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Overview

@ Brief introduction to string theory
@ Search for our universe: How can CAP help?

@ Exploring the landscape with CAP and machine learning

Presentation based on work with . ..

o T. Weigand and C. Mayrhofer 1706.04616, 1706.08528, 1802.08860

e M. Barakat, S. Gutsche, S. Posur, K. M. Saleh:
5 CAP-packages on https://github.com/HereAround
o K. Veschgini in progress
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Brief introduction to string theory

Motivation: What if elementary particles were strings?

. protens and neutrons
@ ._proten

from ‘A Layman’'s Guide To String Theory’

Martin Bies CAP, machine learning and string theory 3/31



Brief introduction to string theory

Consequence: Universe is 10-dimensional!

Cartoon

S = X

A

our 4-dim. world W ‘small’ 6-dim. manifold Mg
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Brief introduction to string theory

Consequence: Universe is 10-dimensional!

Cartoon

our 4-dim. world W ‘small’ 6—dirﬁ. manifold Mg

@ Universe: 10 dimensional manifold S

e Compactification: S = W x Mg and Mg compact
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Brief introduction to string theory

Consequence |I: String theory has many solutions!

Ambiguity: Which manifold Mg to choose?

4

S = X

our 4-dim. world W ‘small’ 6-dim. manifold Mg
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Brief introduction to string theory

Consequence |I: String theory has many solutions!

Ambiguity: Which manifold Mg to choose?

Y/

our 4-dim. world W ‘small’ 6—dirﬁ. manifold Mg

Choices — curse or blessing?
o Many (~ 10%09) possible choices for Mg

@ Holy grail: Find Mg such that string theory on S = W x Mg
reproduces physics experienced in VW
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Brief introduction to string theory

Status of search

www jotyon.co.uk

Martin Bies CAP, machine learning and string theory 6 /31



Brief introduction to string theory

A quantity to count: Generations of fundamental particles

Three Generations
of Matter (Fermions)

mass—|2.4 MeV 1.27 GeV 171.2 GeV. [}
2 2 2
e char?e )/3 1/3 ) t 0 Y
Py carbon atoms spin-| %2 i v 1
name-| up charm top photon
4.8Mev 104 Mev/ 426Gev 0
peotoss and nestrons Y | s s 0 g
é": S % Y % 1
y o proton <
a h & down strange bottom gluon
<22ev <017Mev | |<155Mev | (912GeV
0 o 0 0 Z
# . 5, Ve |f% Vi |15 Ve | §
electron muon tau weak
neutrino || neutrino || neutrino force
= S 0511MeV |[1057MeV |[1777Gev | |80.4GeV.
2 = e -1 -1 =1
g~ % % U |k
a | electron muon tau Pl
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Brief introduction to string theory

A quantity to count: Generations of fundamental particles

Three Generations
of Matter (Fermions)

mass—|2.4 MeV 1.27 GeV 171.2 GeV. [}
- charge-| %4 % % t 0 Y
e in-{ 3 3
4 spin-| % Y 2 1
name-| up charm top photon
h 4.8Mev 104 Mev/ 426Gev

protons and neutrans

[
2d s bt 9
g‘» 2 2 2 1
J proton
a down strange bottom gluon
<22ev <017mev | [<isswev | [o126eV
0 o 0 0 Z
# . 5 Ve %V (L Ve [
electron muon tau weak
neutrino || neutrino || neutrino force
= > ostimev [lios7mev |[17776ev | [B0aGeV
— -1 -1 -1 =1
Yo tn T Ewi

weak
electron muon tau force

Quarks

Bosons (Forces)

Leptons

Strategy

Count number of generations of (massless) particles!
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Brief introduction to string theory

How to count generations of (massless) particles?

Cartoon of compactification

S = X

our 4-dim. world W ‘small’ 6-dim. manifold Mg
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How to count generations of (massless) particles?

Cartoon of compactification

S = X

our 4-dim. world W ‘small’ 6—dinﬁ. manifold Mg

Technicalities in a nutshell

@ Quantum particles = C-valued functions on S
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Brief introduction to string theory

How to count generations of (massless) particles?

Cartoon of compactification

S = X

our 4-dim. world W ‘small’ 6—dinﬁ. manifold Mg

Technicalities in a nutshell
@ Quantum particles = C-valued functions on S

= How many suitable C-valued functions exist on Mg?
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Brief introduction to string theory

How to count generations of (massless) particles?

Cartoon of compactification

S = X

our 4-dim. world W ‘small’ 6—dinﬁ. manifold Mg

Technicalities in a nutshell
@ Quantum particles = C-valued functions on S
= How many suitable C-valued functions exist on Mg?

= Eventually: Compute sheaf cohomologies on Mg
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others

Martin Bies CAP, machine learning and string theory
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Brief introduction to string theory

Questions so far?
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Search for our universe: How can CAP help?

Search for our universe: How can CAP help?
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Search for our universe: How can CAP help?

Strategy
@ Pick ‘nice’ class of manifolds Mg
@ Find computer models for €oh(Mp)

© Implement these computer models via CAP
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Search for our universe: How can CAP help?

Search for our universe: How can CAP help?

Strategy
@ Pick ‘nice’ class of manifolds Mg
@ Find computer models for €oh(Mp)

© Implement these computer models via CAP

@ Employ these categories to compute sheaf cohomologies
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Search for our universe: How can CAP help?

Simple choice for Mg — subvarieties of toric varieties
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Simple choice for Mg — subvarieties of toric varieties

@ In this talk, all toric varieties are smooth and complete

@ Background on toric varieties in book by Cox, Little, Schenk
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Search for our universe: How can CAP help?

Simple choice for Mg — subvarieties of toric varieties

@ In this talk, all toric varieties are smooth and complete

@ Background on toric varieties in book by Cox, Little, Schenk

v

Revision: Defining data of toric varieties

@ Coxring S=Q[x1,...,xn]
@ Homomorphism of monoids deg: Mons (S) — Z"

@ Stanley-Reissner ideal Isg C S
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Search for our universe: How can CAP help?

Simple choice for Mg — subvarieties of toric varieties

@ In this talk, all toric varieties are smooth and complete

@ Background on toric varieties in book by Cox, Little, Schenk

Revision: Defining data of toric varieties

@ Coxring S=Q[x1,...,xn]
@ Homomorphism of monoids deg: Mons (S) — Z"
@ Stanley-Reissner ideal Isg C S

Example: IP’?Q

o S =Q[x1,x,x3]
o deg: S — Z with deg(x1) = deg(x2) = deg(x3) =1

o /SR = <X1 * X2 ~X3>
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Search for our universe: How can CAP help?

Coherent sheaves on a toric variety Xz (with Cox ring S)
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Search for our universe: How can CAP help?

Coherent sheaves on a toric variety Xz (with Cox ring S)

Sheafification functor
o S-fpgrmod: category of finitely presented graded S-modules
@ CohXy: category of coherent sheaves on Xy

= There exists the sheafification functor

~: S-fpgrmod — Coh Xy , M — M
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Search for our universe: How can CAP help?

Coherent sheaves on a toric variety Xz (with Cox ring S)

Sheafification functor

o S-fpgrmod: category of finitely presented graded S-modules

@ CohXy: category of coherent sheaves on Xy

= There exists the sheafification functor

~: S-fpgrmod — Coh Xy , M — M

Computer models for coherent sheaves

@ The category S-fpgrmod can be handled with CAP

= S-fpgrmod can serve as computer models for coherent sheaves

1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
4
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Search for our universe: How can CAP help?

Coherent sheaves on a toric variety Xz (with Cox ring S)

Sheafification functor

o S-fpgrmod: category of finitely presented graded S-modules

@ CohXy: category of coherent sheaves on Xy

= There exists the sheafification functor

~: S-fpgrmod — Coh Xy , M — M

Computer models for coherent sheaves

@ The category S-fpgrmod can be handled with CAP

= S-fpgrmod can serve as computer models for coherent sheaves

1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100

Strategy of implementation

@ Implement category of projective graded S-modules
@ ‘Derive’ S-fpgrmod as Freyd category 1712.03492 and references therein
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Search for our universe: How can CAP help?

S-fpgrmod 1 — Category of projective graded S-modules
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Search for our universe: How can CAP help?

S-fpgrmod 1 — Category of projective graded S-modules

Input from toric variety
@ Polynomial ring S = Q[xy, .. ., xy]

@ Homomorphism of monoids deg: Mon (S) — Z"
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Search for our universe: How can CAP help?

S-fpgrmod 1 — Category of projective graded S-modules

Input from toric variety

@ Polynomial ring S = Q[xy, .. ., xy]

@ Homomorphism of monoids deg: Mon (S) — Z"

y

@ S C S: subgroup of homogeneous polynomials of degree e

e S(d): graded ring with S(d)e = Se.d

A\
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Search for our universe: How can CAP help?

S-fpgrmod 1 — Category of projective graded S-modules

Input from toric variety

@ Polynomial ring S = Q[xy, .. ., xy]

@ Homomorphism of monoids deg: Mon (S) — Z"

y

@ S C S: subgroup of homogeneous polynomials of degree e

e S(d): graded ring with S(d)e = Se.d

A

Objects: M =&, S (d)

o | C7Z" an indexing set
(] graded, i.e. 5,‘Mj Q M;+j

Martin Bies CAP, machine learning and string theory 13 /31



Search for our universe: How can CAP help?

S-fpgrmod 1 — Category of projective graded S-modules

Input from toric variety

@ Polynomial ring S = Q[xy, .. ., xy]

@ Homomorphism of monoids deg: Mon (S) — Z"

@ S C S: subgroup of homogeneous polynomials of degree e

e S(d): graded ring with S(d)e = Se.d

Objects: M =&, S (d)

o | C7Z" an indexing set
(] graded, i.e. 5,‘Mj Q M;+j

morphisms of graded modules
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Search for our universe: How can CAP help?

S-fpgrmod 1 — Category of projective graded S-modules

Input from toric variety

@ Polynomial ring S = Q[xy, .. ., xy]

@ Homomorphism of monoids deg: Mon (S) — Z"

@ S C S: subgroup of homogeneous polynomials of degree e

e S(d): graded ring with S(d)e = Se.d

Objects: M =&, S (d) Example: S the Cox ring of PE@

o | C7Z" an indexing set (x1) . .
el 1 GV @: S(—1) =% 5(0) is morphism
f p tetse WM = RS in this category since

S(-1)21—¢(1)=x € 5(0)
" ——— N—_——
morphisms of graded modules degreel degreel
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Search for our universe: How can CAP help?

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod = morphisms of projective graded S-modules
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Search for our universe: How can CAP help?

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod = morphisms of projective graded S-modules

Example on ]P’%J: S = Q[x1, x2, x3], deg(x;) =1

M, = coker (¢) and My, = coker (1)) are abstractly described by

0 —x3 x;
¥: S (—2)% B s (—1)®3, R:<X3 oox> ©:0— S(0)
—X2 X1
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Search for our universe: How can CAP help?

S-fpgrmod 2: Objects

General rule:

Objects in S-fpgrmod = morphisms of projective graded S-modules

Example on ]P’%j: S = Q[x1, x2, x3], deg(x;) =1
M, = coker (¢) and My, = coker (1)) are abstractly described by

0 —x3 x;
¥: S (—2)% B s (—1)®3, R:<X3 oox> ©:0— S(0)
—X2 X1

Notation

S(0)
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Search for our universe: How can CAP help?

S-fpgrmod 3: Morphisms

Definition: Morphism My, — M,, is commutative diagram

0
0 —XI3 T
R 0 R = I3 0 —I
—T2 X 0
B
§(-)® 5(0)
S/ S/
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Search for our universe: How can CAP help?

S-fpgrmod 3: Morphisms

Example: Morphism My, — M,

0
0 —XI3 D)
R 0 R = I3 0 —X

T1

s —X2 X 0

T3

5(-1)®? 5(0)
-~/ .~/
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Search for our universe: How can CAP help?

S-fpgrmod 3: Morphisms

Example: Morphism My, — M,

0
5 (—2)%? 0
0 —XI3 D)
R " 0 R = x3 0 —T1
( I; ) —T2 X 0
3
§(-1)% 5(0)

Implementation for CAP at https://github.com/HereAround:

o ‘CAPCategoryOfProjectiveGradedModules’
o 'CAPPresentationCategory’

@ 'PresentationByProjectiveGradedModules’
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Search for our universe: How can CAP help?

Computing H° — general idea
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Search for our universe: How can CAP help?

Computing H° — general idea

Definition
HO (Xs, F) =T (Ao, (Ox,F))
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Search for our universe: How can CAP help?

Computing H° — general idea

Definition
HO (Xs, F) =T (Ao, (Ox,F))

o M such that M = Ox
o F such that F~ F
= T (Homoy (Ox, F)) = Homs (M, F),
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Search for our universe: How can CAP help?

Computing H° — general idea

Definition
HO (Xs, F) =T (Ao, (Ox,F))

o M such that M = Ox
o F such that F~ F
= T (Homoy (Ox, F)) = Homs (M, F),

In general wrong — have to choose M carefully
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Search for our universe: How can CAP help?

Computing H° — different models for the structure sheaf

Example: By = (x1,x2,x3) and S are models for (’)Pz@

0 R 0 (%) 0
(2)
@ . 0

0 0 L gnes 2L g ! 5(0) 0

— \ J \ J | N D
ker (¢) n coker (¢)

0 ——— By ——— S(P}) S(P3)/Bs 0
ker (1) X —L— coker (7 — 0

o L BE 50 0 s @) /8 0
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Search for our universe: How can CAP help?

Computing H° — is By or S better?

@ On IP’(z@, F = By = (x1, x2, x3) satisfies F O%

= HO(P3, F) = Q!
= Task: Reproduce this from Homs (X, F), with X € {S, Bs}
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Computing H° — is By or S better?

@ On IP’(z@, F = By = (x1, x2, x3) satisfies F O%

= HO(P3, F) = Q!
= Task: Reproduce this from Homs (X, F), with X € {S, Bs}

Homs (S, F), =2 Q° — wrong result!
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Search for our universe: How can CAP help?

Computing H° — is By or S better?

@ On IP’(z@, F = By = (x1, x2, x3) satisfies F O%

= HO(P3, F) = Q!
= Task: Reproduce this from Homs (X, F), with X € {S, Bs}

Homs (S, F), =2 Q° — wrong result!

Homs (Bs, F), = Q! — correct result!

Martin Bies CAP, machine learning and string theory 18 /31



Search for our universe: How can CAP help?

Implemented Algorithm
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Search for our universe: How can CAP help?

Implemented Algorithm

Input and Output

@ smooth, complete toric variety Xy

e F € S-fpgrmod
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Search for our universe: How can CAP help?

Implemented Algorithm

Input and Output

@ smooth, complete toric variety Xy

e F € S-fpgrmod

Step-by-step (References in two slides)
@ Use cohomCalg to compute (0 < k < dimg (Xx))

VK (Xs) = {L € Pic(Xs) , h (Xg, L) = o}
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Search for our universe: How can CAP help?

Implemented Algorithm

Input and Output

@ smooth, complete toric variety Xy

e F € S-fpgrmod

Step-by-step (References in two slides)
@ Use cohomCalg to compute (0 < k < dimg (Xx))

VK (Xs) = {L € Pic(Xs) , h (Xg, L) = o}

@ Find ideal / C S along idea of G. Smith s.t.
H'(Xs, F) = Ext (I, F),
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Search for our universe: How can CAP help?

Implemented Algorithm

Input and Output

@ smooth, complete toric variety Xy

e F € S-fpgrmod

Step-by-step (References in two slides)
@ Use cohomCalg to compute (0 < k < dimg (Xx))

VK (Xs) = {L € Pic(Xs) , h (Xg, L) = o}

@ Find ideal / C S along idea of G. Smith s.t.
H'(Xs, F) = Ext (I, F),

© Compute Q-dimension of Extj (/, F),
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Search for our universe: How can CAP help?

SU(5) x U(1)-Tate model from 1706.04616

Input and Output

o C5_2 Q Pé

o Ls , <> F and F defined by
S(=36)® S (—39) ® S (—41) @
S(—23)&® S(—38) —
S(—6)®S(—21) > F =0

Al (%, F) —?
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Search for our universe: How can CAP help?

SU(5) x U(1)-Tate model from 1706.04616

Input and Output

o Gs_, CPj

o Ls , <+ F and F defined by e
S(-36)@S(-39) @ S (—41) @ n (B3, F) =2
S(—23)® S(-38) —
S(—6)®S(=21) = F =0

Apply Algorithm
© Compute vanishing sets via cohomCalg:
VO(BR) = (—o0, —1]5, VI(PR) = Z, V*(Pg) = [~2,00)y
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Search for our universe: How can CAP help?

SU(5) x U(1)-Tate model from 1706.04616

Input and Output

) C5_2 Q Pé

o Ls , <> F and F defined by .
S(=36)® S (-39) @ S (—41) @ h (IPQ, F) =2
S5(—23)® S(—38) —
S(—6)®S(-21)» F—=0

Apply Algorithm
© VO(PZ) = (—o0, 1], V() = Z, V2(P3) = [2,00),
@ Use vanishing sets to find ideal / (along idea of G. Smith):
I'= 5(44) = (% 0 x50
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Search for our universe: How can CAP help?

SU(5) x U(1)-Tate model from 1706.04616

Input and Output

] C5_2 Q ]P’é

o Ls_, < F and F defined by

S(—36)®S(—39) @ S(—41) @ ht (%,F) =7

5(—23) @ S (—38) —
S(—6)®S(—21) —» F =0

Apply Algorithm
O VO(BY) = (oo, ~1]5, V!(PE) = Z, VA(PE) = [-2,00);
@ /=B = (3" 4%, x4%)
© Compute presentation of Extt (B>(:44), F
5 ( r )0

Martin Bies CAP, machine learning and string theory
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Search for our universe: How can CAP help?

SU(5) x U(1)-Tate model from 1706.04616

Input and Output

o C5_2 Q ]P’é

o Ls_, < F and F defined by
S(-36)dS(-39)@S(-41)a
S(—23)® S(—38) —
S(=6)®S(=21) = F =0

w (P2, F) =

Apply Algorithm
Q@ VO(PE) = (o0, ~1];, VA(P}) = Z, VA(P}) = [-2,00),
Q /= B§44) = <xg47xf47xél4>
© Compute presentation of Extt (B>(:44), F

@37425 N Q27201 _y EXtELS (Bg‘l), F>0 -0
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Search for our universe: How can CAP help?

SU(5) x U(1)-Tate model from 1706.04616

Input and Output

o Gs_, CPj

o Lg , <+ F and F defined by o =
S(-36)@S(-39) @ S (-41) @ (P, F) =2
S(-23)® S(-38) —
S(-6)®S(-21) » F =0

Apply Algorithm
@ VO(P}) = (o0, 1]z, VI(PH) = Z, VA(PG) =[—2,00)g

@ /=B = (x* <" 4%)
Q Q3745 _, Q2701 _, Exil ( B§44)7 ,:)0 0
= 28 = dimg [Bxt} (B89, F) | = #' (P4, F)
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Search for our universe: How can CAP help?

Summary on Implementation
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Search for our universe: How can CAP help?

Summary on Implementation

@ Have combined

e cohomCalg by R. Blumenhagen et al.
1003.5217, 1006.0780, 1006.2392, 1010.3717

e work of G. Smith et al. on computing sheaf cohomologies
math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
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Summary on Implementation

@ Have combined
e cohomCalg by R. Blumenhagen et al.
1003.5217, 1006.0780, 1006.2392, 1010.3717
e work of G. Smith et al. on computing sheaf cohomologies
math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
@ Have improved computation of Q-dimension of Exts by

o parallelisation
e replacing Groebner basis computations by Gaul-eliminations
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Summary on Implementation

@ Have combined
e cohomCalg by R. Blumenhagen et al.
1003.5217, 1006.0780, 1006.2392, 1010.3717
e work of G. Smith et al. on computing sheaf cohomologies
math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
@ Have improved computation of Q-dimension of Extg by
o parallelisation
e replacing Groebner basis computations by Gaul-eliminations
= Modern algorithm to compute sheaf cohomologies of all
coherent sheaves on smooth, complete toric varieties
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Search for our universe: How can CAP help?

Summary on Implementation

@ Have combined
e cohomCalg by R. Blumenhagen et al.
1003.5217, 1006.0780, 1006.2392, 1010.3717
e work of G. Smith et al. on computing sheaf cohomologies
math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25
@ Have improved computation of Q-dimension of Extg by
o parallelisation
e replacing Groebner basis computations by Gaul-eliminations
= Modern algorithm to compute sheaf cohomologies of all
coherent sheaves on smooth, complete toric varieties

= Many applications in string theory
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Search for our universe: How can CAP help?

Questions so far?
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Exploring the landscape with CAP and machine learning

Moduli dependence of sheaf cohomologies

Recall: String landscape = manifold Mg and substructure

N\

S = X

our 4-dim. world W ‘small’ 6-dim. manifold Me
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Exploring the landscape with CAP and machine learning

Moduli dependence of sheaf cohomologies

Recall: String landscape = manifold Mg and substructure

N4

S = X

our 4-dim. world W  ‘small’ 6-dim. manifold Mg

Strategies

@ So far: One choice of manifold Mg with substructure
= CAP allows to count number of generations n,

o Now: How does n, vary if we alter Mg and its substructure?
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Exploring the landscape with CAP and machine learning

Moduli dependence of sheaf cohomologies Il

Example on substructure: SU(5) x U(1)y-Tate model

@ Substruc. D G5 , = V(a10-as3—az2-ap1) C ]P’é

— 4 2
@ a9 =cx] + C2xfxz + a3xpxox3 + ... € Q[x1, X2, x3]

@ degaio =7, degar; =7, degazo = 10, degas3 = 13
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Moduli dependence of sheaf cohomologies Il

Example on substructure: SU(5) x U(1)y-Tate model

@ Substruc. D G5 , = V(a10-as3—az2-ap1) C Pé

— 4 2
@ a9 =cx] + QXfXg + a3xpxox3 + ... € Q[x1, X2, x3]

@ degaio =7, degar; =7, degazo = 10, degas3 = 13

SU(5)xU(1)-Tate Model from 1706.04616 (R = 5_»)

My e xq x5 (x1 +x2) | x3%(xq — x2)3

Martin Bies CAP, machine learning and string theory 24 /31



Exploring the landscape with CAP and machine learning

Other example: dP3-example from 18

15

4913 data points, 3193 used for training, 1720 correctly predicted
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Exploring the landscape with CAP and machine learning

Other example: dPs3-example from 1802.08860 ||

0.125
gﬁﬂ LS

value-[1955 na .60

2345
vave STHSBE 116, 586,7,11
class = 3

gin =00
‘sam| =982
value = [982, 0, 0,0, 0]
class =3

value-['ga.na 0,8,0]

3678
value'= {1 [1955. 5,116.0.7,0]

X <0125
0123

0113080]

gni - 00

<0125 gini
llm[glli- 973
valua [0 0 130 0 0] value = [973,0, 0,0, 0]
class =3

i = 0.
dmples = 14
valus = 6,0, 18,0, 1]
class = 5

value

gini = 0.0 o= 007

samples = 7 mples =

value = [0,0,7,0,0] valvo [0 . o 0,0
class=5 class

gini = 0.0
samples = 6
value = [0, 0, 6, 0, 0]
class =5

gll_
[0570001

value
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Exploring the landscape with CAP and machine learning

Other example: dPs3-example from 1802.08860 Il1

35.0

X9 33.0

4913 data points, 4910 used for training, 3 correctly predicted
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Exploring the landscape with CAP and machine learning

Other example: dPs-example from 1802.08860 IV

32.0
31.5
31.0
30.5
30.0 X
29.5
29.0
28.5
28.0

L]
L2
[ ]
L]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
(]
[
L
[ ]
L ]
®

4913 data points, 2947 used for training, 1966 correctly predicted
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Exploring the landscape with CAP and machine learning

Questions so far?
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Summary

@ Sheaf cohomology feature prominently in string theory

0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others

Martin Bies CAP, machine learning and string theory 30/31



Exploring the landscape with CAP and machine learning

Summary

@ Sheaf cohomology feature prominently in string theory
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others
@ On toric varieties S-fpgrmod can serve as computer model for

coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100

Martin Bies CAP, machine learning and string theory 30/31



Exploring the landscape with CAP and machine learning

Summary

@ Sheaf cohomology feature prominently in string theory
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others
@ On toric varieties S-fpgrmod can serve as computer model for

coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
= Implemented via the following CAP-packages:
o 'CAPCategoryOfProjectiveGradedModules’
o 'CAPPresentationCategory’
o 'PresentationByProjectiveGradedModules’

Martin Bies CAP, machine learning and string theory 30/31



Exploring the landscape with CAP and machine learning

Summary

@ Sheaf cohomology feature prominently in string theory
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others
@ On toric varieties S-fpgrmod can serve as computer model for
coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
= Implemented via the following CAP-packages:
o 'CAPCategoryOfProjectiveGradedModules’
o 'CAPPresentationCategory’
o 'PresentationByProjectiveGradedModules’
= Modern algorithm for computation of sheaf cohomology
implemented via the following packages:
e ‘TruncationsOfPresentationsByProjectiveGradedModules’
o ‘SheafCohomologyOnToricVarieties'

Martin Bies CAP, machine learning and string theory 30/31



Exploring the landscape with CAP and machine learning

Summary

@ Sheaf cohomology feature prominently in string theory
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others
@ On toric varieties S-fpgrmod can serve as computer model for
coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
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Summary

@ Sheaf cohomology feature prominently in string theory
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others
@ On toric varieties S-fpgrmod can serve as computer model for
coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100
= Implemented via the following CAP-packages:
o 'CAPCategoryOfProjectiveGradedModules’
o 'CAPPresentationCategory’
o 'PresentationByProjectiveGradedModules’
= Modern algorithm for computation of sheaf cohomology
implemented via the following packages:
e ‘TruncationsOfPresentationsByProjectiveGradedModules’
o ‘SheafCohomologyOnToricVarieties'
e Implementations available at https://github.com/HereAround
e Current effort: Open door for statistical analysis on the string
landscape via machine learning
= Decision trees seem to help us with this task
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Exploring the landscape with CAP and machine learning

Thank you for your attention!

1
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Exploring the landscape with CAP and machine learning

Schematic Picture: Physics and Geometry of F-theory

base B3
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Exploring the landscape with CAP and machine learning

From Divisors to Modules

Input and Output

o C=V(g1,....8)C Xz M s.t. supp(M) = C
o D=V(f,...,f,) e Div(C) and M|c = Oc(-D)
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Exploring the landscape with CAP and machine learning

From Divisors to Modules
Input and Output

o C=V(g1,....8)C Xz M s.t. supp(M) = C
o D=V(f,...,f,) e Div(C) and M|c = Oc(-D)

S(C)
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Exploring the landscape with CAP and machine learning

From Divisors to Modules |l

Step 2: Extend by zero to coherent sheaf on Xs

( )

DjesS0) Drer S (k)
- 81
X ® ék

Dici 5 (1) 5(C)

A B

= M = A® B satisfies Supp(M) = C and M|¢ = O¢ (=D)
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Exploring the landscape with CAP and machine learning

From Divisors to Modules I11

Input and Output

o C=V(g,...,8) S Xs Ms.t. supp(l\71) =C
e D=V(f,...,f,) € Div(C) and M|c = O¢(+D)

Strategy

@ Compute Ac

@ Dualise via A¢ := Homg(c) (S (C), Ac)

© Extend by zero by considering AY @ B

— MV := AV @ B satisfies Supp(M) = C and M|c = O¢ (+D)
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An idea of the sheafification functor
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An idea of the sheafification functor

Affine open cover

@ Toric variety Xy with Cox ring S

= Covered by affine opens {Ug = Specm(S(Xa))} :
S
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Exploring the landscape with CAP and machine learning

An idea of the sheafification functor

Affine open cover

@ Toric variety Xy with Cox ring S

= Covered by affine opens {Ug = Specm(S(Xa))} :
S

Localising (= restricting) a module

e M € S-fpgrmod

= M,y is f.p. S()-module
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Exploring the landscape with CAP and machine learning

An idea of the sheafification functor

Affine open cover

@ Toric variety Xy with Cox ring S

= Covered by affine opens {Ug = Specm(S(Xa))} :
S

Localising (= restricting) a module

e M € S-fpgrmod

= M,y is f.p. S()-module

Consequence

® My <> coherent sheaf on U, = Specm(S(,+))
o local sections: M,y (D (f)) = M,y ®S,5) (S(X&)),c
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Exploring the landscape with CAP and machine learning

Module Ms from 1706.04616: Quality Check |

20 1

16 1

12 4
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Exploring the landscape with CAP and machine learning

Module Ms from 1706.04616: Quality Check |

dimg [Extg (B@, M5) :0}

20 1

16 1

12 4
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Module Ms from 1706.04616: Quality Check |

20 1

16 1

12 4

-++++ At

.
+
+
6 12 18 24 30 36 42 48 €
Martin Bies CAP, machine learning and string theory

31/31



Exploring the landscape with CAP and machine learning

Module Ms from 1706.04616: Quality Check Il
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Module Ms from 1706.04616: Quality Check Il

dimg [Ext}s (B@, M5) :0}
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Exploring the landscape with CAP and machine learning

How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
o Vk (X):) = {L € Pic (Xz) hk X):, = 0}
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Exploring the landscape with CAP and machine learning

How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
o VK(Xz)={L€Pic(Xg) , h*(Xs, L) =0}

e p e Cl(Xxg) ample, m(p) = {m, ..., my} all monomials of
degree p and / (p, e) = <mf, el m2>

@ Pick e = 0 and increase it until subsequent conditions are met

4
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod

o Vk (X):) = {L € Pic (Xz)

h* (Xs,L) = 0}

How to find ideal /7

e Look at spectral sequence ES*7 = Extp” (/ (p, €), I\~/I)

o Some objects E5'9 vanish as seen by V¥ (Xz)

o Does EY'9 degenerate (on E,-sheet)? Is its limit (co)homology
H™ (CO) of complex of global sections of vector bundles?
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
o Vk (Xz) = {L € Pic (Xz) hk Xz, = 0}

How to find ideal /7

e Look at spectral sequence ES*7 = Extp” (/ (p,e), I\~/l)

o Some objects E5'9 vanish as seen by V¥ (Xz)

o Does EY'9 degenerate (on E,-sheet)? Is its limit (co)homology
H™ (CO) of complex of global sections of vector bundles?

= If no — increase e until this is the casel

@ Long exact sequence: sheaf cohomology <> local cohomology
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
o Vk (Xz) = {L € Pic (Xz) hk Xz, = 0}

How to find ideal /7

e Look at spectral sequence ES*7 = Extp” (/ (p,e), I\~/l)

o Some objects E5'9 vanish as seen by V¥ (Xz)

o Does EY'9 degenerate (on E,-sheet)? Is its limit (co)homology
H™ (CO) of complex of global sections of vector bundles?

= If no — increase e until this is the case!
@ Long exact sequence: sheaf cohomology <> local cohomology
= Increase e further until H™ (C°) = ExtZ (/ (p, e) , M),
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The Hom-Embedding
S
v ®idg,
R B GY, ® Ry P @ 1N R, ® Rn
a a
p < S
® ®
3 3
« pXI ®iday
G GL@GN RX,1®GN
| —
P /7\\/1 ‘5@1(1\
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