
- U(1)-restricted Tate model Grimm/Weigand, '10]
\Rightarrow Explicit fourfold $Y_{4} \rightarrow B_{3}$ with $S U(5) \times U(1)$ gauge symmetry in [m.B., '17]
- Chiral spectrum:

$$
\chi\left(\mathbf{1 0}_{1}\right)=3, \quad \chi\left(\mathbf{5}_{-2}\right)=-18, \quad \chi\left(\mathbf{5}_{3}\right)=15
$$

- Focus on $C_{53} \equiv C$:

$$
g=24, \quad \operatorname{deg}\left(\mathcal{L}_{5_{3}}\right)=38, \quad 44 \text { coefficients } c_{i} .
$$

- Study splittings $C \rightarrow \widetilde{C} \cup \mathbb{P}^{1}$ where \mathbb{P}^{1} is one of the 6 rigid divisors in $d P_{3}$.
- $E_{1,2}$ lead to jumps. They satisfy $L \cdot E_{1,2}<-1$.
- Splitting off combinations of $E_{1,2}$ gives $h^{0} \in\{15,17,18,19,20,21\}$.
- Cannot get $h^{0}=16$ in this way!

Rational from machine learning approach:

- What we did learn:
- Oftentimes, topological criteria sufficient to engineer jumps.
- In particular: $C \rightarrow \widetilde{C} \cup \mathbb{P}^{1}$ with $\operatorname{deg}\left(\left.L\right|_{\mathbb{P}^{1}}\right)<-1$ likely to give jump.
\Rightarrow Quick and easy application to high genus curves.
- Example: Splits of $g=24$ curve in F-theory toy model: $h^{0} \in\{15,17,18,19,20,21\}$.

Rational from machine learning approach:

- What we did learn:
- Oftentimes, topological criteria sufficient to engineer jumps.
- In particular: $C \rightarrow \widetilde{C} \cup \mathbb{P}^{1}$ with $\operatorname{deg}\left(\left.L\right|_{\mathbb{P}^{1}}\right)<-1$ likely to give jump.
\Rightarrow Quick and easy application to high genus curves.
- Example: Splits of $g=24$ curve in F-theory toy model: $h^{0} \in\{15,17,18,19,20,21\}$.
- What we did not learn - why does that work?
- Why do the splittings $C \rightarrow \widetilde{C} \cup \mathbb{P}^{1}$ lead to jumps?
- Why can we not reach $h^{0}=16$ in the previous example?
- Do other splittings $C \rightarrow C_{1} \cup C_{2}$ lead to jumps?
- What other sources for jumps exist?

Rational from machine learning approach:

- What we did learn:
- Oftentimes, topological criteria sufficient to engineer jumps.
- In particular: $C \rightarrow \widetilde{C} \cup \mathbb{P}^{1}$ with $\operatorname{deg}\left(\left.L\right|_{\mathbb{P}^{1}}\right)<-1$ likely to give jump.
\Rightarrow Quick and easy application to high genus curves.
- Example: Splits of $g=24$ curve in F-theory toy model: $h^{0} \in\{15,17,18,19,20,21\}$.
- What we did not learn - why does that work?
- Why do the splittings $C \rightarrow \widetilde{C} \cup \mathbb{P}^{1}$ lead to jumps?
- Why can we not reach $h^{0}=16$ in the previous example?
- Do other splittings $C \rightarrow C_{1} \cup C_{2}$ lead to jumps?
- What other sources for jumps exist?
\Rightarrow Answers follow from Koszul resolution, h^{0}-stratifications and Brill-Noether theory.

How to find $h^{0}(C(\mathbf{c}), \mathcal{L}) \equiv h^{0}(\mathbf{c})$ in theory?

(1) Pullback line bundle admits Koszul resolution:

$$
0 \rightarrow \mathcal{O}_{d P_{3}}\left(D_{L}-D_{C}\right) \xrightarrow{P(\mathbf{c})} \mathcal{O}_{d P_{3}}\left(D_{L}\right) \rightarrow \mathcal{L} \rightarrow 0
$$

(2) Obtain long exact sequence in sheaf cohomology:

$$
\begin{aligned}
&\left.0 \longrightarrow H^{0}\left(D_{L}-D_{C}\right) \longrightarrow H^{0}\left(D_{L}\right) \longrightarrow H^{0}(\mathcal{L})\right) \\
& H^{1}\left(D_{L}-D_{C}\right) \longrightarrow H^{1}\left(D_{L}\right) \longrightarrow H^{1}(\mathcal{L}) \\
& H^{2}\left(D_{L}-D_{C}\right) \longrightarrow H^{2}\left(D_{L}\right) \longrightarrow 0 \longrightarrow 0
\end{aligned}
$$

(3) Sometimes: $0 \rightarrow H^{0}(\mathcal{L}) \rightarrow H^{1}\left(D_{L}-D_{C}\right) \xrightarrow{M_{\varphi}(\mathbf{c})} H^{1}\left(D_{L}\right) \rightarrow H^{1}(\mathcal{L}) \rightarrow 0$
(3) By exactness: $h^{0}(\mathcal{L})=\operatorname{ker}\left(M_{\varphi}(\mathbf{c})\right)$
\Rightarrow Study $\operatorname{ker}\left(M_{\varphi}(\mathbf{c})\right)$ as function of complex structure c

Example: $g=3, \chi=1(d=3)$

- $C(c)=V(P(c))$ and $P(c)=c_{1} x_{1}^{3} x_{2}^{3} x_{3}^{2} x_{4}+\cdots+c_{12} x_{3}^{2} x_{4} x_{5}^{3} x_{6}^{3}$
- For $D_{L}=H+2 E_{1}-2 E_{2}-E_{3}$ find

$$
0 \rightarrow H^{0}(\mathcal{L}) \rightarrow \mathbb{C}^{3} \xrightarrow{M_{\varphi}(\mathbf{c})} \mathbb{C}^{2} \rightarrow H^{1}(\mathcal{L}) \rightarrow 0, \quad M_{\varphi}=\left(\begin{array}{ccc}
c_{3} & c_{2} & c_{1} \\
0 & c_{12} & c_{11}
\end{array}\right)
$$

- $h^{0}(\mathcal{L})=3-\operatorname{rk}\left(M_{\varphi}(\mathbf{c})\right) \&$ stratification of curve geometries:

$\operatorname{rk}\left(M_{\varphi}\right)$	explicit condition	curve splitting
2	$\left(c_{3} c_{11}, c_{3} c_{12}, c_{2} c_{11}-c_{1} c_{12}\right) \neq \mathbf{0}$	C^{1}
1	$c_{3}=0, c_{2} c_{11}-c_{1} c_{12}=0$	C^{2}
1	$c_{1}=c_{2}=c_{3}=0$	$B_{2} \cup \mathbb{P}_{b}^{1}$
1	$c_{11}=c_{12}=0$	$\mathbb{P}_{a}^{1} \cup B_{1}$
0	$c_{1}=c_{2}=c_{3}=c_{11}=c_{12}=0$	$\mathbb{P}_{a}^{1} \cup A \cup \mathbb{P}_{b}^{1}$

Stratification diagram

Types of jumps

- Brill-Noether theory: C^{2} smooth, irreducible but line bundle divisor special
- Curve splittings: Factoring off $\mathbb{P}_{a}^{1}, \mathbb{P}_{b}^{1}$ leads to jump

Example 2: $g=5, \chi=0(d=4)$

- $P($ c $)=c_{1} x_{1}^{3} x_{2}^{4} x_{3}^{2} x_{4}^{2}+\cdots+c_{16} x_{3}^{3} x_{4} x_{5}^{4} x_{6}^{3}$

Brill-Noether theory [1874 Brill. Noether] - more moden exposition in [Mumford ' 75]. [Grififtss, Haris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford '75], [Griffiths, Harris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\}
\end{aligned}
$$

Brill-Noether theory [1874 Brill, Noether] - more modern expostion in [Mumford '75]. [Grififts, Haris '994]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\} \\
G_{0}^{1} & =\{\mathcal{L}, d=0, n=1\} \\
& \cong\{q=0 \in \mathbb{C} / \Lambda\}
\end{aligned}
$$

Brill-Noether theory [1874 Brill, Noether] - more modem exposition in [Mumford '755) [Grififhs, Haris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$h^{0}\left(\mathcal{O}_{C_{1}}(p-q)\right)=0 \rightarrow h^{0}\left(\mathcal{O}_{C_{1}}(0)\right)=1 \quad \cong\{q=0 \in \mathbb{C} / \Lambda\}$

General picture

- Abel-Jacobi map gives $\varphi_{d}: \operatorname{Div}_{d}(C) \rightarrow \operatorname{Jac}(C) \cong \mathbb{C}^{g} / \Lambda$
- $G_{d}^{n}=\left\{\varphi_{d}(\mathcal{L}), h^{0}(C, \mathcal{L})=n\right\} \subseteq \operatorname{Jac}(C)$
- $\operatorname{dim} G_{d}^{n} \geq \rho(d, n, g)=g-n \cdot(n+\chi)$
- $\operatorname{dim} G_{d}^{n}=\rho$ for generic curves [1980 Grififiths, Harris]

Brill-Noether theory [1874 Brill, Noether] - more modem exposition in [Mumford '755) [Grififhs, Haris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\} \\
G_{0}^{1} & =\{\mathcal{L}, d=0, n=1\} \\
& \cong\{q=0 \in \mathbb{C} / \Lambda\}
\end{aligned}
$$

General picture

- Abel-Jacobi map gives $\varphi_{d}: \operatorname{Div}_{d}(C) \rightarrow \operatorname{Jac}(C) \cong \mathbb{C}^{g} / \Lambda$
- $G_{d}^{n}=\left\{\varphi_{d}(\mathcal{L}), h^{0}(C, \mathcal{L})=n\right\} \subseteq \operatorname{Jac}(C)$
- $\operatorname{dim} G_{d}^{n} \geq \rho(d, n, g)=g-n \cdot(n+\chi)$
- $\operatorname{dim} G_{d}^{n}=\rho$ for generic curves [1980 Grifitiths, Harris]

h^{0}	h^{1}	ρ
0	0	1
1	1	0
2	2	-3

Brill-Noether theory [1874 Brill, Noether] - more modern exposition in [Mumford ' 75], [Grififits, Haris '94]

Example on torus $C_{1} \cong \mathbb{C} / \Lambda=\operatorname{Jac}\left(C_{1}\right)$

$$
\begin{aligned}
G_{0}^{0} & =\{\mathcal{L}, d=n=0\} \\
& \cong\{q \in \mathbb{C} / \Lambda, q \neq 0\} \\
G_{0}^{1} & =\{\mathcal{L}, d=0, n=1\} \\
& \cong\{q=0 \in \mathbb{C} / \Lambda\}
\end{aligned}
$$

General picture

- Abel-Jacobi map gives $\varphi_{d}: \operatorname{Div}_{d}(C) \rightarrow \operatorname{Jac}(C) \cong \mathbb{C}^{g} / \Lambda$
- $G_{d}^{n}=\left\{\varphi_{d}(\mathcal{L}), h^{0}(C, \mathcal{L})=n\right\} \subseteq \operatorname{Jac}(C)$
- $\operatorname{dim} G_{d}^{n} \geq \rho(d, n, g)=g-n \cdot(n+\chi)$
- $\operatorname{dim} G_{d}^{n}=\rho$ for generic curves [1980 Grifitiths, Harris]

h^{0}	h^{1}	ρ
0	0	1
1	1	0
2	2	-3

\Rightarrow Upper bound for h^{0} on generic curves [Watari, 16]

Gluing local sections

Gluing local sections

Gluing local sections

Gluing local sections II

Gluing local sections II

Gluing local sections II

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]
\Rightarrow Systematically overestimates \# of independent conditions.

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]
\Rightarrow Systematically overestimates \# of independent conditions.
\Rightarrow Obtain underestimate \# of global sections.

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]
\Rightarrow Systematically overestimates \# of independent conditions.
\Rightarrow Obtain underestimate \# of global sections.
- Application to our data base:
- 83 pairs $\left(D_{C}, D_{L}\right)$ with complex structure deformations: $\sim 1.8 \times 10^{6}$ data sets
- Counting procedure can be applied to $\sim 38 \%$
- Accuracy $\sim 98.5 \%$

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]
\Rightarrow Systematically overestimates \# of independent conditions.
\Rightarrow Obtain underestimate \# of global sections.
- Application to our data base:
- 83 pairs $\left(D_{C}, D_{L}\right)$ with complex structure deformations: $\sim 1.8 \times 10^{6}$ data sets
- Counting procedure can be applied to $\sim 38 \%$
- Accuracy ~98.5\%
- Lead-offs:
(1) Sufficient criteria for jumps
(2) Algorithmic h^{0}-spectrum estimate

Sufficient criteria for jumps

Let S be a smooth surface, $L \in \operatorname{Pic}(S)$ a line bundle, and $|C|$ a linear system of curves on S with smooth general member C. Consider a special member $C_{1} \cup C_{2}$ s.t. C_{1}, C_{2} meet transversely in $C_{1} \cdot C_{2}>0$ distinct points.

Sufficient criteria for jumps

Let S be a smooth surface, $L \in \operatorname{Pic}(S)$ a line bundle, and $|C|$ a linear system of curves on S with smooth general member C. Consider a special member $C_{1} \cup C_{2}$ s.t. C_{1}, C_{2} meet transversely in $C_{1} \cdot C_{2}>0$ distinct points.

- Let $N_{i}=h^{0}\left(C_{i},\left.\mathcal{L}\right|_{C_{i}}\right)$. Then

$$
h^{0}\left(C_{1} \cup C_{2},\left.L\right|_{C_{1} \cup C_{2}}\right) \geq N_{1}+N_{2}-C_{1} \cdot C_{2}
$$

Sufficient criteria for jumps

Let S be a smooth surface, $L \in \operatorname{Pic}(S)$ a line bundle, and $|C|$ a linear system of curves on S with smooth general member C. Consider a special member $C_{1} \cup C_{2}$ s.t. C_{1}, C_{2} meet transversely in $C_{1} \cdot C_{2}>0$ distinct points.

- Let $N_{i}=h^{0}\left(C_{i},\left.\mathcal{L}\right|_{C_{i}}\right)$. Then

$$
h^{0}\left(C_{1} \cup C_{2},\left.L\right|_{C_{1} \cup C_{2}}\right) \geq N_{1}+N_{2}-C_{1} \cdot C_{2}
$$

- Assume that C_{1}, C_{2} are smooth curves of genus $g_{1}, g_{2}, h^{1}\left(C,\left.L\right|_{C}\right)=0$, $\operatorname{deg}\left(\left.L\right|_{C_{2}}\right)>2 g_{2}-2$ and $\operatorname{deg}\left(\left.L\right|_{C_{1}}\right)<\min \left\{0, g_{1}-1\right\}$. Then

$$
h^{0}\left(C_{1} \cup C_{2},\left.L\right|_{C_{1} \cup C_{2}}\right)-h^{0}\left(C,\left.L\right|_{C}\right) \geq g_{1}-1-\operatorname{deg}\left(\left.L\right|_{C_{1}}\right)
$$

Algorithmic estimate for h^{0}-spectrum

$$
C
$$

Algorithmic estimate for h^{0}-spectrum

Algorithmic estimate for h^{0}-spectrum

https://github.com/homalg-project/ToricVarieties_project

- Estimate h^{0}-spectrum from lower bounds at subset of nodes.
- Implemented in package H0Approximator with M. Liu.

Algorithmic estimate for h^{0}-spectrum

https://github.com/homalg-project/ToricVarieties_project

- Estimate h^{0}-spectrum from lower bounds at subset of nodes.
- Implemented in package H0Approximator with M. Liu.
- Caveat: Check that \widetilde{C} is irreducible.

Motivation and outline
Counting vector-like pairs in F-theory

Summary and Outlook

Summary

Summary

- Computing vector-like spectra in global F-theory models is hard

Summary

- Computing vector-like spectra in global F-theory models is hard
- We study how vector-like spectrum changes over moduli space of curve (\leftrightarrow qualitatively different from previous bundle cohomology studies)

Summary

- Computing vector-like spectra in global F-theory models is hard
- We study how vector-like spectrum changes over moduli space of curve (\leftrightarrow qualitatively different from previous bundle cohomology studies)
- Insights from simplified analysis of pullback bundles in d_{3} :
- Jumps originate from interplay between curve splittings and Brill-Noether theory
- Formulate sufficient conditions for jumps to happen
- Implement quick (mostly based on topological data) h^{0}-spectrum approximator HoApproximator: https://github.com/homalg-project/ToricVarieties_project
- Proof of principle - easy application to $g=24$ curve in F-theory toy model

Summary

- Computing vector-like spectra in global F-theory models is hard
- We study how vector-like spectrum changes over moduli space of curve (\leftrightarrow qualitatively different from previous bundle cohomology studies)
- Insights from simplified analysis of pullback bundles in $d P_{3}$:
- Jumps originate from interplay between curve splittings and Brill-Noether theory
- Formulate sufficient conditions for jumps to happen
- Implement quick (mostly based on topological data) h^{0}-spectrum approximator HoApproximator: https://github.com/homalg-project/ToricVarieties_project
- Proof of principle - easy application to $g=24$ curve in F-theory toy model
- Take away message:

Recipe for additional vector-like pair: Factor $C \rightarrow \widetilde{C} \cup \mathbb{P}^{1}$ with $\operatorname{deg}\left(L_{\mathbb{P}^{1}}\right)<-1$.

Outlook: Back to F-theory (MS)SM constructions

curve	g	\mathcal{L}	d	BN-theory		
$C_{(3,2)_{1 / 6}}=V\left(s_{3}, s_{9}\right)$	10	$\mathcal{L}_{(3,2)_{1 / 6}}^{\otimes 36}=K_{C_{(3,2)_{1 / 6}}^{\otimes 24}}^{\text {at }}$	12	3 4 5		ρ 10 6 0
$\begin{gathered} C_{(1,2)_{-1 / 2}}= \\ V\left(s_{3}, s_{2} s_{5}^{2}+s_{1}\left(s_{1} s_{9}-s_{5} s_{6}\right)\right) \end{gathered}$	82	$\mathcal{L}_{(1,2)_{-1 / 2}}^{\otimes 36}=K_{C_{(1,2)-1 / 2}}^{\otimes 22} \otimes \mathcal{O}_{C_{(1,2)-1 / 2}}\left(-30 \cdot Y_{1}\right)$	84	10		
$C_{(\overline{3}, 1)_{-2 / 3}}=V\left(s_{5}, s_{9}\right)$						
\vdots	,					

Outlook: Back to F-theory (MS)SM constructions II

Outlook: Back to F-theory (MS)SM constructions II

- Root bundles: L s.t. $L \sim \frac{q}{p} \cdot K_{C}\left(\right.$ or $\left.L^{p} \sim K_{C}^{q}\right)$.

Motivation and outline

Outlook: Back to F-theory (MS)SM constructions II

- Root bundles: L s.t. $L \sim \frac{q}{p} \cdot K_{C}\left(\right.$ or $\left.L^{p} \sim K_{C}^{q}\right)$.
- $p^{2 g}$ solutions on smooth curves - generalization of spin-structures.

Outlook: Back to F-theory (MS)SM constructions II

- Root bundles: L s.t. $L \sim \frac{q}{p} \cdot K_{C}$ (or $L^{p} \sim K_{C}^{q}$).
- $p^{2 g}$ solutions on smooth curves - generalization of spin-structures.
- Brill-Noether theory for such bundles not known.

Outlook: Back to F-theory (MS)SM constructions II

- Root bundles: L s.t. $L \sim \frac{q}{p} \cdot K_{C}$ (or $L^{p} \sim K_{C}^{q}$).
- $p^{2 g}$ solutions on smooth curves - generalization of spin-structures.
- Brill-Noether theory for such bundles not known.
- Current expertise:
- Constructions involved.
- Most roots non-pullbacks.

Outlook: Back to F-theory (MS)SM constructions II

- Root bundles: L s.t. $L \sim \frac{q}{p} \cdot K_{C}\left(\right.$ or $L^{p} \sim K_{C}^{q}$).
- $p^{2 g}$ solutions on smooth curves - generalization of spin-structures.
- Brill-Noether theory for such bundles not known.
- Current expertise:
- Constructions involved.
- Most roots non-pullbacks.
\Rightarrow Theoretical (=mathematical) advances required.

Outlook: Back to F-theory (MS)SM constructions II

- Root bundles: L s.t. $L \sim \frac{q}{p} \cdot K_{C}$ (or $L^{p} \sim K_{C}^{q}$).
- $p^{2 g}$ solutions on smooth curves - generalization of spin-structures.
- Brill-Noether theory for such bundles not known.
- Current expertise:
- Constructions involved.
- Most roots non-pullbacks.
\Rightarrow Theoretical (=mathematical) advances required.
- Origin of root bundles:
- $G_{4} \in H_{\mathbb{Q}}^{2,2}\left(Y_{4}\right)$: Associated 'gauge field' $A_{\mathbb{Q}} \in \mathrm{CH}_{\mathbb{Q}}^{2}\left(Y_{4}\right)$.
$\Rightarrow A_{\mathbb{Q}}$ does not uniquely fix vector-like spectrum.
\Rightarrow Wilson line(s) in intermediate Jacobian of Y_{4} as additional datum?

Broader outlook

- Current technical extensions for (MS)SM model building:
- non-pullback/root bundles
- stratification for several curves in one global F-theory model
- Conceptual:
- Vector-like spectra for pseudo-real representations
- Non-vertical G_{4} (flux moduli dependence!)
- (Geometric) symmetries protecting vector-like pairs
- Further applications:
- (S)CFTs
- swampland program

Motivation and outline
Counting vector-like pairs in F-theory Learning control over the vector-like spectra

Summary and Outlook
Thank you for your attention!

