Computational Frontiers in Singular Elliptic Fibrations and F-Theory Model Building

Martin Bies

RPTU Kaiserslautern-Landau

SFB TRR 195 Jahrestagung Tübingen, Germany September 25, 2025

Based on work with M. E. Miķelsons, A. P. Turner, and the OSCAR team. arXiv: 2506.13849

Based on work with M. E. Mikelsons, A. P. Turner, and the OSCAR team.

M. E. Mikelsons

A. P. Turner

https://www.oscar-system.org/

• **F-theory**: a corner of string theory where physics is tightly linked to **singular elliptic fibrations**.

 F-theory: a corner of string theory where physics is tightly linked to singular elliptic fibrations.

(Review: Weigand 2018 - 1806.01854)

Motivation: Many repetitive and tedious tasks (e.g. classifying singularities, resolving them, computing Chern classes or Euler characteristics) — ideal candidates for automation

• F-theory: a corner of string theory where physics is tightly linked to singular elliptic fibrations.

- **Motivation:** Many repetitive and tedious tasks (e.g. classifying singularities, resolving them, computing Chern classes or Euler characteristics) ideal candidates for automation.
- **History:** collaboration with A. P. Turner began at the *StringPheno* Conference, Liverpool 2022.

• F-theory: a corner of string theory where physics is tightly linked to singular elliptic fibrations.

- **Motivation:** Many repetitive and tedious tasks (e.g. classifying singularities, resolving them, computing Chern classes or Euler characteristics) ideal candidates for automation.
- **History:** collaboration with A. P. Turner began at the *StringPheno* Conference, Liverpool 2022.
- Outcome: FTheoryTools, an OSCAR module tailored to applications in F-theory.

• **F-theory**: a corner of string theory where physics is tightly linked to singular elliptic fibrations.

- **Motivation:** Many repetitive and tedious tasks (e.g. classifying singularities, resolving them, computing Chern classes or Euler characteristics) ideal candidates for automation.
- **History:** collaboration with A. P. Turner began at the *StringPheno* Conference, Liverpool 2022.
- Outcome: FTheoryTools, an OSCAR module tailored to applications in F-theory.
- Outline:
 - What is FTheoryTools, and why might it be useful for you?
 - 2 Testing the limits in extreme case: "The F-theory geometry with most flux vacua"

 F-theory: a corner of string theory where physics is tightly linked to singular elliptic fibrations.

- **Motivation:** Many repetitive and tedious tasks (e.g. classifying singularities, resolving them, computing Chern classes or Euler characteristics) ideal candidates for automation.
- **History:** collaboration with A. P. Turner began at the *StringPheno* Conference, Liverpool 2022.
- Outcome: FTheoryTools, an OSCAR module tailored to applications in F-theory.
- Outline:
 - What is FTheoryTools, and why might it be useful for you?
 - 2 Testing the limits in extreme case: "The F-theory geometry with most flux vacua"

 Details in our latest preprint: arXiv 2506.13849.

What is an Elliptic Curve?

$$\mathbb{E}_{f,g} = \{ (x,y,z) \in \mathbb{P}^2_{(2,3,1)} \Big| x^3 - y^2 + \mathit{fx}z^4 + \mathit{g}z^6 = 0 \}$$

From Elliptic Curve to Elliptic Fibration

From Elliptic Curve to Elliptic Fibration

From Elliptic Curve to Elliptic Fibration

Singular Elliptic Fibrations

• *Elliptic fibration*: A morphism of varieties/schemes $\pi: Y \to B$ whose generic fiber is a smooth elliptic curve.

- Singularities arise when fibers degenerate (e.g. nodal or cuspidal curves).
- Fibers degenerate over **discriminant locus** $\Delta = \mathbb{V}\left(4f^3 + 27g^2\right) \subseteq B$.
- Classification of singularities of elliptic surfaces by Kodaira in 1963.

 $(https://doi.org/10.2307/1970131,\ https://doi.org/10.2307/1970500 - see\ also\ Kodaira/Weierstrass\ table)$

What is FTheoryTools?

- FTheoryTools is a module of OSCAR (https://www.oscar-system.org).
- Key Features:
 - Construct singular elliptic Calabi-Yau fibrations.
 - Database of classical/famous F-theory constructions
 - Future-proof cross-platform standard by MaRDI: https://www.mardi4nfdi.de.
 - "Interactive" paper, to corrects typos, redos computations & extends them at ease.
 - 3 Tailormade algorithms for blowups & resolutions of singularities, cohomologies, Chern classes, Hodge numbers, intersection numbers,
- Hooked? More information available!
 - Docs: https://docs.oscar-system.org/stable/Experimental/FTheoryTools/introduction/.
 - Tutorials: https://www.oscar-system.org/tutorials/FTheoryTools/.
 - M. Bies, and A. Turner, F-Theory Applications chapter in the OSCAR book,
 - M. Bies, M. E. Mikelsons, A. P. Turner, FTheoryTools: Advancing Computational Capabilities for F-Theory Research.

Documentation: https://docs.oscar-system.org/stable/Experimental/FTheoryTools/introduction/

Tutorials: https://www.oscar-system.org/tutorials/FTheoryTools

Preprint: https://arxiv.org/abs/2506.13849

Questions?

Stress Test for FTheoryTools

- Challenge: How far can FTheoryTools be pushed?
- Case study: Taylor, Wang 2015 arxiv: 1511.03209.

• Singular elliptic Calabi-Yau 4-fold as hypersurface in **toric** ambient space X_{Σ} .

- Singular elliptic Calabi-Yau 4-fold as hypersurface in **toric** ambient space X_{Σ} .
- X_{Σ} : 104 rays, 594 maximal cones.

- Singular elliptic Calabi-Yau 4-fold as hypersurface in **toric** ambient space X_{Σ} .
- X_{Σ} : 104 rays, 594 maximal cones.
- Hypersurface: non-generic Tate polynomial, 355,785 monomials.

- Singular elliptic Calabi-Yau 4-fold as hypersurface in **toric** ambient space X_{Σ} .
- X_{Σ} : 104 rays, 594 maximal cones.
- Hypersurface: non-generic Tate polynomial, 355,785 monomials.
- Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759 generators.

- Singular elliptic Calabi-Yau 4-fold as hypersurface in **toric** ambient space X_{Σ} .
- X_{Σ} : 104 rays, 594 maximal cones.
- Hypersurface: non-generic Tate polynomial, 355,785 monomials.
- Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759 generators.
- Singularity: $\mathbf{E}_8^9 \times \mathbf{F}_4^8 \times \mathbf{G}_2^{16} \times \mathbf{SU(2)}^{16}$.

- Singular elliptic Calabi-Yau 4-fold as hypersurface in **toric** ambient space X_{Σ} .
- X_{Σ} : 104 rays, 594 maximal cones.
- Hypersurface: non-generic Tate polynomial, 355,785 monomials.
- Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759 generators.
- Singularity: $\mathbf{E}_8^9 \times \mathbf{F}_4^8 \times \mathbf{G}_2^{16} \times \mathbf{SU(2)}^{16}$.
- Resolution: 206 toric blowups. (Lawrie, Schaefer-Nameki 2012 1212.2949), (Esole, Jefferson, Kang 2017 – 1704.08251), (Esole, Kang 2019 – 1805.03214)

- Singular elliptic Calabi-Yau 4-fold as hypersurface in **toric** ambient space X_{Σ} .
- X_{Σ} : 104 rays, 594 maximal cones.
- Hypersurface: non-generic Tate polynomial, 355,785 monomials.
- Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759 generators.
- Singularity: $\mathbf{E}_{8}^{9} \times \mathbf{F}_{4}^{8} \times \mathbf{G}_{2}^{16} \times \mathbf{SU(2)}^{16}$.
- Resolution: 206 toric blowups. (Lawrie, Schaefer-Nameki 2012 1212.2949), (Esole, Jefferson, Kang 2017 – 1704.08251), (Esole, Kang 2019 – 1805.03214)
- +3 extra blowups to smooth the ambient space.

FTheoryTools meets Taylor, Wang 2015 - 1511.03209

```
Combining and extending ANTIC, GAP,
                                   Polymake and Singular
                                   Type "?Oscar" for more information
                                   Documentation: https://docs.oscar-system.org
                                   Version 1.5.0
                          Documentation: https://docs.julialang.org
                          Type "?" for help, "]?" for Pkg help.
                          Version 1.11.6 (2025-07-09)
                          Official https://julialang.org/ release
julia> t = literature_model(arxiv_id = "1511.03209")
Global Tate model over a concrete base -- The F-theory geometry with most flux vacua based on arXiv paper 1511
.03209 Eq. (2.11)
julia> t res = resolve(t, 1)
Partially resolved global Tate model over a concrete base -- The F-theory geometry with most flux vacua based
on arXiv paper 1511.03209 Eq. (2.11)
```

MaRDI-File on Zenodo: https://zenodo.org/records/15548043

- Future-proof cross-platform standard by MaRDI: https://www.mardi4nfdi.de.
- Zenodo arxiv: One file for singular (461MB) and resolved geometry (1.3GB).

Physics vs. Mathematics of Singular Elliptic 4-Fold \widehat{Y}_4

(Review: Weigand 2018 - 1806.01854)

Physics	Mathematics
Nonabelian gauge algebras, matter curves, Yukawa points	Crepant resolution and intersection theory
Global gauge group structure & $U(1)$ s	Mordell–Weil group
Discrete gauge group factors	Weil–Châtelet group
G ₄ -fluxes and chiral matter	Middle cohomology $H^{(2,2)}$
Vector-like matter	Deligne cohomology, root bundles

Focus for the rest of this talk: G₄-fluxes of "The F-theory geometry with most flux vacua".

G_4 -fluxes are important

- Krause, Mayrhofer, Weigand 2011 1109.3454
- Grimm, Hayashi 2012 1111.1232
- Krause, Mayrhofer, Weigand 2012 1202.3138
- Braun, Grimm, Keitel 2013 1306,0577
- Cvetič, Grassi, Klevers, Piragua 2013 1306.3987
- Cvetič, Klevers, Peña, Oehlmann, Reuter 2015 1503.02068
- Lin. Mayrhofer, Till. Weigand 2015 1508.00162
- Lin, Weigand 2016 1604.04292
- Cvetič, Lin. Liu. Oehlmann 2018 1807.01320
- Cvetič, Halverson, Lin, Liu, Tian 2019 1903,00009
- Bies 2023 2303.08144 (Overview of "root bundle" program)
- Li, Taylor 2024 2401.00040
- And many, many more.

G₄-flux: An Element of the Middle Cohomology

- Singular elliptically fibered Calabi–Yau 4-fold: π : $Y_4 \rightarrow B_3$.
- Crepant resolution: $\widehat{\pi}$: $\widehat{Y}_4 \to B_3$.

G₄-flux: An Element of the Middle Cohomology

- Singular elliptically fibered Calabi–Yau 4-fold: $\pi \colon Y_4 \to B_3$.
- Crepant resolution: $\widehat{\pi}$: $\widehat{Y}_4 \to B_3$.
- A G₄-flux is an element

$$G_4 \in H^{2,2}(\widehat{Y}_4, \mathbb{R}) := H^{2,2}(\widehat{Y}_4, \mathbb{C}) \cap H^4(\widehat{Y}_4, \mathbb{R})$$
 (1)

satisfying the quantization condition

$$G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4, \mathbb{Z}). \tag{2}$$

and a set of additional physical consistency conditions (transversality, flux breaking, etc.), not discussed in this talk for brevity.

G₄-flux: An Element of the Middle Cohomology

- Singular elliptically fibered Calabi–Yau 4-fold: $\pi: Y_4 \to B_3$.
- Crepant resolution: $\widehat{\pi}$: $\widehat{Y}_4 \to B_3$.
- A G₄-flux is an element

$$G_4 \in H^{2,2}(\widehat{Y}_4, \mathbb{R}) := H^{2,2}(\widehat{Y}_4, \mathbb{C}) \cap H^4(\widehat{Y}_4, \mathbb{R}) \tag{1}$$

satisfying the quantization condition

$$G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4, \mathbb{Z}). \tag{2}$$

and a set of additional physical consistency conditions (transversality, flux breaking, etc.), not discussed in this talk for brevity.

Finding G_4 -Flux Generators I – Focus on **Vertical** Fluxes

$$H^{2,2}(\widehat{Y}_4,\mathbb{C}) = H^{2,2}_{hor} \oplus H^{2,2}_{vert} \oplus H^{2,2}_{rem}$$

Finding G_4 -Flux Generators I – Focus on **Vertical** Fluxes

$$H^{2,2}(\widehat{Y}_4,\mathbb{C}) = H^{2,2}_{\mathsf{hor}} \oplus H^{2,2}_{\mathsf{vert}} \oplus H^{2,2}_{\mathsf{rem}}$$

• Horizontal fluxes $H_{hor}^{2,2}$: from variations of the holomorphic (4,0)-form Ω .

Finding G_4 -Flux Generators I – Focus on **Vertical** Fluxes

$$H^{2,2}(\widehat{Y}_4,\mathbb{C}) = H^{2,2}_{\mathsf{hor}} \oplus H^{2,2}_{\mathsf{vert}} \oplus H^{2,2}_{\mathsf{rem}}$$

- Horizontal fluxes $H_{hor}^{2,2}$: from variations of the holomorphic (4,0)-form Ω .
- **Vertical fluxes** $H_{\text{vert}}^{2,2}$: spanned by wedge products of (1,1)-forms:

$$H^{2,2}_{\mathsf{vert}} = \mathsf{Span}\!\left(H^{1,1} \wedge H^{1,1}
ight)$$

$$H^{2,2}(\widehat{Y}_4,\mathbb{C}) = H^{2,2}_{\mathsf{hor}} \oplus H^{2,2}_{\mathsf{vert}} \oplus H^{2,2}_{\mathsf{rem}}$$

- Horizontal fluxes $H_{hor}^{2,2}$: from variations of the holomorphic (4,0)-form Ω .
- **Vertical fluxes** $H_{\text{vert}}^{2,2}$: spanned by wedge products of (1,1)-forms:

$$H^{2,2}_{\mathsf{vert}} = \mathsf{Span}\!\left(H^{1,1} \wedge H^{1,1}
ight)$$

• Remainder fluxes $H_{\text{rem}}^{2,2}$: everything else.

$$H^{2,2}(\widehat{Y}_4,\mathbb{C}) = H^{2,2}_{hor} \oplus H^{2,2}_{vert} \oplus H^{2,2}_{rem}$$

- Horizontal fluxes $H_{hor}^{2,2}$: from variations of the holomorphic (4,0)-form Ω .
- **Vertical fluxes** $H_{\text{vert}}^{2,2}$: spanned by wedge products of (1,1)-forms:

$$H^{2,2}_{\mathsf{vert}} = \mathsf{Span}\!\left(H^{1,1} \wedge H^{1,1}
ight)$$

• Remainder fluxes $H_{\text{rem}}^{2,2}$: everything else.

Goal for the remainder of this talk:

Study vertical G_4 -fluxes of "The F-theory geometry with most flux vacua".

• Computing a full basis of $H^{2,2}_{\text{vert}}(\widehat{Y}_4)$ is often computationally prohibitive.

- Computing a full basis of $H^{2,2}_{\text{vert}}(\widehat{Y}_4)$ is often computationally prohibitive.
- If $\widehat{Y}_4 \subset X_{\Sigma}$ is a hypersurface in a toric space, can use:

$$H^{2,2}(X_{\Sigma},\mathbb{Q})\Big|_{\widehat{Y}_4}\subseteq H^{2,2}_{\mathsf{vert}}(\widehat{Y}_4,\mathbb{Q})\,.$$

- Computing a full basis of $H^{2,2}_{\text{vert}}(\widehat{Y}_4)$ is often computationally prohibitive.
- If $\widehat{Y}_4 \subset X_{\Sigma}$ is a hypersurface in a toric space, can use:

$$H^{2,2}(X_{\Sigma},\mathbb{Q})\Big|_{\widehat{Y}_4}\subseteq H^{2,2}_{\mathsf{vert}}(\widehat{Y}_4,\mathbb{Q})$$
.

• We call these **ambient vertical** G_4 -fluxes.

- Computing a full basis of $H^{2,2}_{\text{vert}}(\widehat{Y}_4)$ is often computationally prohibitive.
- If $\widehat{Y}_4 \subset X_{\Sigma}$ is a hypersurface in a toric space, can use:

$$H^{2,2}(X_{\Sigma},\mathbb{Q})\Big|_{\widehat{Y}_4}\subseteq H^{2,2}_{\mathsf{vert}}(\widehat{Y}_4,\mathbb{Q})\,.$$

• We call these **ambient vertical** G_4 -fluxes.

(More refined approaches do exists, for instance Braun, Watari 2014 – 1408.6167.)

- Computing a full basis of $H^{2,2}_{\text{vert}}(\widehat{Y}_4)$ is often computationally prohibitive.
- If $\widehat{Y}_4 \subset X_{\Sigma}$ is a hypersurface in a toric space, can use:

$$H^{2,2}(X_{\Sigma},\mathbb{Q})\Big|_{\widehat{Y}_4}\subseteq H^{2,2}_{\mathsf{vert}}(\widehat{Y}_4,\mathbb{Q})\,.$$

• We call these **ambient vertical** G_4 -fluxes.

(More refined approaches do exists, for instance Braun, Watari 2014 – 1408.6167.)

Goal for the remainder of this talk:

Study ambient vertical G_4 -fluxes of "The F-theory geometry with most flux vacua".

Finding G_4 -Flux Generators III – Enumerating Generators

Toric ambient space with 313 rays. Naïvely, $\binom{313}{2} = 48,828$ generators.

Finding G_4 -Flux Generators III – Enumerating Generators

Toric ambient space with 313 rays. Naïvely, $\binom{313}{2} = 48,828$ generators.

```
julia> t = literature model(arxiv id = "1511.03209" )
Global Tate model over a concrete base -- The F-theory geometry with most flux vacua based on arXiv paper 1511
.03209 Eq. (2.11)
julia> t_res = resolve(t, 1)
Partially resolved global Tate model over a concrete base -- The F-theory geometry with most flux vacua based
on arXiv paper 1511.03209 Eq. (2.11)
julia> betti number(ambient space(t res), 2)
308
julia> betti number(ambient space(t res), 4)
1109
julia> length(chosen q4 flux gens(t res))
629
```

Finding G_4 -Flux Generators III – Enumerating Generators

Toric ambient space with 313 rays. Naïvely, $\binom{313}{2} = 48,828$ generators.

```
julia> t = literature model(arxiv id = "1511.03209" )
Global Tate model over a concrete base -- The F-theory geometry with most flux vacua based on arXiv paper 1511
.03209 Eq. (2.11)
julia> t_res = resolve(t, 1)
Partially resolved global Tate model over a concrete base -- The F-theory geometry with most flux vacua based
on arXiv paper 1511.03209 Eq. (2.11)
julia> betti number(ambient space(t res), 2)
308
julia> betti number(ambient space(t res), 4)
1109
julia> length(chosen q4 flux gens(t res))
629
```

Refined: **629 generators** for ambient vertical G_4 -fluxes.

Off to the Quantization Condition

- Singular elliptically fibered Calabi–Yau 4-fold: $\pi: Y_4 \to B_3$.
- Crepant resolution: $\widehat{\pi}$: $\widehat{Y}_4 \to B_3$.
- A G₄-flux is an element

$$G_4 \in H^{2,2}(\widehat{Y}_4,\mathbb{R}) := H^{2,2}(\widehat{Y}_4,\mathbb{C}) \cap H^4(\widehat{Y}_4,\mathbb{R}), \checkmark$$

satisfying the quantization condition

$$G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4, \mathbb{Z})$$

and a set of additional physical consistency conditions (transversality, flux breaking, etc.), not discussed in this talk for brevity.

Off to the Quantization Condition

- Singular elliptically fibered Calabi–Yau 4-fold: $\pi: Y_4 \to B_3$.
- Crepant resolution: $\widehat{\pi}$: $\widehat{Y}_4 \to B_3$.
- A G₄-flux is an element

$$G_4 \in H^{2,2}(\widehat{Y}_4,\mathbb{R}) := H^{2,2}(\widehat{Y}_4,\mathbb{C}) \cap H^4(\widehat{Y}_4,\mathbb{R}), \checkmark$$

satisfying the quantization condition

$$G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4,\mathbb{Z})$$

and a set of additional physical consistency conditions (transversality, flux breaking, etc.), not discussed in this talk for brevity.

• Task: Find all ambient vertical G_4 -fluxes with $G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4, \mathbb{Z})$.

- Task: Find all ambient vertical G_4 -fluxes with $G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4, \mathbb{Z})$.
- Challenge 1: Identify $c_2(\widehat{Y}_4)$
 - **1** Compute $c_i(X_{\Sigma})$ (smooth toric ambient space).
 - ② Apply adjunction formula: $c_2(\widehat{Y}_4) = \hat{c}_2|_{\widehat{Y}_4}$ for suitable $\hat{c}_2 \in H^{(2,2)}(X_{\Sigma})$.

- Task: Find all ambient vertical G_4 -fluxes with $G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4, \mathbb{Z})$.
- Challenge 1: Identify $c_2(\widehat{Y}_4)$
 - **①** Compute $c_i(X_{\Sigma})$ (smooth toric ambient space).
 - ② Apply adjunction formula: $c_2(\widehat{Y}_4) = \hat{c}_2|_{\widehat{Y}_4}$ for suitable $\hat{c}_2 \in H^{(2,2)}(X_{\Sigma})$.
- Challenge 2: Check simple, necessary conditions for integrality

$$\mathbb{Z}
i \int_{X_{\Sigma}} \left(G_4 + \frac{1}{2} \hat{c}_2 \right) \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j)$$

- PD: Poincaré dual
- D_i : toric divisor basis of X_{Σ}
- H: toric divisor corresponding to \widehat{Y}_4

- Task: Find all ambient vertical G_4 -fluxes with $G_4 + \frac{1}{2}c_2(\widehat{Y}_4) \in H^4(\widehat{Y}_4, \mathbb{Z})$.
- Challenge 1: Identify $c_2(\widehat{Y}_4)$
 - **①** Compute $c_i(X_{\Sigma})$ (smooth toric ambient space).
 - ② Apply adjunction formula: $c_2(\widehat{Y}_4) = \hat{c}_2|_{\widehat{Y}_4}$ for suitable $\hat{c}_2 \in H^{(2,2)}(X_{\Sigma})$.
- Challenge 2: Check simple, necessary conditions for integrality

$$\mathbb{Z} \ni \int_{X_{\Sigma}} \left(G_4 + \frac{1}{2} \hat{c}_2 \right) \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j)$$

$$= \sum_{k=1}^{629} \mu_k \int_{X_{\Sigma}} g_k \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j) + \int_{X_{\Sigma}} \frac{\hat{c}_2}{2} \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j).$$

- PD: Poincaré dual
- D_i : toric divisor basis of X_{Σ}
- H: toric divisor corresponding to \widehat{Y}_4
- g_k : generators of ambient vertical G_4 -fluxes, $\mu_k \in \mathbb{Q}$

• Compute the cohomology ring R of the toric ambient space X_{Σ} .

- **①** Compute the cohomology ring R of the toric ambient space X_{Σ} .
- ② Express $g_k \wedge \operatorname{PD}(H) \wedge \operatorname{PD}(D_i) \wedge \operatorname{PD}(D_j)$ as a polynomial $q \in R$.

- **①** Compute the cohomology ring R of the toric ambient space X_{Σ} .
- ② Express $g_k \wedge \operatorname{PD}(H) \wedge \operatorname{PD}(D_i) \wedge \operatorname{PD}(D_j)$ as a polynomial $q \in R$.
- \odot Check if q is trivial in R; if not, evaluate against the volume form.

- **1** Compute the cohomology ring R of the toric ambient space X_{Σ} .
- ② Express $g_k \wedge \operatorname{PD}(H) \wedge \operatorname{PD}(D_i) \wedge \operatorname{PD}(D_i)$ as a polynomial $q \in R$.
- **1** Check if q is trivial in R; if not, evaluate against the volume form.

Limitation for "The F-theory geometry with most flux vacua"

- Cohomology ring *R*: quotient of polynomial ring in **313 vars** by ideal with **46**, **547 generators**.
- Checking triviality of *q* is computationally prohibitive.

• View g_k , PD(H), $PD(D_i)$, $PD(D_i)$ as algebraic cycles in the Chow ring.

- View g_k , PD(H), PD(D_i), PD(D_i) as algebraic cycles in the Chow ring.
- By choosing suitable rationally-equivalent cycles:

$$\int_{X_{\Sigma}} g_k \wedge \operatorname{PD}(H) \wedge \operatorname{PD}(D_i) \wedge \operatorname{PD}(D_j) = \sum_{a,b,c,d} \lambda_{abcd} \ |\mathbb{V}(x_a,x_b,x_c,x_d,P)|,$$

where $\lambda_{abcd} \in \mathbb{Q}$ vanishes for repeated indices, P is \hat{Y}_4 's hypersurface equation.

- View g_k , PD(H), PD(D_i), PD(D_i) as algebraic cycles in the Chow ring.
- By choosing suitable rationally-equivalent cycles:

$$\int_{X_{\Sigma}} g_k \wedge \operatorname{PD}(H) \wedge \operatorname{PD}(D_i) \wedge \operatorname{PD}(D_j) = \sum_{a,b,c,d} \lambda_{abcd} \ |\mathbb{V}(x_a,x_b,x_c,x_d,P)|,$$

where $\lambda_{abcd} \in \mathbb{Q}$ vanishes for repeated indices, P is \widehat{Y}_4 's hypersurface equation.

Simplify $\mathbb{V}(x_a, x_b, x_c, x_d, P)$ and compute its cardinality from hard-coded cases.

Solving the Quantization Condition IV – Details on Special Algorithm

 Monte-Carlo approach: In toric geometry, algebraic cycles can be moved into general position using linear relations and the Stanley-Reisner ideal. Randomly select a rationally-equivalent representative until integrals become computable. Tested on hundreds of geometries, thousands of integrals.

Solving the Quantization Condition IV – Details on Special Algorithm

- Monte-Carlo approach: In toric geometry, algebraic cycles can be moved into general position using linear relations and the Stanley-Reisner ideal. Randomly select a rationally-equivalent representative until integrals become computable. Tested on hundreds of geometries, thousands of integrals.
- Hard-coded edge cases: Some intersections reduce to few variables, e.g.

$$\mathbb{V}(x_a, x_b, x_c, x_d, P) = \mathbb{V}(q_1 z_1 + q_2 z_2) \qquad q_i \neq 0$$

 z_1, z_2 must not vanish simultaneously (Stanley–Reisner ideal) and scaling relation $[z_1:z_2]\sim [\lambda z_1:\lambda z_2],\ z_1,z_2\neq 0.$ Leads to **unique** solution:

$$(z_1, z_2) = (1, -q_1/q_2) \sim (-q_2/q_1, 1).$$

(Three more, similar edge cases: see arXiv:2506.13849.)

Quantization Condition V – Computed Intersection Numbers

```
julia> t res. attrs[:inter dict]
Dict{NTuple{4, Int64}, ZZRingElem} with 14154797 entries:
  (78, 102, 103, 127) => 0
  (87, 254, 289, 289) \Rightarrow 0
  (74, 259, 260, 278) \Rightarrow 0
  (46, 147, 257, 260) \Rightarrow 0
  (9, 26, 103, 211) => 0
  (66, 104, 206, 311) => 0
  (50, 51, 102, 139) => 0
  (31, 103, 103, 233) => 0
  (42, 103, 148, 181) => 0
  (61, 80, 103, 304) => 0
  (53, 53, 91, 311) => 0
  (11, 236, 236, 254) \Rightarrow 0
  (47, 103, 154, 159) \Rightarrow 0
  (20, 73, 103, 252) => 0
```

Computed roughly **14 million intersection numbers** (about 10.000 are non-zero).

Ambient vertical G_4 -fluxes for Taylor, Wang 2015 – 1511.03209

Can now solve the quantization condition, i.e. find those $\mu_k \in \mathbb{Q}$ with

$$\sum_{k=1}^{629} \mu_k \int_{X_{\Sigma}} \mathsf{g}_k \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j) + \int_{X_{\Sigma}} \frac{\hat{c}_2}{2} \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j) \in \mathbb{Z} \,.$$

Ambient vertical G_4 -fluxes for Taylor, Wang 2015 – 1511.03209

Can now solve the quantization condition, i.e. find those $\mu_k \in \mathbb{Q}$ with

$$\sum_{k=1}^{629} \mu_k \int_{X_{\Sigma}} g_k \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j) + \int_{X_{\Sigma}} \frac{\hat{c}_2}{2} \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j) \in \mathbb{Z}.$$

```
julia> family of q4 fluxes = special flux family(t res)
Family of G4 fluxes:
  - Elementary quantization checks: satisfied
  - Transversality checks: satisfied
  - Non-abelian gauge group: breaking pattern not analyzed
julia> size(matrix integral(family of g4 fluxes))
(629, 224)
julia> size(matrix rational(family of q4 fluxes))
(629, 127)
```

Ambient vertical G_4 -fluxes for Taylor, Wang 2015 – 1511.03209

Can now solve the quantization condition, i.e. find those $\mu_k \in \mathbb{Q}$ with

$$\sum_{k=1}^{629} \mu_k \int_{X_{\Sigma}} g_k \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j) + \int_{X_{\Sigma}} \frac{\hat{c}_2}{2} \wedge \mathsf{PD}(H) \wedge \mathsf{PD}(D_i) \wedge \mathsf{PD}(D_j) \in \mathbb{Z}.$$

```
julia> family of q4 fluxes = special flux family(t res)
Family of G4 fluxes:
  - Elementary quantization checks: satisfied
  - Transversality checks: satisfied
  - Non-abelian gauge group: breaking pattern not analyzed
julia> size(matrix integral(family of g4 fluxes))
(629, 224)
julia> size(matrix rational(family of q4 fluxes))
(629, 127)
```

Ambient vertical G_4 -fluxes parametrized by $\mathbb{Z}^{224} \times \mathbb{O}^{127}$.

Gauge Group Breaking by G_4 -Flux for Taylor, Wang 2015 - 1511.03209

Singularity structure/Gauge group:

$$G = E_8^9 \times F_4^8 \times G_2^{16} \times SU(2)^{16}$$
.

- G₁-flux can break G.
- Those G_4 s that leave G unbroken (easy to find) form a family $\mathbb{Z}^1 \times \mathbb{O}^{127}$:

```
julia> family_of_q4_fluxes = special_flux_family(t_res, not_breaking = true)
Family of G4 fluxes:
  - Elementary quantization checks: satisfied
  - Transversality checks: satisfied
  - Non-abelian gauge group: unbroken
```

Gauge Group Breaking by G_4 -Flux for Taylor, Wang 2015 – 1511.03209

Singularity structure/Gauge group:

$$G = E_8^9 \times F_4^8 \times G_2^{16} \times SU(2)^{16}.$$

- G₁-flux can break G.
- Those G_4 s that leave G unbroken (easy to find) form a family $\mathbb{Z}^1 \times \mathbb{Q}^{127}$:

```
julia> family_of_q4_fluxes = special_flux_family(t_res, not_breaking = true)
Family of G4 fluxes:
```

- Elementary quantization checks: satisfied
 Transversality checks: satisfied
- Non-abelian gauge group: unbroken
- Outlook:
 - For a random flux, which subgroup $H \subseteq G$ survives?
 - What is the probability to break G to a given H?
 - D3-tadpole adds an essential (Diophantine) constraint on allowed G_4 -fluxes.

FTheoryTools

- Analyze singular elliptic fibrations, their resolutions, and geometry.
- Includes (and expands) a database of established F-theory models.

FTheoryTools

- Analyze singular elliptic fibrations, their resolutions, and geometry.
- Includes (and expands) a database of established F-theory models.

Next steps:

FTheoryTools

- Analyze singular elliptic fibrations, their resolutions, and geometry.
- Includes (and expands) a database of established F-theory models.

Next steps:

Add more literature models (incl. complete intersections, CICYs, schemes).

FTheoryTools

- Analyze singular elliptic fibrations, their resolutions, and geometry.
- Includes (and expands) a database of established F-theory models.

Next steps:

- Add more literature models (incl. complete intersections, CICYs, schemes).
- Add features: crepant desingularizations, Mordell-Weil/Weil-Châtelet groups.

FTheoryTools

- Analyze singular elliptic fibrations, their resolutions, and geometry.
- Includes (and expands) a database of established F-theory models.

Next steps:

- Add more literature models (incl. complete intersections, CICYs, schemes).
- Add features: crepant desingularizations, Mordell-Weil/Weil-Châtelet groups.

Thank you for your attention!

