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Based on work with M. E. Mikelsons, A. P. Turner, and the OSCAR team.

M. E. Mikelsons A. P. Turner

https://www.oscar-system.org/
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Motivation and Roadmap

o F-theory: a corner of string theory where physics is tightly linked to
singular elliptic fibrations.
(Review: Weigand 2018 — 1806.01854)
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Motivation and Roadmap

o F-theory: a corner of string theory where physics is tightly linked to
singular elliptic fibrations.
(Review: Weigand 2018 — 1806.01854)

e Motivation: Many repetitive and tedious tasks (e.g. classifying singularities,
resolving them, computing Chern classes or Euler characteristics) — ideal
candidates for automation.
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Motivation and Roadmap

@ F-theory: a corner of string theory where physics is tightly linked to
singular elliptic fibrations.
(Review: Weigand 2018 — 1806.01854)
e Motivation: Many repetitive and tedious tasks (e.g. classifying singularities,

resolving them, computing Chern classes or Euler characteristics) — ideal
candidates for automation.

@ History: collaboration with A.P. Turner began at the StringPheno Conference,
Liverpool 2022.

@ Outcome: FTheoryTools, an 0SCAR module tailored to applications in F-theory.

@ QOutline:

@ What is FTheoryTools, and why might it be useful for you?
@ Testing the limits in extreme case: “The F-theory geometry with most flux vacua“
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Motivation and Roadmap

@ F-theory: a corner of string theory where physics is tightly linked to
singular elliptic fibrations.
(Review: Weigand 2018 — 1806.01854)
e Motivation: Many repetitive and tedious tasks (e.g. classifying singularities,
resolving them, computing Chern classes or Euler characteristics) — ideal
candidates for automation.
@ History: collaboration with A.P. Turner began at the StringPheno Conference,
Liverpool 2022.
@ Outcome: FTheoryTools, an 0SCAR module tailored to applications in F-theory.
@ QOutline:

@ What is FTheoryTools, and why might it be useful for you?
@ Testing the limits in extreme case: “The F-theory geometry with most flux vacua“
Details in our latest preprint: arXiv — 2506.13849.
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What is an Elliptic Curve?

Efg={(x,y,2) € Pé’s’l)‘ X3 — y2 + fzt + gz6 = 0}

(non-singular iff A := 4f3 + 27g2 # 0)
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From Elliptic Curve to Elliptic Fibration

1

o/

Base B, f € H'(Ky), g € H'(Kp).
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From Elliptic Curve to Elliptic Fibration

1

o/

Base B, f € H'(Ky), g € H'(Kp).

Martin Bies

2

V(3 —y2 + f(p)xz* + g(p)2°) C P54
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From Elliptic Curve to Elliptic Fibration

1 2

O/

Base B, f € H'(Ky), g € H'(K3). (2 — y? + f(p)xz* + g(p)2°) C P, 5

: °6©
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Singular Elliptic Fibrations

e Elliptic fibration: A morphism of varieties/schemes 7 : Y — B whose generic fiber
is a smooth elliptic curve.

e Singularities arise when fibers degenerate (e.g. nodal or cuspidal curves).
o Fibers degenerate over discriminant locus A =V (4f3 + 27g2%) C B.
o Classification of singularities of elliptic surfaces by Kodaira in 1963.

(https://doi.org/10.2307 /1970131, https://doi.org/10.2307/1970500 — see also Kodaira/Weierstrass table)
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What is FTheoryTools?

@ FTheoryTools is a module of 0SCAR (https://www.oscar-system.org).
o Key Features:

© Construct singular elliptic Calabi-Yau fibrations.
@ Database of classical/famous F-theory constructions

o Future-proof cross-platform standard by MaRDI: https://www.mardi4nfdi.de.
@ “Interactive” paper, to corrects typos, redos computations & extends them at ease.

© Tailormade algorithms for blowups & resolutions of singularities, cohomologies,
Chern classes, Hodge numbers, intersection numbers, . ...

@ Hooked? More information available!

Docs: https://docs.oscar-system.org/stable/Experimental /FTheoryTools/introduction/.
Tutorials: https://www.oscar-system.org/tutorials/FTheoryTools/.

M. Bies, and A. Turner, F-Theory Applications — chapter in the 0SCAR book,

M. Bies, M. E. Mikelsons, A. P. Turner, FTheoryTools: Advancing Computational
Capabilities for F-Theory Research.
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Documentation

v [ @ Welcome to FheoryTools - x | + _ & x
<« C % docs.oscar-system.org/stable/Experimental/FTheoryTools/introduction Q% O O
‘,st‘AR Experimental F-Theory Tools Welcome toFTheoryTools QGitHub & & v
[ 4
SYMBOLIC TOOLS Welcome to FTheoryTools
Oscar.jl
Overview »

Search docs (Ctrl + /)
iUy wue v FTheoryTools is a computational toolkit within the OSCAR computer algebra system, designed to assist
researchers in working with F-theory models. It focuses on automating and simplifying calculations involving
Welcome to ETheoryTools singular elliptic fibrations—key geometric objects in F-theory phenomenology.
° Overview While the module is tailored for string theorists, it is equally accessible to mathematicians interested in the

rich geometry of singular fibrations, even if they are not familiar with F-theory itself.

°

Why Use FTheoryTools?

°

Key Features
This page is meant for end users of OSCAR, including students and researchers in mathematics and the natural

o Tutorials
) sciences. No background in string theory or theoretical physics is assumed beyond what is needed to
o Getting Started understand the geometry of elliptic fibrations. We encourage interested readers to consult the exposition in
° Project Status Weigand 2018 for more background information.
o Contact & Community
? Acknowledgements Why Use FTheoryTools?
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Tutorials:

v Tutorials - OSCAR Compute X | +

« @ % oscar-system.org/tutorials

OSCAR
SYMBOLIC TOOLS

Home

About
Events v

Installation
Upgrade
Tutorials
Documentation

Contact & Support
Contributing

Credits v

Edit this page
Contact
Imprint

Tutorials

Explore Jupyter notebooks demonstrating OSCAR’s capabilities. These tutorials are for OSCAR
v1.5.0, the latest stable release. To avoid compatibility issues, make sure you're using this version

(upgrade instructions).
To download and run a tutorial locally:

1. Open the tutorial in nbviewer (or view it directly on GitHub).

2. Right-click (or Ctrl-click on macOS) the download icon at the top-right.

3.Select Save As... and save the file to your computer.

4.1f OSCAR is not yet installed, follow the installation guide. If it's already installed, ensure
you're using version OSCAR v1.5.0 by checking the upgrade instructions.

5.Complete Step 5 of the installation guide to ensure your system is set up to run the tutorials.

Looking for more examples? Check out the polymake examples and Hecke examples.

Want to improve or add a tutorial? See our contribution guidelines.

miggE o]
w o
e Aok
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Preprint:

v (X @sos13sas]FTheoyTools X | +

€ G % anxiv.org/abs/2506.13849
nell University

Search

We gratefully acknowledge support from the
Simons Foundation, member institutions, and Donate

all contributors.

Al fields R4l Search

> hep-th > arXiv:2506.13849 Help | Advanced Search

High Energy Physics - Theory

[Submitted on 16 Jun 2025 (v1), last revised 17 Sep 2025 (this version, v2)]

FTheoryTools: Advancing Computational Capabilities for F-Theory
Research

Martin Bies, Mikelis E. Mikelsons, Andrew P. Turner

A primary goal of string phenomenology is to identify realistic four-dimensional physics within the landscape of string theory
solutions. In F-theory, such solutions are encoded in the geometry of singular elliptic fibrations, whose study often requires
particularly challenging and cumbersome computations. In this work, we introduce FTheoryTools, a novel software module
integrated into the OSCAR computer algebra system, designed to automate the complex and tedious tasks involved in F-theory
model building. Key features of FTheoryTools include the enumeration of G4-fluxes, the capability to perform blowups on
arbitrary (including non-toric) loci, and a literature database of existing F-theory constructions employing a MaRDI-based data
format for enhanced cc ion and reprc ibility. As a ation of its power, we present a stress test by applying
FTheoryTools to the challenging F-theory geometry with most flux vacua (arXiv:1511.03209). Our results illustrate the potential
of FTheoryTools to streamline F-theory research and pave the way for future developments in the computational study of string

nhanamannlnm:

Access Paper:

View PDF
HTML (experimental)
TeX Source
Other Formats
View license
Current browse context:
hep-th
<prev | next>
new | recent | 2025-06
Change to browse by:
math
math.AG

References & Citations

INSPIRE HEP
NASAADS
Google Scholar
Semantic Scholar
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Stress Test for FTheoryTools

@ Challenge: How far can FTheoryTools be pushed?
@ Case study: Taylor, Wang 2015 — arxiv: 1511.032009.

B | X 151052000 he Faeory x| +

150% §% 0 O &£ =

=] c o O 8 anivorg

We gratefully acknowledge support from the Simons Foundation, member
institutions, and all contributors. onate

Cornell University
search Al fields v

aT \ V> hep-th > arXiv:1511.03209 Help | Advanced Search

High Energy Physics - Theory
Access Paper:
[Submitted on 10 Nov 2015 (v1), last revised 29 Nov 2-015 (this version, v3)] View PDF
The F-theory geometry with most flux vacua TeX Source
’ ) Other Formats
Washington Taylor, Yi-Nan Wang
view license
Applying the Ashok-Denef-Douglas estimation method to elliptic Calabi-Yau fourfolds suggests that a single elliptic fourfold Myax Current browse context:
gives rise to (9(10272'000) F-theory flux vacua, and that the sum total of the numbers of flux vacua from all other F-theory hep-th
<prev | next>

geometries is suppressed by a relative factor of @O(1073°%). The fourfold My, arises from a generic elliptic fibration over a

specific toric threefold base Buax. and gives a geometrically non-Higgsable gauge group of Eg X F} X (G2 X SU(2))'°, of which new | recent | 2015-11

we expect some factors to be broken by G-flux to smaller groups. It is not possible to tune an SU(5) GUT group on any further References & Citations
divisors in M, or even an SU(2) or SU(3), so the standard model gauge group appears to arise in this context only from a INSPIRE HEP
e itinn e intbinm s tha

hralan L. fnntar Tha ranilie Af thin nanar aan athar ha i
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Computational Challenge:

@ Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space Xy.
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Computational Challenge:

@ Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space Xy.

e Xy: 104 rays, 594 maximal cones.
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Computational Challenge:

@ Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space Xy.
e Xy: 104 rays, 594 maximal cones.

@ Hypersurface: non-generic Tate polynomial, 355,785 monomials.
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Computational Challenge:

@ Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space Xy.
e Xy: 104 rays, 594 maximal cones.
@ Hypersurface: non-generic Tate polynomial, 355,785 monomials.

@ Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759
generators.
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Computational Challenge:

Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space Xy.

°
e Xy: 104 rays, 594 maximal cones.

@ Hypersurface: non-generic Tate polynomial, 355,785 monomials.
°

Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759
generators.

Singularity: E§ x F8 x G16 x SU(2)".
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Computational Challenge:

Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space Xy.
Xs: 104 rays, 594 maximal cones.

Hypersurface: non-generic Tate polynomial, 355,785 monomials.
Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759
generators.

o Singularity: EJ x F§ x G3 x SU(2)*°.

@ Resolution: 206 toric blowups. (Lawrie, Schaefer-Nameki 2012 — 1212.2949), (Esole,
Jefferson, Kang 2017 — 1704.08251), (Esole, Kang 2019 — 1805.03214)
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Computational Challenge:

Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space Xy.

°
e Xy: 104 rays, 594 maximal cones.

@ Hypersurface: non-generic Tate polynomial, 355,785 monomials.
°

Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759
generators.

o Singularity: EJ x F§ x G3 x SU(2)*°.

@ Resolution: 206 toric blowups. (Lawrie, Schaefer-Nameki 2012 — 1212.2949), (Esole,
Jefferson, Kang 2017 — 1704.08251), (Esole, Kang 2019 — 1805.03214)

+3 extra blowups to smooth the ambient space.
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FTheoryTools meets

Combining and extending ANTIC, GAP,
Polymake and Singular
Type "?0scar" for more information
0 0 0 0 0 Documentation: https://docs.oscar-system.org
SYMBOLIC TOOLS Version 1.5.0

Documentation: https://docs.julialang.org
Type "?" for help, "]1?" for Pkg help.

Version 1.11.6 (2025-07-09)
official https://julialang.org/ release

julia> t = literature_model(arxiv_id = "1511.03209")
Global Tate model over a concrete base -- The F-theory geometry with most flux vacua based on arXiv paper 1511
.03209 Eq. (2.11)

julia> t_res = resolve(t, 1)
Partially resolved global Tate model over a concrete base -- The F-theory geometry with most flux vacua based
on arXiv paper 1511.03209 Eq. (2.11)
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MaRDI-File on Zenodo:

© | waRoifle corresponding X+
o

< C @ O B zenodo.org/records/155480

OSCAR 0SCAR Computer Algebra System

Published May 29, 2025 | Version vi

MaRDI file corresponding to "The F-theory geometry with most flux vacua"

Tumer, Andrew (Researcher Bies, Martin (Researchen? @ Mikelsons, Mikelis Emils (Researcher)2 JES——
Files
Files (559518 v
Name size B Downioad
151103209 tar gz
i e 3995MB & Oowricad

Additional details

@ VIEWS & DOWNLOADS

» Show more details

Versions

Version vi May 29,2025
0.5281/z2n0do. 15548043

Cite all versions? Y cite all versions by using the DOI 1
zenodo. 1554804 ents all versior
resolve to the at more.

External resources

@ Future-proof cross-platform standard by MaRDI: https://www.mardi4nfdi.de.

@ Zenodo arxiv: One file for singular (461MB) and resolved geometry (1.3GB).

Martin Bies
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Physics vs. Mathematics of Singular Elliptic 4-Fold Y

(Review: Weigand 2018 — 1806.01854)

Physics Mathematics

Nonabelian gauge algebras, matter curves, Crepant resolution and intersection theory
Yukawa points

Global gauge group structure & U(1)s Mordell-Weil group

Discrete gauge group factors Weil-Chatelet group

Gy-fluxes and chiral matter Middle cohomology H(22)
Vector-like matter Deligne cohomology, root bundles

Focus for the rest of this talk:
Gy-fluxes of “The F-theory geometry with most flux vacua™
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Gy4-fluxes are important

Krause, Mayrhofer, Weigand 2011 — 1109.3454

Grimm, Hayashi 2012 — 1111.1232

Krause, Mayrhofer, Weigand 2012 — 1202.3138

Braun, Grimm, Keitel 2013 — 1306.0577

Cveti¢, Grassi, Klevers, Piragua 2013 — 1306.3987

Cveti¢, Klevers, Pefia, Oehlmann, Reuter 2015 — 1503.02068
Lin, Mayrhofer, Till, Weigand 2015 — 1508.00162

Lin, Weigand 2016 — 1604.04292

Cveti¢, Lin, Liu, Oehlmann 2018 — 1807.01320

Cveti¢, Halverson, Lin, Liu, Tian 2019 — 1903.00009

Bies 2023 — 2303.08144 (Overview of “root bundle” program)
Li, Taylor 2024 — 2401.00040

And many, many more.
(Review: Weigand 2018 — 1806.01854)
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G4-flux: An Element of the Middle Cohomology

@ Singular elliptically fibered Calabi-Yau 4-fold: 7: Ys — Bs.

@ Crepant resolution: 7: \74 — Bs.
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G4-flux: An Element of the Middle Cohomology

@ Singular elliptically fibered Calabi-Yau 4-fold: 7: Ys — Bs.
@ Crepant resolution: 7: \74 — Bs.

@ A Gu-flux is an element
Gy € H*2(Y4,R) := H?2(Y,,C) N H* (Y4, R) (1)
satisfying the quantization condition
Gy + 2o (Ya) € HH(Ya, Z) . (2)

and a set of additional physical consistency conditions (transversality, flux
breaking, etc.), not discussed in this talk for brevity.
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Finding G;-Flux Generators | — Focus on Vertical Fluxes

H?*2(Y4,C) = Hip @ Hy © HZ

rem
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Finding G;-Flux Generators | — Focus on Vertical Fluxes

H?*2(Y4,C) = Hip @ Hy © HZ

rem

e Horizontal fluxes Hﬁj: from variations of the holomorphic (4,0)-form €.
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Finding G;-Flux Generators | — Focus on Vertical Fluxes

rem

H?*2(Y4,C) = Hip @ Hy © HZ

e Horizontal fluxes Hﬁﬁ: from variations of the holomorphic (4,0)-form €.

@ Vertical fluxes Hféft: spanned by wedge products of (1,1)-forms:

Hisre = Span(Hl’1 A H171)
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Finding G;-Flux Generators | — Focus on Vertical Fluxes

H?*2(Y4,C) = Hip @ Hy © HZ

rem

e Horizontal fluxes Hﬁﬁ: from variations of the holomorphic (4,0)-form €.

@ Vertical fluxes Hféft: spanned by wedge products of (1,1)-forms:
Hféft = Span(Hl’1 A Hl’l)

. 22 .
o Remainder fluxes H;em: everything else.
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Finding G;-Flux Generators | — Focus on Vertical Fluxes

H2’2(?4,(C): H2.2 ® H\?e?t ® H2.2

hor rem

e Horizontal fluxes Hﬁﬁ: from variations of the holomorphic (4,0)-form €.

@ Vertical fluxes Hféft: spanned by wedge products of (1,1)-forms:
Hféft = Span(Hl’1 A Hl’l)
@ Remainder fluxes er’,%: everything else.

Goal for the remainder of this talk:
Study vertical G-fluxes of “The F-theory geometry with most flux vacua”.
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Finding G;-Flux Generators Il — Focus on Ambient Vertical Fluxes

e Computing a full basis of erlft(%) is often computationally prohibitive.
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Finding G;-Flux Generators Il — Focus on Ambient Vertical Fluxes

e Computing a full basis of erlft(%) is often computationally prohibitive.
o If \74 C Xs is a hypersurface in a toric space, can use:

H*?(Xz, Q)5 € Hier(Ya. Q).
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e Computing a full basis of erlft(%) is often computationally prohibitive.
o If \74 C Xs is a hypersurface in a toric space, can use:

H*?(Xz, Q)5 € Hier(Ya. Q).

@ We call these ambient vertical G4-fluxes.

(More refined approaches do exists, for instance Braun, Watari 2014 — 1408.6167.)
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Finding G;-Flux Generators Il — Focus on Ambient Vertical Fluxes

e Computing a full basis of erlft(%) is often computationally prohibitive.
o If \74 C Xs is a hypersurface in a toric space, can use:

H*?(Xz, Q)5 € Hier(Ya. Q).

@ We call these ambient vertical G4-fluxes.

(More refined approaches do exists, for instance Braun, Watari 2014 — 1408.6167.)

Goal for the remainder of this talk:
Study ambient vertical G-fluxes of “The F-theory geometry with most flux vacua”.
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Finding G4-Flux Generators Il — Enumerating Generators

Toric ambient space with 313 rays. Naively, (353) = 48, 828 generators.
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Finding G4-Flux Generators Il — Enumerating Generators

Toric ambient space with 313 rays. Naively, (353) = 48, 828 generators.

julia> t = literature_model(arxiv_id = "1511.03209" )
Global Tate model over a concrete base -- The F-theory geometry with most flux vacua based on arXiv paper 1511
.03209 Eq. (2.11)

julia> t_res = resolve(t, 1)
Partially resolved global Tate model over a concrete base -- The F-theory geometry with most flux vacua based
on arXiv paper 1511.03209 Eq. (2.11)

julia> betti_number(ambient_space(t_res), 2)
308

julia> betti_number(ambient_space(t_res), 4)
1109

julia> length(chosen_g4_flux_gens(t_res))
629
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Finding G4-Flux Generators Il — Enumerating Generators

Toric ambient space with 313 rays. Naively, (353) = 48, 828 generators.

julia> t = literature_model(arxiv_id = "1511.03209" )
Global Tate model over a concrete base -- The F-theory geometry with most flux vacua based on arXiv paper 1511
.03209 Eq. (2.11)

julia> t_res = resolve(t, 1)
Partially resolved global Tate model over a concrete base -- The F-theory geometry with most flux vacua based
on arXiv paper 1511.03209 Eq. (2.11)

julia> betti_number(ambient_space(t_res), 2)
308

julia> betti_number(ambient_space(t_res), 4)
1109

julia> length(chosen_g4_flux_gens(t_res))
629

Refined: 629 generators for ambient vertical Gj-fluxes.
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Off to the Quantization Condition

@ Singular elliptically fibered Calabi-Yau 4-fold: 7: Y4 — Bs.
@ Crepant resolution: 7: \74 — Bs.

@ A Gu-flux is an element
Gy € H*?(Yy,R) := H>2(Y,,C) N H*(Y4,R), /
satisfying the quantization condition
G+ Yo(Ya) € H4(Ya, Z)

and a set of additional physical consistency conditions (transversality, flux
breaking, etc.), not discussed in this talk for brevity.
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Off to the Quantization Condition

@ Singular elliptically fibered Calabi-Yau 4-fold: 7: Y4 — Bs.
@ Crepant resolution: 7: \74 — Bs.

@ A Gu-flux is an element
Gy € H*?(Yy,R) := H>2(Y,,C) N H*(Y4,R), /
satisfying the quantization condition
Gy + 2oo(Ya) € H*(Ya, Z)

and a set of additional physical consistency conditions (transversality, flux
breaking, etc.), not discussed in this talk for brevity.
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Solving the Quantization Condition — Strategy

o Task: Find all ambient vertical Gy-fluxes with Gy + 2co(Ya) € H*(Ya, Z).
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Solving the Quantization Condition — Strategy

o Task: Find all ambient vertical Gy-fluxes with Gy + 2co(Ya) € H*(Ya, Z).

o Challenge 1: Identify c,(Ys)
© Compute ¢;(Xs) (smooth toric ambient space).
@ Apply adjunction formula: ¢ (Ys) = &2\?4 for suitable & € H(272)(Xz).
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Solving the Quantization Condition — Strategy

o Task: Find all ambient vertical Gy-fluxes with Gy + 2co(Ya) € H*(Ya, Z).

o Challenge 1: Identify c,(Ys)

© Compute ¢;(Xs) (smooth toric ambient space).

@ Apply adjunction formula: ¢ (Ys) = &2\?4 for suitable & € H(272)(Xz).
@ Challenge 2: Check simple, necessary conditions for integrality

z> [ (Gi+4e) A PD(H) A PD(D)) 7 PD(D)

o PD: Poincaré dual
e D;: toric divisor basis of X5 R
e H: toric divisor corresponding to Y;
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Solving the Quantization Condition — Strategy

o Task: Find all ambient vertical Gy-fluxes with Gy + 2co(Ya) € H*(Ya, Z).

o Challenge 1: Identify c,(Ys)
© Compute ¢;(Xs) (smooth toric ambient space).
@ Apply adjunction formula: ¢ (Ys) = &2\?4 for suitable & € H2)(Xz).

@ Challenge 2: Check simple, necessary conditions for integrality

z> [ (Gi+4e) A PD(H) A PD(D)) 7 PD(D)

629
= Z,uk/ gk/\PD(H)/\PD(D;)/\PD(Dj)—I— % /\PD(H)/\PD(D;)/\PD(DJ-).
k=1 Xs Xs

PD: Poincaré dual

D;: toric divisor basis of Xy R

H: toric divisor corresponding to Yy

gk generators of ambient vertical Gy-fluxes, g € Q

Martin Bies Computational Frontiers — Singular Elliptic Fibrations & F-Theory 23 /30



Solving the Quantization Condition |l — Default Algorithm for Integrals

© Compute the cohomology ring R of the toric ambient space Xs.
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Solving the Quantization Condition |l — Default Algorithm for Integrals

© Compute the cohomology ring R of the toric ambient space Xs.
@ Express gx A PD(H) APD(D;) APD(D;j) as a polynomial g € R.
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Solving the Quantization Condition |l — Default Algorithm for Integrals

© Compute the cohomology ring R of the toric ambient space Xs.
@ Express gx A PD(H) APD(D;) APD(D;j) as a polynomial g € R.

© Check if g is trivial in R; if not, evaluate against the volume form.
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Solving the Quantization Condition |l — Default Algorithm for Integrals

© Compute the cohomology ring R of the toric ambient space Xs.
@ Express gx A PD(H) APD(D;) APD(D;j) as a polynomial g € R.

© Check if g is trivial in R; if not, evaluate against the volume form.

Limitation for “The F-theory geometry with most flux vacua”

@ Cohomology ring R: quotient of polynomial ring in 313 vars by ideal with
46,547 generators.

@ Checking triviality of g is computationally prohibitive.
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Solving the Quantization Condition |l — Special Algorithm for Integrals

@ View g, PD(H), PD(D;), PD(D;) as algebraic cycles in the Chow ring.
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Solving the Quantization Condition |l — Special Algorithm for Integrals

@ View g, PD(H), PD(D;), PD(D;) as algebraic cycles in the Chow ring.

@ By choosing suitable rationally-equivalent cycles:

/X g APD(H) APD(D) APD(D) = 3" Aabed [V(Xar Xb, Xe: X4, P)|:
z a,b,c,d

where Azpeq € Q vanishes for repeated indices, P is Ya's hypersurface equation.
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Solving the Quantization Condition |l — Special Algorithm for Integrals

@ View g, PD(H), PD(D;), PD(D;) as algebraic cycles in the Chow ring.

@ By choosing suitable rationally-equivalent cycles:

/X g APD(H) APD(D:) APD(D;) = 3 Aabed [V(Xar X, Xe: X5 P)|:
z a,b,c,d

where Azpeq € Q vanishes for repeated indices, P is Ya's hypersurface equation.
@ Simplify V(xa, xp, Xc, X4, P) and compute its cardinality from hard-coded cases.
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Solving the Quantization Condition IV — Details on Special Algorithm

@ Monte-Carlo approach: In toric geometry, algebraic cycles can be moved into
general position using linear relations and the Stanley—Reisner ideal. Randomly
select a rationally-equivalent representative until integrals become computable.
Tested on hundreds of geometries, thousands of integrals.
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Solving the Quantization Condition IV — Details on Special Algorithm

@ Monte-Carlo approach: In toric geometry, algebraic cycles can be moved into
general position using linear relations and the Stanley—Reisner ideal. Randomly
select a rationally-equivalent representative until integrals become computable.
Tested on hundreds of geometries, thousands of integrals.

@ Hard-coded edge cases: Some intersections reduce to few variables, e.g.
V(Xauxb7XC7Xd7P) :V(Chzl +Q2Z2) qi #O

71, Zp must not vanish simultaneously (Stanley—Reisner ideal) and scaling relation
[z1 : z2] ~ [A\z1 : Az2], z1, 22 # 0. Leads to unique solution:

(z1,22) = (1, —q1/q2) ~ (—q2/q1,1).

(Three more, similar edge cases: see arXiv:2506.13849.)
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Quantization Condition V — Computed Intersection Numbers

julia> t_res.__attrs[:inter_dict]
Dict{NTuple{4, Inte4}, ZZRingElem} with 14154797 entries:

(78,
(87,
(74,
(46,

182, 183, 127)
254, 289, 289)
259, 280, 278)
147, 257, 260)

(9, 26, 183, 211)

(66,
(50,
(31,
(42,
(61,
(53,
(11,
(47,
(20,

184, 206, 311)
51, 1082, 139)
183, 183, 233)
183, 148, 181)
80, 103, 304)
53, 91, 311)

236, 236, 254)
183, 154, 159)
73, 183, 252)

==
==
==
==
==
==
==
=
==
==
==
==

PEecececeEeEaaEaceaaaaea

Computed roughly 14 million intersection numbers (about 10.000 are non-zero).
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Ambient vertical Gy-fluxes for

Can now solve the quantization condition, i.e. find those p) € Q with

629

Z ,uk/ gk N PD(H) A PD(D;) A PD(Dy) —|—/ % A PD(H) APD(D;) ANPD(D;) € Z.
k=1 X): XZ
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Ambient vertical Gy-fluxes for

Can now solve the quantization condition, i.e. find those p) € Q with
629

3 / g« A PD(H) A PD(D;) A PD(D)) +/ & APD(H) A PD(D;) APD(D;) € Z.
= /X X5

julia> family_of_g4_fluxes = special_flux_family(t_res)
Family of G4 fluxes:

- Elementary quantization checks: satisfied

- Transversality checks: satisfied

- Non-abelian gauge group: breaking pattern not analyzed

julia> size(matrix_integral(family_of_g4_fluxes))
(629, 224)

julia> size(matrix_rational(family_of_g4_fluxes))
(629, 127)
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Ambient vertical Gy-fluxes for

Can now solve the quantization condition, i.e. find those p) € Q with
629

3 / g« A PD(H) A PD(D;) A PD(D)) +/ & APD(H) A PD(D;) APD(D;) € Z.
= /X X5

julia> family_of_g4_fluxes = special_flux_family(t_res)
Family of G4 fluxes:

- Elementary quantization checks: satisfied

- Transversality checks: satisfied

- Non-abelian gauge group: breaking pattern not analyzed

julia> size(matrix_integral(family_of_g4_fluxes))
(629, 224)

julia> size(matrix_rational(family_of_g4_fluxes))
(629, 127)

Ambient vertical Gy-fluxes parametrized by Z2?* x Q1%7.
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Gauge Group Breaking by G4-Flux for

@ Singularity structure/Gauge group:
G = E3 x F2 x G3® x SU(2)*°.

@ Gy-flux can break G.
o Those Gys that leave G unbroken (easy to find) form a family Z! x Q1?7

julia= family_of_g4_fluxes = special_flux_family(t_res, not_breaking = true)
Family of G4 fluxes:

- Elementary quantization checks: satisfied
- Transversality checks: satisfied
- Non-abelian gauge group: unbroken
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Gauge Group Breaking by G4-Flux for

@ Singularity structure/Gauge group:
G = E3 x F2 x G3® x SU(2)*°.

@ Gy-flux can break G.
o Those Gys that leave G unbroken (easy to find) form a family Z! x Q1?7

julia= family_of_g4_fluxes = special_flux_family(t_res, not_breaking = true)
Family of G4 fluxes:

- Elementary quantization checks: satisfied
- Transversality checks: satisfied
- Non-abelian gauge group: unbroken

e Outlook:
e For a random flux, which subgroup H C G survives?
o What is the probability to break G to a given H?
e D3-tadpole adds an essential (Diophantine) constraint on allowed Gy-fluxes.
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FTheoryTools
@ Analyze singular elliptic fibrations, their resolutions, and geometry.

@ Includes (and expands) a database of established F-theory models.
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FTheoryTools
@ Analyze singular elliptic fibrations, their resolutions, and geometry.
@ Includes (and expands) a database of established F-theory models.

Next steps:
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FTheoryTools
@ Analyze singular elliptic fibrations, their resolutions, and geometry.
@ Includes (and expands) a database of established F-theory models.
Next steps:

@ Add more literature models (incl. complete intersections, CICYs, schemes).
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FTheoryTools
@ Analyze singular elliptic fibrations, their resolutions, and geometry.
@ Includes (and expands) a database of established F-theory models.
Next steps:
@ Add more literature models (incl. complete intersections, CICYs, schemes).

@ Add features: crepant desingularizations, Mordell-Weil /Weil-Chéatelet groups.
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FTheoryTools
@ Analyze singular elliptic fibrations, their resolutions, and geometry.
@ Includes (and expands) a database of established F-theory models.
Next steps:
@ Add more literature models (incl. complete intersections, CICYs, schemes).

@ Add features: crepant desingularizations, Mordell-Weil /Weil-Chéatelet groups.

Thank you for your attention! | & |

)
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