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Motivation: What if elementary particles were strings?

from ‘A Layman’s Guide To String Theory’
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Consequence: Universe is 10-dimensional!

Cartoon

S =

our 4-dim. world W

×

‘small’ 6-dim. manifoldM6

Summary
Universe: 10 dimensional manifold S
Compactification: S =W ×M6 andM6 compact
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Consequence II: String theory has many solutions!

Ambiguity: Which manifoldM6 to choose?

S =

our 4-dim. world W

×

‘small’ 6-dim. manifoldM6

Choices – curse or blessing?

Many (∼ 101000) possible choices forM6

Holy grail: FindM6 such that string theory on S =W ×M6
reproduces physics experienced in W
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Status of search
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A quantity to count: Generations of fundamental particles
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Count number of generations of (massless) particles!
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How to count generations of (massless) particles?
Cartoon of compactification

S =

our 4-dim. world W

×

‘small’ 6-dim. manifoldM6

Technicalities in a nutshell
Quantum particles =̂ C-valued functions on S

⇒ How many suitable C-valued functions exist onM6?

⇒ Eventually: Compute sheaf cohomologies onM6
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others
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Questions so far?
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Search for our universe: How can CAP help?

Strategy

1 Pick ‘nice’ class of manifoldsM6

2 Find computer models for Coh(M6)

3 Implement these computer models via CAP
4 Employ these categories to compute sheaf cohomologies
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Simple choice forM6 – subvarieties of toric varieties

Remarks
In this talk, all toric varieties are smooth and complete
Background on toric varieties in book by Cox, Little, Schenk

Revision: Defining data of toric varieties

Cox ring S = Q [x1, . . . , xn]

Homomorphism of monoids deg : Mons (S)→ Zn

Stanley-Reissner ideal ISR ⊆ S

Example: P2
Q

S = Q [x1, x2, x3]

deg : S → Z with deg (x1) = deg (x2) = deg (x3) = 1
ISR = 〈x1 · x2 · x3〉
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Coherent sheaves on a toric variety XΣ (with Cox ring S)

Sheafification functor
S-fpgrmod: category of finitely presented graded S-modules
CohXΣ: category of coherent sheaves on XΣ

⇒ There exists the sheafification functor

˜ : S-fpgrmod→ CohXΣ , M 7→ M̃

Computer models for coherent sheaves
The category S-fpgrmod can be handled with CAP

⇒ S-fpgrmod can serve as computer models for coherent sheaves
1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100

Strategy of implementation
1 Implement category of projective graded S-modules
2 ‘Derive’ S-fpgrmod as Freyd category 1712.03492 and references therein
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S-fpgrmod 1 – Category of projective graded S-modules

Input from toric variety

Polynomial ring S = Q [x1, . . . , xn]

Homomorphism of monoids deg : Mon (S)→ Zn

Definition
Se ⊆ S : subgroup of homogeneous polynomials of degree e
S (d): graded ring with S(d)e = Se+d

Objects: M =
⊕

d∈I S (d)

I ⊆ Zn an indexing set
graded, i. e. SiMj ⊆ Mi+j

Morphisms:
morphisms of graded modules

Example: S the Cox ring of P2
Q

ϕ : S(−1)
(x1)−−→ S(0) is morphism

in this category since

S (−1) 3 1︸ ︷︷ ︸
degree1

7→ ϕ (1) = x1 ∈ S (0)︸ ︷︷ ︸
degree1
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S-fpgrmod 2: Objects
General rule:
Objects in S-fpgrmod =̂ morphisms of projective graded S-modules

Example on P2
Q: S = Q [x1, x2, x3], deg(xi ) = 1

Mϕ ≡ coker (ϕ) and Mψ ≡ coker (ψ) are abstractly described by

ψ : S (−2)⊕3 R−→ S (−1)⊕3 , R =

(
0 −x3 x2
x3 0 −x1
−x2 x1 0

)
, ϕ : 0→ S (0)

Notation

S (−2)
⊕3

0

S (−1)
⊕3

S (0)

R 0

Martin Bies CAP, machine learning and string theory 14 / 31
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S-fpgrmod 3: Morphisms

Definition: Morphism Mψ → Mϕ is commutative diagram

S (−2)
⊕3

0

S (−1)
⊕3

S (0)

R

A

B

0 R =




0 −x3 x2
x3 0 −x1
−x2 x1 0




Martin Bies CAP, machine learning and string theory 15 / 31
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Implementation for CAP at https://github.com/HereAround:

‘CAPCategoryOfProjectiveGradedModules’
‘CAPPresentationCategory’
‘PresentationByProjectiveGradedModules’
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Computing H0 – general idea

Definition

H0 (XΣ,F) := Γ (HomOX (OX ,F))

Idea

M such that M̃ ∼= OX

F such that F̃ ∼= F
⇒ Γ (HomOX (OX ,F))

?
= HomS (M,F )0

Careful!
In general wrong – have to choose M carefully
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Computing H0 – different models for the structure sheaf

Example: BΣ = 〈x1, x2, x3〉 and S are models for OP2
Q

0 S (−2)
⊕3

0 S (−1)
⊕3

0

0 S (−1)
⊕3

S (0) S (0) 0

0 BΣ S(P2
Q) S(P2

Q)/BΣ 0

0 B̃ (Σ) S̃
(
P2
Q
) ˜S

(
P2
Q
)
/BΣ 0

0

0

0

R

0

(
x1
x2
x3

) 0

0

id

(
x1
x2
x3

)

0

0

0

ker (ι) ι coker (ι) 0

˜

ker (ι̃)

˜

ι

˜

coker (ι̃)

˜

0

˜
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Computing H0 – is BΣ or S better?

Task

On P2
Q, F = BΣ = 〈x1, x2, x3〉 satisfies F̃ ∼= OP2

Q

⇒ H0(P2
Q, F̃ ) ∼= Q1

⇒ Task: Reproduce this from HomS (X ,F )0 with X ∈ {S ,BΣ}

Try 1: X = S

HomS (S ,F )0
∼= Q0 – wrong result!

Try 2: X = BΣ

HomS (BΣ,F )0
∼= Q1 – correct result!
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Implemented Algorithm

Input and Output

smooth, complete toric variety XΣ

F ∈ S-fpgrmod
hi
(
XΣ, F̃

)

Step-by-step (References in two slides)

1 Use cohomCalg to compute (0 ≤ k ≤ dimQ (XΣ))

V k (XΣ) :=
{

L ∈ Pic (XΣ) , hk (XΣ, L) = 0
}

2 Find ideal I ⊆ S along idea of G. Smith s.t.

H i (XΣ, F̃ ) ∼= ExtiS (I ,F )0

3 Compute Q-dimension of ExtiS (I ,F )0
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

SU(5)× U(1)-Tate model from 1706.04616

Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ F and F defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � F → 0

h1
(
P2
Q, F̃

)
=?

Apply Algorithm

1 V 0(P2
Q) = (−∞,−1]Z , V 1(P2

Q) = Z, V 2(P2
Q) = [−2,∞)Z

2

3

Q37425 → Q27201 �

Ext1S
(
B(44)

Σ ,F
)

0

→ 0

Martin Bies CAP, machine learning and string theory 20 / 31



Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

SU(5)× U(1)-Tate model from 1706.04616

Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ F and F defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � F → 0

h1
(
P2
Q, F̃

)
=?

Apply Algorithm
1 Compute vanishing sets via cohomCalg:

V 0(P2
Q) = (−∞,−1]Z , V 1(P2

Q) = Z, V 2(P2
Q) = [−2,∞)Z

2

3

Q37425 → Q27201 �

Ext1S
(
B(44)

Σ ,F
)

0

→ 0

Martin Bies CAP, machine learning and string theory 20 / 31



Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

SU(5)× U(1)-Tate model from 1706.04616

Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ F and F defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � F → 0

h1
(
P2
Q, F̃

)
=?

Apply Algorithm
1 V 0(P2

Q) = (−∞,−1]Z , V 1(P2
Q) = Z, V 2(P2

Q) = [−2,∞)Z
2 Use vanishing sets to find ideal I (along idea of G. Smith):

I = B(44)
Σ ≡

〈
x44
0 , x44

1 , x44
2
〉

3

Q37425 → Q27201 �

Ext1S
(
B(44)

Σ ,F
)

0

→ 0

Martin Bies CAP, machine learning and string theory 20 / 31



Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

SU(5)× U(1)-Tate model from 1706.04616
Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ F and F defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � F → 0

h1
(
P2
Q, F̃

)
=?

Apply Algorithm
1 V 0(P2

Q) = (−∞,−1]Z , V 1(P2
Q) = Z, V 2(P2

Q) = [−2,∞)Z

2 I = B(44)
Σ ≡

〈
x44
0 , x44

1 , x44
2
〉

3 Compute presentation of Ext1S
(
B(44)

Σ ,F
)

0
:

Q37425 → Q27201 �

Ext1S
(
B(44)

Σ ,F
)

0

→ 0

Martin Bies CAP, machine learning and string theory 20 / 31



Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

SU(5)× U(1)-Tate model from 1706.04616
Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ F and F defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � F → 0

h1
(
P2
Q, F̃

)
=?

Apply Algorithm
1 V 0(P2

Q) = (−∞,−1]Z , V 1(P2
Q) = Z, V 2(P2

Q) = [−2,∞)Z

2 I = B(44)
Σ ≡

〈
x44
0 , x44

1 , x44
2
〉

3 Compute presentation of Ext1S
(
B(44)

Σ ,F
)

0
:

Q37425 → Q27201 � Ext1S
(
B(44)

Σ ,F
)

0
→ 0

Martin Bies CAP, machine learning and string theory 20 / 31



Brief introduction to string theory
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Exploring the landscape with CAP and machine learning
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Q
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Q) = Z, V 2(P2

Q) = [−2,∞)Z

2 I = B(44)
Σ ≡

〈
x44
0 , x44

1 , x44
2
〉

3 Q37425 → Q27201 � Ext1S
(
B(44)

Σ ,F
)

0
→ 0

⇒ 28 = dimQ

[
Ext1S

(
B(44)

Σ ,F
)

0

]
= h1

(
P2
Q, F̃

)
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Summary on Implementation

Have combined
cohomCalg by R. Blumenhagen et al.
1003.5217, 1006.0780, 1006.2392, 1010.3717

work of G. Smith et al. on computing sheaf cohomologies
math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25

Have improved computation of Q-dimension of ExtiS by
parallelisation
replacing Groebner basis computations by Gauß-eliminations

⇒ Modern algorithm to compute sheaf cohomologies of all
coherent sheaves on smooth, complete toric varieties

⇒ Many applications in string theory
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Questions so far?
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Moduli dependence of sheaf cohomologies

Recall: String landscape = manifoldM6 and substructure

S =

our 4-dim. world W

×

‘small’ 6-dim. manifoldM6

Strategies
So far: One choice of manifoldM6 with substructure

⇒ CAP allows to count number of generations ng

Now: How does ng vary if we alterM6 and its substructure?
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Moduli dependence of sheaf cohomologies II

Example on substructure: SU(5)× U(1)Y -Tate model

Substruc. ⊃ C5−2 = V (ã1,0 · ã4,3 − ã3,2 · ã2,1) ⊆ P2
Q

ã1,0 = c1x4
1 + c2x3

1 x2 + c3x2
1 x2x3 + . . . ∈ Q[x1, x2, x3]

deg ã1,0 = 7, deg ã2,1 = 7, deg ã3,2 = 10, deg ã4,3 = 13

SU(5)xU(1)-Tate Model from 1706.04616 (R = 5−2)

ã1,0 ã2,1 ã3,2 ã4,3 h0 (CR, LR)

M1 (x1 − x2)4 x7
1 x10

2 x13
3 22

M2 (x1 − x2) x3
3 x7

1 x10
2 x13

3 21
M3 x4

3 x7
1 x7

2 (x1 + x2)3 x12
3 (x1 − x2) 11

M4 (x1 − x2)3 x3 x7
1 x10

2 x13
3 9

M5 x4
3 x7

1 x8
2 (x1 + x2)2 x11

3 (x1 − x2)2 7
M6 x4

3 x7
1 x10

2 x8
3 (x1 − x2)5 6

M7 x4
3 x7

1 x9
2 (x1 + x2) x10

3 (x1 − x2)3 5
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Other example: dP3-example from 1802.08860

4913 data points, 3193 used for training, 1720 correctly predicted
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Other example: dP3-example from 1802.08860 II
X5 ≤ 0.125
gini = 0.211

samples = 4421
value = [3910, 229, 266, 15, 1]

class = 3

X5 ≤ -0.125
gini = 0.29

samples = 2345
value = [1955, 116, 266, 7, 1]

class = 3

True

X6 ≤ 0.125
gini = 0.11

samples = 2076
value = [1955, 113, 0, 8, 0]

class = 3

False

X6 ≤ -0.125
gini = 0.112

samples = 2078
value = [1955, 116, 0, 7, 0]

class = 3

X0 ≤ 0.125
gini = 0.007

samples = 267
value = [0, 0, 266, 0, 1]

class = 5

gini = 0.0
samples = 987

value = [987, 0, 0, 0, 0]
class = 3

X6 ≤ 0.125
gini = 0.201

samples = 1091
value = [968, 116, 0, 7, 0]

class = 3

X0 ≤ 0.125
gini = 0.107

samples = 123
value = [0, 116, 0, 7, 0]

class = 4

gini = 0.0
samples = 968

value = [968, 0, 0, 0, 0]
class = 3

X0 ≤ -0.125
gini = 0.195

samples = 64
value = [0, 57, 0, 7, 0]

class = 4

gini = 0.0
samples = 59

value = [0, 59, 0, 0, 0]
class = 4

gini = 0.0
samples = 57

value = [0, 57, 0, 0, 0]
class = 4

gini = 0.0
samples = 7

value = [0, 0, 0, 7, 0]
class = 6

X0 ≤ -0.125
gini = 0.014

samples = 137
value = [0, 0, 136, 0, 1]

class = 5

gini = 0.0
samples = 130

value = [0, 0, 130, 0, 0]
class = 5

gini = 0.0
samples = 123

value = [0, 0, 123, 0, 0]
class = 5

X6 ≤ 0.125
gini = 0.133

samples = 14
value = [0, 0, 13, 0, 1]

class = 5

X6 ≤ -0.125
gini = 0.245
samples = 7

value = [0, 0, 6, 0, 1]
class = 5

gini = 0.0
samples = 7

value = [0, 0, 7, 0, 0]
class = 5

gini = 0.0
samples = 6

value = [0, 0, 6, 0, 0]
class = 5

gini = 0.0
samples = 1

value = [0, 0, 0, 0, 1]
class = 8

X6 ≤ -0.125
gini = 0.198

samples = 1094
value = [973, 113, 0, 8, 0]

class = 3

gini = 0.0
samples = 982

value = [982, 0, 0, 0, 0]
class = 3

gini = 0.0
samples = 973

value = [973, 0, 0, 0, 0]
class = 3

X0 ≤ 0.125
gini = 0.123

samples = 121
value = [0, 113, 0, 8, 0]

class = 4

X0 ≤ -0.125
gini = 0.219

samples = 64
value = [0, 56, 0, 8, 0]

class = 4

gini = 0.0
samples = 57

value = [0, 57, 0, 0, 0]
class = 4

gini = 0.0
samples = 56

value = [0, 56, 0, 0, 0]
class = 4

gini = 0.0
samples = 8

value = [0, 0, 0, 8, 0]
class = 6

Martin Bies CAP, machine learning and string theory 26 / 31



Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Other example: dP3-example from 1802.08860 III

4913 data points, 4910 used for training, 3 correctly predicted
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Other example: dP3-example from 1802.08860 IV

4913 data points, 2947 used for training, 1966 correctly predicted
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Brief introduction to string theory
Search for our universe: How can CAP help?

Exploring the landscape with CAP and machine learning

Questions so far?
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Brief introduction to string theory
Search for our universe: How can CAP help?
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Summary

Sheaf cohomology feature prominently in string theory
0403166, 0808.3621, 1106.4804, 1706.04616, 1802.08860 and many others

On toric varieties S-fpgrmod can serve as computer model for
coherent sheaves 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100

⇒ Implemented via the following CAP-packages:
‘CAPCategoryOfProjectiveGradedModules’
‘CAPPresentationCategory’
‘PresentationByProjectiveGradedModules’

⇒ Modern algorithm for computation of sheaf cohomology
implemented via the following packages:

‘TruncationsOfPresentationsByProjectiveGradedModules’
‘SheafCohomologyOnToricVarieties’

Implementations available at https://github.com/HereAround
Current effort: Open door for statistical analysis on the string
landscape via machine learning

⇒ Decision trees seem to help us with this task
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From Divisors to Modules
Input and Output

C = V (g1, . . . , gk) ⊆ XΣ

D = V (f1, . . . , fn) ∈ Div(C )

M s.t. supp(M̃) = C
and M̃|C ∼= OC (−D)

Step 1: S(C ) := S/〈g1, . . . , gk〉, π : S � S(C )

⊕

j∈J

S (C ) (j) 0

⊕

i∈I

S (C ) (i) S (C )

AC S (C )

ker (m)

0

m = (π (f1) , . . . , π (fn))

0

∼
ι

∼
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From Divisors to Modules II
Step 2: Extend by zero to coherent sheaf on XΣ

⊕
j∈J S (j)

⊕
i∈I S (i)

A

ke
r(

m
)′

∼

⊗

⊕
k∈K S (k)

S (C )

B




g1
...

gk




∼

⇒ M = A⊗ B satisfies Supp(M̃) = C and M̃|C ∼= OC (−D)
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From Divisors to Modules III

Input and Output

C = V (g1, . . . , gk) ⊆ XΣ

D = V (f1, . . . , fn) ∈ Div(C )

M s.t. supp(M̃) = C
and M̃|C ∼= OC (+D)

Strategy
1 Compute AC

2 Dualise via A∨C := HomS(C) (S (C ) ,AC )

3 Extend by zero by considering A∨ ⊗ B
⇒ M∨ := A∨ ⊗ B satisfies Supp(M̃) = C and M̃|C ∼= OC (+D)
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An idea of the sheafification functor

Affine open cover
Toric variety XΣ with Cox ring S

⇒ Covered by affine opens
{

Uσ = Specm(S(x σ̂))
}
σ∈Σ

Localising (↔ restricting) a module

M ∈ S-fpgrmod
⇒ M(x σ̂) is f.p. S(x σ̂)-module

Consequence

M(x σ̂) ↔ coherent sheaf on Uσ = Specm(S(x σ̂))

local sections: M̃(x σ̂) (D (f )) = M(x σ̂) ⊗S
(xσ̂)

(
S(x σ̂)

)
f
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Module M5 from 1706.04616: Quality Check I

e

di
m

Q

[ Ex
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How to determine the ideal I in step 2 of algorithm?

Input
M ∈ S-fpgrmod
V k (XΣ) =

{
L ∈ Pic (XΣ) , hk (XΣ, L) = 0

}

How to find ideal I?

Look at spectral sequence Ep,q
2 ⇒ Extp+q

OXΣ

(
˜I (p, e), M̃

)

Some objects Ep,q
2 vanish as seen by V k (XΣ)

Does Ep,q
2 degenerate (on E2-sheet)? Is its limit (co)homology

Hm (C0) of complex of global sections of vector bundles?
⇒ If no – increase e until this is the case!

Long exact sequence: sheaf cohomology ↔ local cohomology
⇒ Increase e further until Hm (C0) ∼= ExtmS (I (p, e) ,M)0
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The Hom-Embedding

R G∨
M ⊗RN R∨

M ⊗RN

G G∨
M ⊗GN R∨

M ⊗GN

HomS (M,N) G∨
M ⊗N R∨

M ⊗N

ρ

id
G

∨M
⊗
ρ
N

id
R

∨M
⊗
ρ
N

ρ∨M ⊗ idGN

ρ∨M ⊗ idRNβ

α

ι ρ∨M ⊗ idN
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