Statistics of limit root bundles and towards F-Theory MSSMs

Martin Bies

University of Pennsylvania

13th polymake conference and developer meeting - January 21, 2022

Work with M. Cvetič, R. Donagi, M. Liu, M. Ong - 2102.10115, 2104.08297

Martin Bies 1 / 40

What is this talk is about?

My goal: Answer one of the biggests open questions in theoretical physics

Find minimally supersymmetric standard model (MSSMs) solutions to string theory.

→ Study high-dimensional geometries subject to physically inspired conditions.

Approaches and (technical) challenges

- Toric geometry: Model many geometries and investigate with computers
- Tools clustered over many different systems: Calabi-Yau tools, cohomCalg, homalg project, Macaulay2, Sage, Singular, Topcom, Palp, Polymake, ...
- ⇒ My vision: OSCAR has ALL functionality (for F-theory studies).

Content of todays talk

- Explain state-of-the-art of my big goal.
- Explain the "ALL" in my vision for toric and algebraic geometry in OSCAR.

Martin Bies 2 / 40

String theory in a nutshell String theory Standard models – an overview Vector-like spectra in F-theory

String theory = General relativity + Standard Model?

String theory = General relativity + Standard Model?

+

our 4-dim. world \mathcal{W}

'small' 3 complex-dim. manifold \mathcal{B}_3

Challenge: Find \mathcal{B}_3 s.t. ST reproduces Standard model

X

Martin Bies 3 / 40

String theory = General relativity + Standard Model?

+

3 / 40

our 4-dim. world \mathcal{W}

'small' 3 complex-dim. manifold \mathcal{B}_3

Challenge: Find \mathcal{B}_3 s.t. ST reproduces

X

Martin Bies

Particles in the standard model

• Each particle given by representation of group

$$G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$$
.

- Leptons e, μ, τ : $(1, 2)_{-1/2}$
- Charge conjugate leptons e_C, μ_C, τ_C : $(\overline{1}, \overline{2})_{+1/2}$
- (e, e_C) is leptonic vector-like pair not observed!
- Famous vector-like pair: Higgs field.

Vecessary criterion for String theory MSSM

Number of vector-like pairs must match the experimental findings.

Experimentally observed vector-like spectra (LH/RH is for left/right handed)

Particle name	Rep. R	# Fields n _R	Conjugate rep. \overline{R}	# Fields $n_{\overline{R}}$
LH quarks	$(3,2)_{1/6}$	3	$(\overline{3},\overline{2})_{-1/6}$	0
RH up-quarks	$(3,1)_{2/3}$	3	$(\overline{3},\overline{1})_{-2/3}$	0
RH down-quarks	$(3,1)_{-1/3}$	3	$\left(\overline{3},\overline{1}\right)_{1/3}$	0
LH leptons	$(1,2)_{-1/2}$	3	$\left(\overline{1},\overline{2}\right)_{1/2}$	0
neutrinos	$(1,1)_{1}^{'}$	3	$\left(\overline{1},\overline{1}\right)_{-1}^{-7}$	0
Higgs	$(1,2)_{-1/2}$	1	$(\overline{1},\overline{2})_{1/2}$	1

Note

- Chiral index $n_R n_{\overline{R}}$ is topological invariant used as simple criterion.
- ullet The "magic number" 3 follows from experiments. (o Explain with string theory?)
- Crucial: We need one vector-like pair to accommodate the Higgs field.

Martin Bies

Different formulations of string theory – the M-theory star

Overview of SM constructions in string theory

Obtain (MS)SM from String theory construction ...

- $E_8 \times E_8$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01],
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

... including vector-like spectra

- ullet $E_8 imes E_8$: [Bouchard Donagi '05], [Bouchard Cvetič Donagi '06], [Anderson Gray Lukas Palti '10 & '11], ...
- F-theory: [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18], [M.B. Cvetič Donagi Lin Liu Ruehle '20], [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21]

Martin Bies 7 / 40

Why F-theory

Conceptional reasons:

[Vafa '96], [Morrison Vafa '96], [Beasley Heckman Vafa '08], [Apruzzi Heckman Morrison Tizzano '18], . . .

- More general physics setups (e.g. more general gauge groups).
- Access to strongly-coupled regime of string theory.
- Model building:
 - Consistency conditions: Geometry of elliptic fibration [Vafa '96], [Morrison Vafa '96], ...
 - Yukawa couplings: **Matter curve** intersection [Cecotti Cheng Heckman Vafa '10], [Donagi, Wijnholt '12], [Cvetic Lin Liu Zhang Zoccarato '19], ...
 - Largest (currently-known) family of string theory standard models from F-theory:
 - A Quadrillion (10¹⁵) F-theory Standard Models [Cvetič Halverson Lin Liu Tian '19]
 - Involve toric 3-folds from triangulations of reflexive polytopes [Kreuzer Skarke '98].

F-theory from singuar fibration $Y_4 \rightarrow B_3$

F-theory from singuar fibration $Y_4 woheadrightarrow B_3$

10 / 40

F-theory from resolved smooth fibration $\widehat{Y}_4 woheadrightarrow B_3$

Martin Bies

10 / 40

F-theory from resolved smooth fibration $\widehat{Y}_4 \twoheadrightarrow B_3$

Martin Bies

F-theory from resolved smooth fibration $\widehat{Y}_4 \twoheadrightarrow B_3$

Martin Bies

10/40

Vector-like spectra in 4d $\mathcal{N}=1$ F-theory vacua

[M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Defining data: Elliptic 4-fold $\widehat{Y}_4 \to B_3$ and flux $G_4 \in H^{(2,2)}_{\mathbb{Z}}(\widehat{Y}_4)$.
- ⇒ Can "read-off" the physics [Weigand '17]
 - Particles localize on **matter curves** $C_R \subset B_3$.
 - Representation encoded by **matter surface** S_R (a \mathbb{P}^1 -fibration over C_R).
 - G_4 and S_R specify line bundle L_R on C_R (details on next slide): massless chiral supermultiplets in rep. $R \leftrightarrow n_R = h^0(C_R, L_R)$, massless chiral supermultiplets in rep. $\overline{R} \leftrightarrow n_{\overline{R}} = h^1(C_R, L_R)$.
 - Challenges:
 - n_{R} , $n_{\overline{R}}$ strongly depend on the complex structure of \widehat{Y}_{4} .
 - Deformation $\widehat{Y}_4 o \widehat{Y}_4'$ can lead to **jumps** [M.B. Cvetič Donagi Lin Liu Ruehle '20]

$$h^{i}(C_{R}, L_{R}) = (h^{0}, h^{1}) \rightarrow h^{i}(C'_{R}, L'_{R}) = (h^{0} + a, h^{1} + a).$$

• Higgs field: Need non-generic solution $h^i(C_R, L_R) = (1, 1)$.

How to compute L_R from G_4 , S_R ? [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

• Lift $G_4 \in H^{(2,2)}_{\mathbb{Z}}(\widehat{Y}_4)$ to a "gauge field" $A \in H^4_D(\widehat{Y}_4,\mathbb{Z}(2))$ or $A \in \mathrm{CH}^2(\widehat{Y}_4,\mathbb{Z})$:

Always exists, but is in general not unique since $J^2(\widehat{Y}_4) \neq 0$.

• For matter surface $S_R \in \mathrm{CH}^2(\widehat{Y}_4,\mathbb{Z})$ define $\iota_{S_R} \colon S_R \hookrightarrow \widehat{Y}_4$, $\pi_{S_R} \colon S_R \twoheadrightarrow C_R$. Then

$$L_{\mathsf{R}}\left(\mathcal{A}\right) = \mathcal{O}_{\mathit{C}_{\mathsf{R}}}\left[\pi_{\mathit{S}_{\mathsf{R}}*}\left(\iota_{\mathit{S}_{\mathsf{R}}}^{*}\left(\mathcal{A}\right)\right) + \mathit{D}_{\mathsf{spin},\mathsf{R}}\right] \in \mathrm{Pic}\left(\mathit{C}_{\mathsf{R}}\right).$$

Martin Bies 12 / 40

Summary: Computing vector-like spectra in F-theory

- Defining data: Elliptic 4-fold $\widehat{Y}_4 \twoheadrightarrow B_3$ and flux $G_4 \in H_{\mathbb{Z}}^{(2,2)}(\widehat{Y}_4)$.
- 2 Read-off matter curves $C_R \subset B_3$.
- **3** Compute line bundles $L_R \in Pic(C_R)$ induced from G_4 .
- Ompute cohomologies to determine vector-like spectra:

Particle	R	n _R	desired $(n_{R}, n_{\overline{R}})$
LH quarks	$(3,2)_{1/6}$	$h^0(C_{(3,2)_{1/6}},L_{(3,2)_{1/6}})$	(3,0)
RH up-quarks	$(3,1)_{2/3}$	$h^0(C_{(3,1)_{2/3}}, L_{(3,1)_{2/3}})$	(3,0)
RH down-quarks	$(3,1)_{-1/3}$	$h^0(C_{(3,1)_{-1/3}}, L_{(3,1)_{-1/3}})$	(3,0)
LH leptons	$(1,2)_{-1/2}$	$h^0(C_{(1,2)_{-1/2}}, L_{(1,2)_{-1/2}})$	(3,0)
neutrinos	$(1,1)_{1}^{'}$	$h^0(C_{(1,1)_1},L_{(1,1)_1})$	(3,0)
Higgs	$(1,2)_{-1/2}$	$h^0(C_{(1,2)_{-1/2}}, L_{(1,2)_{-1/2}})$	(1, <mark>1</mark>)

Questions?

Martin Bies

14 / 40

Generalities of the QSMs

- QSMs: $\mathcal{O}(10^{15})$ elliptic 4-folds \widehat{Y}_4 with choice of G_4 [Cvetič Halverson Lin Liu Tian '19]
- Elliptic 4-folds $\widehat{Y}_4 \rightarrow B_3$:
 - Obtained from toric geometry.
 - Constraints: no chiral exotics, massless U(1)-gauge boson, cancel D_3 -tadpole.
 - ⇒ B₃ from triangulations of 708 3-dim reflexive polytopes [Kreuzer Skarke '98]

$$\overline{K}_{B_3} \cdot \overline{K}_{B_3} \cdot \overline{K}_{B_3} \in \left\{ 2, 6, 10, 18, 30, 90 \right\}$$
.

 $(\overline{K}_{B_3}^3=2,90$ not realized by toric 3-folds.)

- Largest polytope Δ_8° : 39 lattice points and $\sim 10^{15}$ triangulations [Halverson Tian '17].
- G_4 -flux candidate: (\leftrightarrow satisfies necessary conditions to be integral)

$$G_4 = \frac{-3}{\overline{K}_{B_3}^3} \cdot (5[e_1] \wedge [e_4] + \dots) \in H_{\mathsf{alg}}^{(2,2)}(\widehat{Y}_4).$$

Toric 5-fold ambient space for QSMs

- \widehat{Y}_4 is hypersurface in toric 5-fold space $X_5 = B_3 \times \mathbb{P}_{F_{11}}$.
- B₃ from triangulations of 708 3-dim reflexive polytopes [κreuzer Skarke '98]
- $\mathbb{P}_{F_{11}}$ a particular toric surface [Klevers Pena Oehlmann Piragua Reuter '14]:

	u	V	w	e_1	e_2	<i>e</i> ₃	e ₄
Н	1	1	1				
E ₁	-1		-1	1			
E_2	-1	-1			1		
E_3		-1			-1	1	
E ₁ E ₂ E ₃ E ₄	-1			-1			1

 $I_{SR}(\mathbb{P}_{F_{11}}) = \langle e_4w, e_4e_2, e_4e_3, e_4v, e_1u, e_1e_2, e_1e_3, e_1v, wu, we_2, we_3, ve_2, uv, e_3u \rangle$.

Martin Bies 16 / 40

$\widehat{Y}_{\!\scriptscriptstyle 4}$ as hypersurface in $X_{\!\scriptscriptstyle 5}$

- Consider sections $s_1, s_2, s_3, s_5, s_6, s_9 \in H^0(B_3, \overline{K}_{B_3})$.
- Define $\widehat{Y}_4 = V(p_{F_{11}}) \in X_5 = B_3 \times \mathbb{P}_{F_{11}}$ with

$$p_{F_{11}} = s_1 e_1^2 e_2^2 e_3 e_4^4 u^3 + s_2 e_1 e_2^2 e_3^2 e_4^2 u^2 v + s_3 e_2^2 e_3^3 u v^2 + s_5 e_1^2 e_2 e_4^3 u^2 w + s_6 e_1 e_2 e_3 e_4 u v w + s_9 e_1 v w^2.$$

 \bullet $H^0(\mathbb{P}_{F_{11}},\overline{K}_{\mathbb{P}_{F_{11}}})$ has basis

$$\left\{e_1^2e_2^2e_3e_4^4u^3,e_1e_2^2e_3^2e_4^2u^2v,e_2^2e_3^3uv^2,e_1^2e_2e_4^3u^2w,e_1e_2e_3e_4uvw,e_1vw^2\right\}\;.$$

 $\Rightarrow \widehat{Y}_4$ is Calabi-Yau.

Matter curves

- \widehat{Y}_4 is resolution of a singular elliptic fibration Y_4 .
- ⇒ Can read-off the physics:
 - Codimension-1 loci over which the fiber of Y_4 is singular are gauge surfaces.
 - Codimension-2 loci over which the fiber of Y_4 is more singular than over the gauge surfaces are *matter curves*.
 - \leftrightarrow depends on choice of s_i .
 - For generic s; have five matter curves: [Klevers Pena Oehlmann Piragua Reuter '14]

$$C_{(3,2)_{1/6}} = V(s_3, s_9), C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6)), C_{(\overline{3},1)_{-2/3}} = V(s_5, s_9), C_{(\overline{3},1)_{1/3}} = V(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)), C_{(1,1)_1} = V(s_1, s_5).$$

A cartoon of the matter curves in the QSMs

The topological intersection number is $\overline{K}_{B_3}^3$ at Y_1 , Y_3 , Y_4 , Y_6 and $2 \cdot \overline{K}_{B_3}^3$ at Y_2 , Y_5 .

Martin Bies 19 / 40

Can OSCAR help?

My hope/vision: Automatically perform fully fledged F-theory construction

- OSCAR has ALL ingredients to perform a fully-fledged F-theory compactification.
- As a starting point, focus on QSMs [Klevers Pena Oehlmann Piragua Reuter '14].

Basic ingredients

- Toric varieties from triangulation of polytopes (cf. PR-848):
 - Calabi-Yau tools, Polymake [Jordan, Joswig, Kastner '18] and Topcom
 - Kreuzer-Skarke lists [Kreuzer Skarke '98], [Kreuzer Skarke '00], [Altman Gray He Jejjala Nelson '14], ...
 - QSM list (currently in GAP-4-package QSMExplorer)
- Complete intersection subvarieties:
 - Cohomologies: cohomCalg, Calabi-Yau tools, ToricVarieties_project, ...
 - Smoothness.

Can OSCAR help? II

Chiral and vector-like spectra

- Topological intersection numbers of algebraic cycles.
- \Rightarrow Construct (vertical) G_4 -fluxes and compute chiral spectra.
 - For $A, S_R \in \mathrm{CH}^2(\widehat{Y}_4, \mathbb{Z})$ compute intersection in **Chow ring**.
- \Rightarrow Automatically computate line bundle L_R .

Example for intersection computation in Chow ring (cf. PR-520)

In $\mathbb{P}^2_{x,y,z}$ compute (a) self-intersection locus of algebraic cycles $C_1=V(x)$, $C_2=V(x)$:

- Move in general position: $C_2 = V(x) \sim C_2' = V(y)$ (since $x y \in I_{\text{Linear Relations}}$).

21 / 40

Questions?

Martin Bies

22 / 40

Vector-like spectra in the QSMs: Lifting G_4 by easier multiple

• For the QSMs, the G₄-flux is

$$G_4 = \frac{-3}{\overline{K}_{B_3}^3} \cdot (5[e_1] \wedge [e_4] + \dots) .$$

- Naive lift $\mathcal{A} = \frac{-3}{\overline{K}_{B_3}^3} \cdot (5V(e_1, e_4) + \dots) \not\in \mathrm{CH}^2(\widehat{Y}_4, \mathbb{Z})$ since $\frac{-3 \cdot 5}{\overline{K}_{B_3}^3} \notin \mathbb{Z}$.
- \leftrightarrow Lack of computational control over $J^2(\widehat{Y}_4)$.
- \to Can (currently) not directly write-down lift of G_4 to $\mathcal{A} \in \mathrm{CH}^2(\widehat{Y}_4,\mathbb{Z})$.
- Circumvent ignorance:
 - Consider $G'_4 = \overline{K}^3_{B_3} \cdot G_4$ instead.
 - 2 Lift G_4' to $\mathcal{A}' = -3 \cdot (5V(e_1, e_4) + \dots) \in \mathrm{CH}^2(\widehat{Y}_4, \mathbb{Z})$ and find

$$D_{\mathsf{R}}\left(\mathcal{A}'\right) = \pi_{S_{\mathsf{R}}*}\left(\iota_{S_{\mathsf{R}}}^{*}\left(\mathcal{A}'\right)\right) \in \mathrm{Pic}\left(C_{\mathsf{R}}\right).$$

 \Rightarrow Root bundle constraint in Pic (C_R): $\overline{K}_{B_*}^3 \cdot D_R(A) \sim D_R(A')$.

Summary of **necessary** root bundle constraints in the QSMs

curve	constraint
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	$P_{(3,2)_{1/6}}^{\otimes 2\overline{K}_{B_3}^{3}}=K_{(3,2)_{1/6}}^{\otimes \left(6+\overline{K}_{B_3}^{3} ight)}$
$C_{(1,2)_{-1/2}} = V(s_3, P_H)$	$P_{(1,2)_{-1/2}}^{\otimes 2\overline{K}_{B_3}^3} = K_{(1,2)_{-1/2}}^{\otimes (4+\overline{K}_{B_3}^3)} \otimes \mathcal{O}_{C_{(1,2)_{-1/2}}}(-30 \cdot Y_1)$
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	$P_{(\overline{3},1)_{-2/3}}^{\otimes 2\overline{K}_{B_3}^{3}}=K_{(\overline{3},1)_{-2/3}^{-2/3}}^{\otimes \left(6+\overline{K}_{B_3}^{3} ight)}$
$C_{\left(\overline{3},1\right)_{1/3}}=V\left(s_{9},P_{R}\right)$	$P_{(\overline{3},1)_{1/3}}^{\otimes 2\overline{K}_{B_3}^3} = K_{(\overline{3},1)_{1/3}}^{\otimes (4+\overline{K}_{B_3}^3)} \otimes \mathcal{O}_{C_{(\overline{3},1)_{1/3}}} (-30 \cdot Y_3)$
$C_{(1,1)_1} = V(s_1, s_5)$	$P_{(1,1)_1}^{\otimes 2\overline{K}_{B_3}^3} = K_{(1,1)_1}^{\otimes \left(6+\overline{K}_{B_3}^3\right)}$

 $(P_H, P_R \text{ are complicated polynomials}, Y_1, Y_3 \text{ are Yukawa points}.)$

Martin Bies 24 / 40

Example: Absence of exotic vector-like quark-doublets

- Study QSM geometry defined by 3-fold B_3 with $\overline{K}_{B_3}^3 \in \{6, 10, 18, 30\}$.
- Pick (generic) sections $s_3, s_9 \in H^0(B_3, \overline{K}_{B_3})$.
- $C_{(3,2)_{1/6}} = V(s_3, s_9)$ and $g = \frac{\overline{K}_{B_3}^3 + 2}{2}$ ((4, 6, 10, 16) for $\overline{K}_{B_3}^3 \in \{6, 10, 18, 30\}$)
- Number of fields: $h^0(C_{(3,2)_{1/6}}, P_{(3,2)_{1/6}}), h^1(C_{(3,2)_{1/6}}, P_{(3,2)_{1/6}})$ where

$$P_{(3,2)_{1/6}}^{\otimes 2\overline{K}_{B_3}^3} = K_{(3,2)_{1/6}}^{\otimes (6+\overline{K}_{B_3}^3)}.$$

 \Rightarrow Necessary condition: Prove existence of $P_{(3,2)_{1/6}}$ with

$$h^0(C_{(3,2)_{1/6}}, P_{(3,2)_{1/6}}) = 3, \qquad h^1(C_{(3,2)_{1/6}}, P_{(3,2)_{1/6}}) = 0.$$
 (1)

Price of ignorance

- Which root bundles are physical, i.e. induced from $A \in H_D^4(\widehat{Y}_4, \mathbb{Z}(2))$? (If $g > h^{21}(\widehat{Y}_4)$, then not all are physical.)
- → Interesting, but also very challenging question for future work.
- For the time being: Ignore this issue.

Local bottom-up analysis

• For B_3 from triangulation of Δ_{40}° , I will prove existence of solution to

$$P_{(3,2)_{1/6}}^{\otimes 2\overline{K}_{B_3}^3} = K_{(3,2)_{1/6}}^{\otimes (6+\overline{K}_{B_3}^3)}$$
 and $h^0(C_R, P_R) = 3$.

Since $\overline{K}_{B_3}^3 = 18$, it is sufficient to solve

$$P_{(3,2)_{1/6}}^{\otimes 3} = K_{(3,2)_{1/6}}^{\otimes 2}$$
 and $h^0(C_R, P_R) = 3$.

2 Extend to statistical study across $\sim 10^{15}$ QSM bases.

Existence of roots from deformation theory and limit root bundles

- Smooth, irreducible C_R with g > 1: Very hard to explicitly construct root bundles.
- Nodal curves $C_{\mathbf{P}}^{\bullet}$: well understood. [Jarvis '98], [Jarvis '99], [Caporaso Casagrande Cornalba '07]
- ⇒ Our approach is summarized as follows:

(To model all roots, must also consider partial blow-ups. This makes the section counting hard. Hence, we currently ignore this.)

ullet Deformation: $C_{(3,2)_{1/6}}=V(s_3,s_9) o C_{(3,2)_{1/6}}^ullet=V(s_3,\prod_i x_i)$ (\leftrightarrow Picard lattice of K3-surface)

Martin Bies 28 / 40

Limit root bundle construction: Step 1 – dual graph of $C^{\bullet}_{(3,2)_{1/6}}$

- Red bullet: g = 0 cpnt.
- Green bullet: g = 1 cpnt.
- Line: node
- ullet Numbers: $2 \cdot \deg(\mathcal{K}^{ullet}_{\mathcal{C}_{(3,2)_1/6}})$
- \Rightarrow Find 3rd roots with $h^0 = 3!$ (Here fortunate case, as we can divide the local degrees by 3. This is not always true for QSM setups.)

Limit root bundle construction: Step 2 – shift degrees to blow-ups $E_i \cong \mathbb{P}^1$.

Rules for k-th roots:

(here k = 3):

•
$$w_i \in \{1, \ldots, k-1\}$$
,

•
$$w_1 + w_2 = k$$
.

- On each component, the resulting degree is divisible by k.
- ⇒ Many possibilities!

Limit root bundle construction: Step 3 – divide by k = 3.

Martin Bies

31 / 40

Limit root bundle construction:
$$P_{(3,2)_{1/6}}^{\bullet}$$
 with $\left(P_{(3,2)_{1/6}}^{\bullet}\right)^{\otimes 3}=\left(K_{(3,2)_{1/6}}^{\bullet}\right)^{\otimes 2}$.

Martin Bies

32 / 40

Counting h^0 of limit root bundle.

Observation:

- $h^0(E_j \cong \mathbb{P}^1, \mathcal{O}_{E_i}) = 2$
- ⇒ Uniquely fixed by boundary conditions.

$$\Rightarrow h^0(P_{\mathsf{R}}^{\bullet}) = \sum_{C_i \neq E_j} h^0\left(C_i, P_{\mathsf{R}}^{\bullet}|_{C_i}\right)$$

•
$$h^0(C_3) = 1$$
, $h^0(C_{11}) = 2$

• $h^0(C_1) = 0$ for at least 8 of 9 local roots

$$\Rightarrow \exists P_{\mathsf{R}}^{\bullet} \text{ s.t. } h^{0}(C_{\mathsf{R}}^{\bullet}, P_{\mathsf{R}}^{\bullet}) = 3.$$

Towards promising F-theory base spaces

- Assume that C_R^{\bullet} consists only of g=0 and g=1 components. Then automate:
 - ullet Given the dual graph of C_{R}^{ullet} , find all allowed weight assignments.
 - For the encoded limit root line bundles compute $h^0(C_R^{\bullet}, P_R^{\bullet})$.
 - → Implemented in GAP-4 package *QSMExplorer*

https://github.com/homalg-project/ToricVarieties_project/tree/master/QSMExplorer

- Scan over selected QSM geometries:

Necessary condition for many roots on $C_{(3,2)_{1/6}}$ to be physical.

- 2 Components of $C_{(3,2)_{1/2}}$ must have at most g=1.
- \Rightarrow Base 3-folds B_3 obtained from triangulations of 33 3-dim. reflexive polytopes:
 - All $\overline{K}_{B_3}^3 = 6$ bases (7 polytopes),
 - Some $\overline{K}_{B_3}^3 = 10$ bases (26 polytopes).

Crucial observations which facilitate scan over $\sim 10^{15}$ different 3-folds B_3

- The number of limit root bundles on $C_{\rm R}^{\circ}$ with $h^0=3$ is independent of the triangulation! [Batyrev '93] [Cox Katz '99] [Kreuzer '06]
- Remove all tree-like subgraphs
- \Rightarrow Dual graph simplifies, number of limit root bundles and cohomologies unchanged! Example: Δ_{52}° ($\overline{K}_{B_3}^{3} = 10$):

Results for bases with $\overline{K}_{B_3}^3 = 6$

- $N_P=12^8=\left(2\overline{K}_{B_3}\right)^{2g}$: total number of root bundles on $C_{(3,2)_{1/6}}$
- $\check{N}_P^{(3)}$: number of limit roots on $C_{(3,2)_{1/6}}^{\circ}$ with $h^0=3$
- Computer scan finds:

	$\check{N}_P^{(3)}$	$N_P/\check{N}_P^{(3)}$		$\check{N}_P^{(3)}$	$N_P/\check{N}_P^{(3)}$
Δ_8°	142560	$3.0 \cdot 10^{3}$ $3.8 \cdot 10^{4}$ $4.3 \cdot 10^{4}$ $4.8 \cdot 10^{4}$	Δ_{130}°	8910	$4.8 \cdot 10^4$
Δ_4°	11110	$3.8 \cdot 10^{4}$	Δ°_{136}	8910	$4.8 \cdot 10^{4}$
Δ°_{134}	10100	$4.3 \cdot 10^4$	Δ°_{236}	8910	$4.8 \cdot 10^{4}$
Δ_{128}°	8910	$4.8 \cdot 10^4$			

- Our scan is limited to a subset of all roots on $C^{\bullet}_{(3,2)_{1/6}}$.
- $\bullet \ \check{N}_P^{(3)}(\mathit{C}_{(3,2)_{1/6}}) \geq \check{N}_P^{(3)}(\mathit{C}_{(3,2)_{1/6}}^{\bullet}) \ \mathsf{due} \ \mathsf{to} \ \mathsf{jumps} \ \mathsf{along} \ \mathit{C}_{(3,2)_{1/6}}^{\bullet} \to \mathit{C}_{(3,2)_{1/6}}.$
- \Rightarrow Current techniques: $B_3(\Delta_8^\circ)$ most promising for F-theory MSSM (with $\overline{K}_{B_3}^3=6$).

Martin Bies 36 / 40

Summary

- Root bundles arise naturally in the QSMs. [Cvetič Halverson Lin Liu Tian '19]
- On smooth, irreducible C_R hard, but easy for nodal C_R^{\bullet} :

[Jarvis '98], [Jarvis '99], [Caporaso Casagrande Cornalba '07]

Matter curve C_R Nodal curve C_R^{\bullet} Blow-up curve C_R° P_R Upper SC h^0 remains 3 $h^0(P^{\bullet}) = h^0(P^{\circ})$

- Find roots on $C_{(3,2)_{1/6}}$, $C_{(\overline{3},1)_{-2/3}}$, $C_{(\overline{3},1)_{1/3}}$, $C_{(1,1)_1}$ without vector-like exotics.
- Extend systematically to all $\mathcal{O}(10^{15})$ QSM spaces.
- With current techniques: Absence of vector-like exotics on $C_{(3,2)_{1/6}}$ most likely for base 3-folds from triangulations of Δ_8° .

Theory outlook

- Goal: F-theory MSSM construction
- \Rightarrow Identify roots on Higgs curve with $h^i = (4,1)$, i.e. exactly one Higgs pair.
 - Technical extensions:
 - Perform limit root counting on Higgs curve.
 - Extend limit root counting beyond limit roots on full-blowup curve $C_{\rm R}^{\circ}$.
 - Conceptional questions/obstructions:
 - Does the topology of the dual graph encode the root bundle distribution?
 - ⇒ Possibly a machine learning/data science project for the summer.
 - What conditions prevent/detect jumps in vector-like spectrum along $C_{\mathsf{R}}^{\bullet} \to C_{\mathsf{R}}$?
 - More ambitious: What is the defect, i.e. by how much does h^0 jump?
 - Which root bundles are realized top-down, i.e. from an F-theory gauge potential?

Outlook for toric (and algebraic) geometry in OSCAR

- My hope/vision: Automatically perform fully fledged F-theory construction.
- As a starting point, focus on QSMs [Klevers Pena Oehlmann Piragua Reuter '14].
- Toric varieties from triangulation of polytopes (cf. PR-848):
 - Calabi-Yau tools, Polymake [Jordan, Joswig, Kastner '18] and Topcom
 - Kreuzer-Skarke lists [Kreuzer Skarke '98], [Kreuzer Skarke '00], [Altman Gray He Jejjala Nelson '14], ...
 - QSM list (currently in GAP-4-package QSMExplorer)
- Complete intersection subvarieties:
 - Cohomologies: cohomCalg, Calabi-Yau tools, ToricVarieties_project, ...
 - Smoothness.
- Chiral and vector-like spectra:
 - Topological intersection numbers of algebraic cycles.
 - Chow ring and intersection theory.
- Root bundle counter (currently in GAP-4-package QSMExplorer)

Thank you for your attention!

Martin Bies

40 / 40