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Motivation and Roadmap

F-theory: a corner of string theory where physics is tightly linked to
singular elliptic fibrations.

(Review: Weigand 2018 – 1806.01854)

Motivation: Many repetitive and tedious tasks (e.g. classifying singularities,
resolving them, computing Chern classes or Euler characteristics) — ideal
candidates for automation.
History: collaboration with A. P. Turner began at the StringPheno Conference,
Liverpool 2022.
Outcome: FTheoryTools, an OSCAR module tailored to applications in F-theory.
Outline:

1 What is FTheoryTools, and why might it be useful for you?
2 Testing the limits in extreme case: “The F-theory geometry with most flux vacua“

Details in our latest preprint: arXiv – 2506.13849.
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What is an Elliptic Curve?

Ef ,g = {(x , y , z) ∈ P2
(2,3,1)

∣∣∣ x3 − y2 + fxz4 + gz6 = 0}
(non-singular iff ∆ := 4f 3 + 27g2 ̸= 0)
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From Elliptic Curve to Elliptic Fibration

1

Base B, f ∈ H0(K 4
B), g ∈ H0(K 6

B).

2

V
(
x3 − y2 + f (p)xz4 + g(p)z6)

⊆ P2
(2,3,1)

3

∆

π

π
π
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Singular Elliptic Fibrations
Elliptic fibration: A morphism of varieties/schemes π : Y → B whose generic fiber
is a smooth elliptic curve.

∆

π

π
π

Singularities arise when fibers degenerate (e.g. nodal or cuspidal curves).
Fibers degenerate over discriminant locus ∆ = V

(
4f 3 + 27g2)

⊆ B.
Classification of singularities of elliptic surfaces by Kodaira in 1963.

(https://doi.org/10.2307/1970131, https://doi.org/10.2307/1970500 – see also Kodaira/Weierstrass table)
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What is FTheoryTools?

FTheoryTools is a module of OSCAR (https://www.oscar-system.org).
Key Features:

1 Construct singular elliptic Calabi-Yau fibrations.
2 Database of classical/famous F-theory constructions

Future-proof cross-platform standard by MaRDI: https://www.mardi4nfdi.de.
“Interactive” paper, to corrects typos, redos computations & extends them at ease.

3 Tailormade algorithms for blowups & resolutions of singularities, cohomologies,
Chern classes, Hodge numbers, intersection numbers, . . . .

Hooked? More information available!
Docs: https://docs.oscar-system.org/stable/Experimental/FTheoryTools/introduction/.
Tutorials: https://www.oscar-system.org/tutorials/FTheoryTools/.
M. Bies, and A. Turner, F-Theory Applications – chapter in the OSCAR book,
M. Bies, M. E. Mik, elsons, A. P. Turner, FTheoryTools: Advancing Computational
Capabilities for F-Theory Research.
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Documentation: https://docs.oscar-system.org/stable/Experimental/FTheoryTools/introduction/
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Tutorials: https://www.oscar-system.org/tutorials/FTheoryTools
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Preprint: https://arxiv.org/abs/2506.13849
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Questions?
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Stress Test for FTheoryTools
Challenge: How far can FTheoryTools be pushed?
Case study: Taylor, Wang 2015 – arxiv: 1511.03209.
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Computational Challenge: Taylor, Wang 2015 – 1511.03209

Singular elliptic Calabi-Yau 4-fold as hypersurface in toric ambient space XΣ.

XΣ: 104 rays, 594 maximal cones.
Hypersurface: non-generic Tate polynomial, 355,785 monomials.
Cohomology ring: polynomial ring in 104 vars, quotient by ideal with 4759
generators.
Singularity: E9

8 × F8
4 × G16

2 × SU(2)16.
Resolution: 206 toric blowups. (Lawrie, Schaefer-Nameki 2012 – 1212.2949), (Esole,
Jefferson, Kang 2017 – 1704.08251), (Esole, Kang 2019 – 1805.03214)

+3 extra blowups to smooth the ambient space.
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FTheoryTools meets Taylor, Wang 2015 – 1511.03209
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MaRDI-File on Zenodo: https://zenodo.org/records/15548043

Future-proof cross-platform standard by MaRDI: https://www.mardi4nfdi.de.
Zenodo arxiv: One file for singular (461MB) and resolved geometry (1.3GB).
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Physics vs. Mathematics of Singular Elliptic 4-Fold Ŷ4

(Review: Weigand 2018 – 1806.01854)

Physics Mathematics

Nonabelian gauge algebras, matter curves,
Yukawa points

Crepant resolution and intersection theory

Global gauge group structure & U(1)s Mordell–Weil group
Discrete gauge group factors Weil–Châtelet group
G4-fluxes and chiral matter Middle cohomology H(2,2)

Vector-like matter Deligne cohomology, root bundles

Focus for the rest of this talk:
G4-fluxes of “The F-theory geometry with most flux vacua”.
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G4-fluxes are important
Krause, Mayrhofer, Weigand 2011 – 1109.3454
Grimm, Hayashi 2012 – 1111.1232
Krause, Mayrhofer, Weigand 2012 – 1202.3138
Braun, Grimm, Keitel 2013 – 1306.0577
Cvetič, Grassi, Klevers, Piragua 2013 – 1306.3987
Cvetič, Klevers, Peña, Oehlmann, Reuter 2015 – 1503.02068
Lin, Mayrhofer, Till, Weigand 2015 – 1508.00162
Lin, Weigand 2016 – 1604.04292
Cvetič, Lin, Liu, Oehlmann 2018 – 1807.01320
Cvetič, Halverson, Lin, Liu, Tian 2019 – 1903.00009
Bies 2023 – 2303.08144 (Overview of “root bundle” program)
Li, Taylor 2024 – 2401.00040
And many, many more.

(Review: Weigand 2018 – 1806.01854)
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G4-flux: An Element of the Middle Cohomology

Singular elliptically fibered Calabi–Yau 4-fold: π : Y4 → B3.
Crepant resolution: π̂ : Ŷ4 → B3.

A G4-flux is an element

G4 ∈ H2,2(Ŷ4,R) := H2,2(Ŷ4,C) ∩ H4(Ŷ4,R) (1)

satisfying the quantization condition

G4 + 1
2c2(Ŷ4) ∈ H4(Ŷ4,Z) . (2)

and a set of additional physical consistency conditions (transversality, flux
breaking, etc.), not discussed in this talk for brevity.
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Finding G4-Flux Generators I – Focus on Vertical Fluxes

H2,2(Ŷ4,C) = H2,2
hor ⊕ H2,2

vert ⊕ H2,2
rem

Horizontal fluxes H2,2
hor : from variations of the holomorphic (4, 0)-form Ω.

Vertical fluxes H2,2
vert: spanned by wedge products of (1, 1)-forms:

H2,2
vert = Span

(
H1,1 ∧ H1,1

)
Remainder fluxes H2,2

rem: everything else.

Goal for the remainder of this talk:
Study vertical G4-fluxes of “The F-theory geometry with most flux vacua”.
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Finding G4-Flux Generators II – Focus on Ambient Vertical Fluxes

Computing a full basis of H2,2
vert(Ŷ4) is often computationally prohibitive.

If Ŷ4 ⊂ XΣ is a hypersurface in a toric space, can use:

H2,2(XΣ,Q)
∣∣∣
Ŷ4

⊆ H2,2
vert(Ŷ4,Q) .

We call these ambient vertical G4-fluxes.
(More refined approaches do exists, for instance Braun, Watari 2014 – 1408.6167.)

Goal for the remainder of this talk:
Study ambient vertical G4-fluxes of “The F-theory geometry with most flux vacua”.
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(More refined approaches do exists, for instance Braun, Watari 2014 – 1408.6167.)

Goal for the remainder of this talk:
Study ambient vertical G4-fluxes of “The F-theory geometry with most flux vacua”.
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If Ŷ4 ⊂ XΣ is a hypersurface in a toric space, can use:

H2,2(XΣ,Q)
∣∣∣
Ŷ4
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Finding G4-Flux Generators III – Enumerating Generators

Toric ambient space with 313 rays. Naïvely,
(313

2
)

= 48, 828 generators.

Refined: 629 generators for ambient vertical G4-fluxes.
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Off to the Quantization Condition

Singular elliptically fibered Calabi–Yau 4-fold: π : Y4 → B3.
Crepant resolution: π̂ : Ŷ4 → B3.
A G4-flux is an element

G4 ∈ H2,2(Ŷ4,R) := H2,2(Ŷ4,C) ∩ H4(Ŷ4,R) ,

satisfying the quantization condition

G4 + 1
2c2(Ŷ4) ∈ H4(Ŷ4,Z)

and a set of additional physical consistency conditions (transversality, flux
breaking, etc.), not discussed in this talk for brevity.

✓
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Solving the Quantization Condition – Strategy

Task: Find all ambient vertical G4-fluxes with G4 + 1
2c2(Ŷ4) ∈ H4(Ŷ4,Z).

Challenge 1: Identify c2(Ŷ4)
1 Compute ci(XΣ) (smooth toric ambient space).
2 Apply adjunction formula: c2(Ŷ4) = ĉ2|Ŷ4

for suitable ĉ2 ∈ H(2,2)(XΣ).
Challenge 2: Check simple, necessary conditions for integrality

Z ∋
∫

XΣ

(
G4 + 1

2 ĉ2
)

∧ PD(H) ∧ PD(Di) ∧ PD(Dj)

=
629∑
k=1

µk

∫
XΣ

gk ∧ PD(H) ∧ PD(Di) ∧ PD(Dj) +
∫

XΣ

ĉ2
2 ∧ PD(H) ∧ PD(Di) ∧ PD(Dj)

.

PD: Poincaré dual
Di : toric divisor basis of XΣ
H: toric divisor corresponding to Ŷ4

gk : generators of ambient vertical G4-fluxes, µk ∈ Q
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1 Compute ci(XΣ) (smooth toric ambient space).
2 Apply adjunction formula: c2(Ŷ4) = ĉ2|Ŷ4
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2 ĉ2
)

∧ PD(H) ∧ PD(Di) ∧ PD(Dj)

=
629∑
k=1

µk

∫
XΣ

gk ∧ PD(H) ∧ PD(Di) ∧ PD(Dj) +
∫

XΣ

ĉ2
2 ∧ PD(H) ∧ PD(Di) ∧ PD(Dj) .

PD: Poincaré dual
Di : toric divisor basis of XΣ
H: toric divisor corresponding to Ŷ4
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Solving the Quantization Condition II – Default Algorithm for Integrals

1 Compute the cohomology ring R of the toric ambient space XΣ.

2 Express gk ∧ PD(H) ∧ PD(Di) ∧ PD(Dj) as a polynomial q ∈ R.
3 Check if q is trivial in R; if not, evaluate against the volume form.

Limitation for “The F-theory geometry with most flux vacua”
Cohomology ring R: quotient of polynomial ring in 313 vars by ideal with
46, 547 generators.
Checking triviality of q is computationally prohibitive.
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Solving the Quantization Condition III – Special Algorithm for Integrals

1 View gk , PD(H), PD(Di), PD(Dj) as algebraic cycles in the Chow ring.

2 By choosing suitable rationally-equivalent cycles:∫
XΣ

gk ∧ PD(H) ∧ PD(Di) ∧ PD(Dj) =
∑

a,b,c,d
λabcd |V(xa, xb, xc , xd , P)|,

where λabcd ∈ Q vanishes for repeated indices, P is Ŷ4’s hypersurface equation.
3 Simplify V(xa, xb, xc , xd , P) and compute its cardinality from hard-coded cases.
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Solving the Quantization Condition IV – Details on Special Algorithm

Monte-Carlo approach: In toric geometry, algebraic cycles can be moved into
general position using linear relations and the Stanley–Reisner ideal. Randomly
select a rationally-equivalent representative until integrals become computable.
Tested on hundreds of geometries, thousands of integrals.

Hard-coded edge cases: Some intersections reduce to few variables, e.g.

V(xa, xb, xc , xd , P) = V (q1z1 + q2z2) qi ̸= 0

z1, z2 must not vanish simultaneously (Stanley–Reisner ideal) and scaling relation
[z1 : z2] ∼ [λz1 : λz2], z1, z2 ̸= 0. Leads to unique solution:

(z1, z2) = (1, −q1/q2) ∼ (−q2/q1, 1) .

(Three more, similar edge cases: see arXiv:2506.13849.)
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Quantization Condition V – Computed Intersection Numbers

Computed roughly 14 million intersection numbers (about 10.000 are non-zero).
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Ambient vertical G4-fluxes for Taylor, Wang 2015 – 1511.03209
Can now solve the quantization condition, i.e. find those µk ∈ Q with
629∑
k=1

µk

∫
XΣ

gk ∧ PD(H) ∧ PD(Di) ∧ PD(Dj) +
∫

XΣ

ĉ2
2 ∧ PD(H) ∧ PD(Di) ∧ PD(Dj) ∈ Z .

Ambient vertical G4-fluxes parametrized by Z224 × Q127.
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Gauge Group Breaking by G4-Flux for Taylor, Wang 2015 – 1511.03209

Singularity structure/Gauge group:

G = E 9
8 × F 8

4 × G16
2 × SU(2)16.

G4-flux can break G .
Those G4s that leave G unbroken (easy to find) form a family Z1 × Q127:

Outlook:
For a random flux, which subgroup H ⊆ G survives?
What is the probability to break G to a given H?
D3-tadpole adds an essential (Diophantine) constraint on allowed G4-fluxes.
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Outlook

FTheoryTools

Analyze singular elliptic fibrations, their resolutions, and geometry.
Includes (and expands) a database of established F-theory models.

Next steps:
Add more literature models (incl. complete intersections, CICYs, schemes).
Add features: crepant desingularizations, Mordell–Weil/Weil–Châtelet groups.

Thank you for your attention!
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