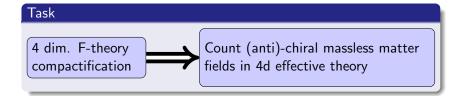
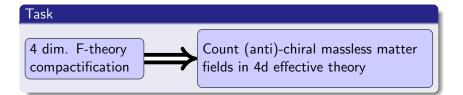
Zero Mode Counting in F-Theory via CAP

Martin Bies

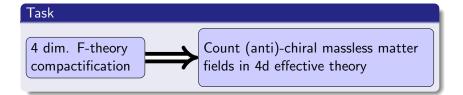
String Pheno 2017





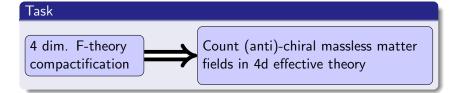
Structure

• Analyse physics (C. Mayrhofer, T. Weigand, M.B. - 1706.04616)



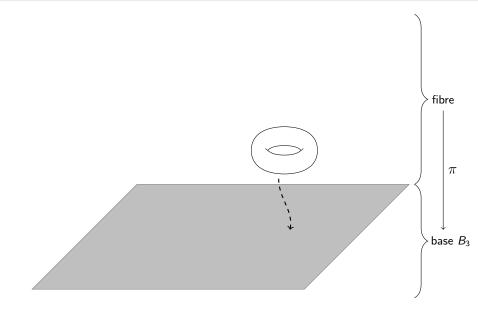
Structure

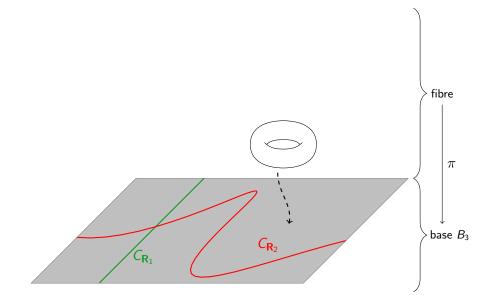
- Analyse physics (C. Mayrhofer, T. Weigand, M.B. 1706.04616)
- \Rightarrow Compute sheaf cohomologies of **non-pullback** line bundles

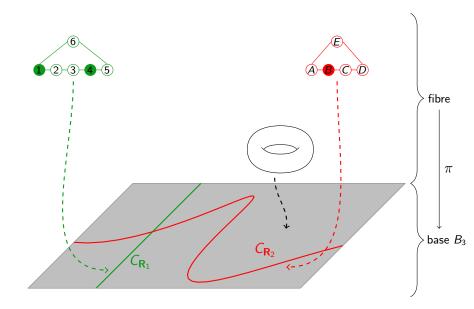


Structure

- Analyse physics (C. Mayrhofer, T. Weigand, M.B. 1706.04616)
- \Rightarrow Compute sheaf cohomologies of **non-pullback** line bundles
 - Developed and implemented algorithms with M. Barakat et al. (https://github.com/homalg-project/CAP_project – 1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028, 1409.6100)







From Physics of F-Theory to Line Bundles

a-th state in rep.
$$\mathbf{R} \leftrightarrow$$
 matter surface $S^a_{\mathbf{R}} = \sum_{i=1}^{\infty} a_i \mathbb{P}^1_i(C_{\mathbf{R}})$

n

From Physics of F-Theory to Line Bundles

a-th state in rep.
$$\mathbf{R} \leftrightarrow$$
 matter surface $S^a_{\mathbf{R}} = \sum_{i=1}^{n} a_i \mathbb{P}^1_i(C_{\mathbf{R}})$
 G_4 -flux \leftrightarrow (complex) 2-cycle A in Y_4

n

Counting zero modes

From Physics of F-Theory to Line Bundles

a-th state in rep.
$$\mathbf{R} \leftrightarrow$$
 matter surface $S^a_{\mathbf{R}} = \sum_{i=1} a_i \mathbb{P}^1_i (C_{\mathbf{R}})$
 G_4 -flux \leftrightarrow (complex) 2-cycle A in Y_4

Consequence

• $S^a_{\mathbf{R}}$ and A intersect in number of points in Y_4

Counting zero modes

From Physics of F-Theory to Line Bundles

a-th state in rep.
$$\mathbf{R} \leftrightarrow$$
 matter surface $S^a_{\mathbf{R}} = \sum_{i=1} a_i \mathbb{P}^1_i (C_{\mathbf{R}})$
 G_4 -flux \leftrightarrow (complex) 2-cycle A in Y_4

Consequence

- $S^a_{\mathbf{R}}$ and A intersect in number of points in Y_4
- $\Rightarrow \pi_*(S^a_{\mathsf{R}} \cdot A) \leftrightarrow \text{number of points in } C_{\mathsf{R}}$

From Physics of F-Theory to Line Bundles

a-th state in rep.
$$\mathbf{R} \leftrightarrow$$
 matter surface $S^a_{\mathbf{R}} = \sum_{i=1} a_i \mathbb{P}^1_i (C_{\mathbf{R}})$
 G_4 -flux \leftrightarrow (complex) 2-cycle A in Y_4

Consequence

• $S^a_{\mathbf{R}}$ and A intersect in number of points in Y_4

$$\Rightarrow \pi_*(S^a_{\mathsf{R}} \cdot A) \leftrightarrow \mathsf{number of points in } C_{\mathsf{R}}$$

$$\Rightarrow L(S_{\mathsf{R}}^{\mathsf{a}}, A) := \mathcal{O}_{C_{\mathsf{R}}}(\pi_*(S_{\mathsf{R}}^{\mathsf{a}} \cdot A)) \in \mathsf{Pic}(C_{\mathsf{R}})$$

From Physics of F-Theory to Line Bundles

a-th state in rep.
$$\mathbf{R} \leftrightarrow$$
 matter surface $S^a_{\mathbf{R}} = \sum_{i=1} a_i \mathbb{P}^1_i (C_{\mathbf{R}})$
 G_4 -flux \leftrightarrow (complex) 2-cycle A in Y_4

Consequence

• $S^a_{\mathbf{R}}$ and A intersect in number of points in Y_4

$$\Rightarrow \pi_*(S^a_{\mathsf{R}} \cdot A) \leftrightarrow \mathsf{number} \mathsf{ of points in } C_{\mathsf{R}}$$

$$\Rightarrow L(S_{\mathsf{R}}^{\mathsf{a}}, A) := \mathcal{O}_{C_{\mathsf{R}}}(\pi_*(S_{\mathsf{R}}^{\mathsf{a}} \cdot A)) \in \mathsf{Pic}(C_{\mathsf{R}})$$

Zero Modes and Sheaf Cohomology

chiral zero modes of $S_{\mathsf{R}}^a \leftrightarrow H^0(C_{\mathsf{R}}, L(S_{\mathsf{R}}^a, A) \otimes \mathcal{O}_{\text{spin}, C_{\mathsf{R}}})$ anti-chiral zero modes of $S_{\mathsf{R}}^a \leftrightarrow H^1(C_{\mathsf{R}}, L(S_{\mathsf{R}}^a, A) \otimes \mathcal{O}_{\text{spin}, C_{\mathsf{R}}})$

Generalities Of The Implementations In CAP

Generalities Of The Implementations In CAP

Why new algorithm?

$$\begin{split} L\left(S_{\mathbf{R}}^{a},A\right) &= \mathcal{O}_{C_{\mathbf{R}}}\left(D\right). \text{ Extend } L\left(S_{\mathbf{R}}^{a},A\right) \text{ by zero outside of } C_{\mathbf{R}}. \\ &\Rightarrow \text{ Coherent sheaf on } X_{\Sigma} \end{split}$$

Generalities Of The Implementations In CAP

Why new algorithm?

$L(S_{\mathbf{R}}^{a}, A) = \mathcal{O}_{C_{\mathbf{R}}}(D). \text{ Extend } L(S_{\mathbf{R}}^{a}, A) \text{ by zero outside of } C_{\mathbf{R}}.$ $\Rightarrow \text{ Coherent sheaf on } X_{\Sigma}$

Schematic Picture

$$\begin{split} L\left(S^{a}_{\mathsf{R}},A\right) &= \mathcal{O}_{C_{\mathsf{R}}}\left(D\right). \text{ Extend } L\left(S^{a}_{\mathsf{R}},A\right) \text{ by zero outside of } C_{\mathsf{R}}. \\ &\Rightarrow \text{Coherent sheaf on } X_{\Sigma} \end{split}$$

Schematic Picture

 idea of mathematician G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)

$$\begin{array}{l} L\left(S_{\mathbf{R}}^{a},A\right)=\mathcal{O}_{C_{\mathbf{R}}}\left(D\right). \text{ Extend } L\left(S_{\mathbf{R}}^{a},A\right) \text{ by zero outside of } C_{\mathbf{R}}.\\ \Rightarrow \text{ Coherent sheaf on } X_{\Sigma} \end{array}$$

Schematic Picture

- idea of mathematician G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- cohomCalg by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717)

$$\begin{array}{l} L\left(S_{\mathbf{R}}^{a},A\right)=\mathcal{O}_{C_{\mathbf{R}}}\left(D\right). \text{ Extend } L\left(S_{\mathbf{R}}^{a},A\right) \text{ by zero outside of } C_{\mathbf{R}}.\\ \Rightarrow \text{ Coherent sheaf on } X_{\Sigma} \end{array}$$

Schematic Picture

- idea of mathematician G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- cohomCalg by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717)

Combine to obtain algorithm which applies

$$\begin{array}{l} L\left(S_{\mathbf{R}}^{a},A\right)=\mathcal{O}_{C_{\mathbf{R}}}\left(D\right). \text{ Extend } L\left(S_{\mathbf{R}}^{a},A\right) \text{ by zero outside of } C_{\mathbf{R}}.\\ \Rightarrow \text{ Coherent sheaf on } X_{\Sigma} \end{array}$$

Schematic Picture

- idea of mathematician G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- cohomCalg by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717)

Combine to obtain algorithm which applies

• on more general toric spaces (than idea of G. Smith)

$$L(S_{\mathbf{R}}^{a}, A) = \mathcal{O}_{C_{\mathbf{R}}}(D). \text{ Extend } L(S_{\mathbf{R}}^{a}, A) \text{ by zero outside of } C_{\mathbf{R}}.$$

$$\Rightarrow \text{ Coherent sheaf on } X_{\Sigma}$$

Schematic Picture

- idea of mathematician G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- cohomCalg by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717)

Combine to obtain algorithm which applies

- on more general toric spaces (than idea of G. Smith)
- to **all coherent sheaves** (i.e. not 'only' line bundles as *cohomCalg*)

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

• X_{Σ} toric variety (without torus factor) with coordinate ring S

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (without torus factor) with coordinate ring S
- divisor $D = V(P_1, \ldots, P_n)$ cut out by hom. polynomials

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

- X_{Σ} toric variety (without torus factor) with coordinate ring S
- divisor $D = V(P_1, \ldots, P_n)$ cut out by hom. polynomials
- \Rightarrow $A := \ker(P_1, \ldots, P_n) \leftrightarrow$ relations among the P_i

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

• X_{Σ} toric variety (without torus factor) with coordinate ring S

- divisor $D = V(P_1, \ldots, P_n)$ cut out by hom. polynomials
- \Rightarrow $A := \ker (P_1, \ldots, P_n) \leftrightarrow$ relations among the P_i
- $\Rightarrow \text{ Look at exact sequence } \bigoplus_{j=1}^{R_2} S(e_j) \stackrel{A}{\rightarrow} \bigoplus_{i=1}^{R_1} S(d_i) \twoheadrightarrow M \to 0,$ which defines $M \in S$ -fpgrmod

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

• X_{Σ} toric variety (without torus factor) with coordinate ring S

- divisor $D = V(P_1, \ldots, P_n)$ cut out by hom. polynomials
- \Rightarrow $A := \ker(P_1, \ldots, P_n) \leftrightarrow$ relations among the P_i
- $\Rightarrow \text{ Look at exact sequence } \bigoplus_{j=1}^{R_2} S(e_j) \stackrel{A}{\rightarrow} \bigoplus_{i=1}^{R_1} S(d_i) \twoheadrightarrow M \to 0,$ which defines $M \in S$ -fpgrmod

Answer

• $\widetilde{M} \cong \mathcal{O}_{X_{\Sigma}}(-D)$ via the sheafification functor

$$\widetilde{}: S ext{-fpgrmod} o \mathfrak{Coh} X_{\Sigma} \ , \ N \mapsto \widetilde{N}$$

How to encode $\mathcal{O}_{X_{\Sigma}}(-D)$?

• X_{Σ} toric variety (without torus factor) with coordinate ring S

- divisor $D = V(P_1, \ldots, P_n)$ cut out by hom. polynomials
- \Rightarrow $A := \ker (P_1, \ldots, P_n) \leftrightarrow$ relations among the P_i
- $\Rightarrow \text{ Look at exact sequence } \bigoplus_{j=1}^{R_2} S(e_j) \stackrel{A}{\rightarrow} \bigoplus_{i=1}^{R_1} S(d_i) \twoheadrightarrow M \to 0,$ which defines $M \in S$ -fpgrmod

Answer

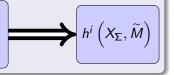
• $\widetilde{M}\cong \mathcal{O}_{X_{\Sigma}}\left(-D
ight)$ via the sheafification functor

$$\widetilde{}: S ext{-fpgrmod} o \mathfrak{Coh} X_{\Sigma} \ , \ N \mapsto \widetilde{N}$$

 \Rightarrow Use $M \in S$ -fpgrmod as computer model for $\mathcal{O}_{X_{\Sigma}}(-D)$

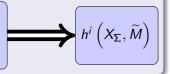
Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_Σ
- $M \in S$ -fpgrmod



Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_{Σ}
- $M \in S$ -fpgrmod



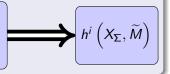
Step-by-step

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}(X_{\Sigma}) := \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0
ight\}$$

Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_{Σ}
- $M \in S$ -fpgrmod



Step-by-step

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

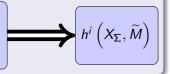
$$V^{k}(X_{\Sigma}) := \left\{ L \in \mathsf{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

Solution Find ideal $I \subseteq S$ (along idea of G. Smith) s.t.

$$H^{i}\left(X_{\Sigma},\widetilde{M}
ight)\cong\operatorname{Ext}_{S}^{i}\left(I,M
ight)_{0}$$

Input and Output

- (smooth, complete) or (simplicial, projective) toric variety X_{Σ}
- $M \in S$ -fpgrmod



Step-by-step

• Use *cohomCalg* to compute $(0 \le k \le \dim_{\mathbb{Q}} (X_{\Sigma}))$

$$V^{k}(X_{\Sigma}) := \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

• Find ideal $I \subseteq S$ (along idea of G. Smith) s.t.

$$H^{i}\left(X_{\Sigma},\widetilde{M}\right)\cong\operatorname{Ext}_{S}^{i}\left(I,M\right)_{0}$$

• Compute \mathbb{Q} -dimension of $\operatorname{Ext}_{S}^{i}(I, M)_{0}$

$SU(5) \times U(1)$ -Tate model from 1706.04616

Input and Output

•
$$C_{\mathbf{5}_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{\mathbf{5}_{-2}} \leftrightarrow M$ and M defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow M \rightarrow 0$

$$\implies h^1\left(\mathbb{P}^2_{\mathbb{Q}},\widetilde{M}\right) = ?$$

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow M$ and M defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow M \rightarrow 0$

Apply Algorithm

• Compute vanishing sets via *cohomCalg*:

$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow M$ and M defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow M \rightarrow 0$

$$\implies h^1\left(\mathbb{P}^2_{\mathbb{Q}}, \widetilde{M}\right) = ?$$

Apply Algorithm

2 Use vanishing sets to find ideal *I* (along idea of G. Smith): $I = B_{\Sigma}^{(44)} \equiv \langle x_0^{44}, x_1^{44}, x_2^{44} \rangle$

Input and Output

•
$$C_{\mathbf{5}_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{\mathbf{5}_{-2}} \leftrightarrow M$ and M defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow M \rightarrow 0$

Apply Algorithm

•
$$V^0(\mathbb{P}^2_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^1(\mathbb{P}^2_{\mathbb{Q}}) = \mathbb{Z}, V^2(\mathbb{P}^2_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

2
$$I = B_{\Sigma}^{(44)} \equiv \left\langle x_0^{44}, x_1^{44}, x_2^{44} \right\rangle$$

• Compute presentation of $\operatorname{Ext}_{S}^{1}\left(B_{\Sigma}^{(44)}, M\right)_{0}$: $\operatorname{Ext}_{S}^{1}\left(B_{\Sigma}^{(44)}, M\right)_{0}$

Input and Output

•
$$C_{\mathbf{5}_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{\mathbf{5}_{-2}} \leftrightarrow M$ and M defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow M \rightarrow 0$

Apply Algorithm

•
$$V^0(\mathbb{P}^2_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^1(\mathbb{P}^2_{\mathbb{Q}}) = \mathbb{Z}, V^2(\mathbb{P}^2_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

$$I = B_{\Sigma}^{(44)} \equiv \left\langle x_0^{44}, x_1^{44}, x_2^{44} \right\rangle$$

Sompute presentation of $\operatorname{Ext}_{S}^{1}\left(B_{\Sigma}^{(44)}, M\right)_{0}$:

$$\mathbb{Q}^{37425} \to \mathbb{Q}^{27201} \twoheadrightarrow \operatorname{Ext}^{1}_{S} \left(B_{\Sigma}^{(44)}, M \right)_{0} \to 0$$

Input and Output

•
$$C_{5_{-2}} \subseteq \mathbb{P}^2_{\mathbb{Q}}$$

• $L_{5_{-2}} \leftrightarrow M$ and M defined by
 $S(-36) \oplus S(-39) \oplus S(-41) \oplus$
 $S(-23) \oplus S(-38) \rightarrow$
 $S(-6) \oplus S(-21) \twoheadrightarrow M \rightarrow 0$

$$h^1\left(\mathbb{P}^2_{\mathbb{Q}},\widetilde{M}\right)=?$$

Apply Algorithm

•
$$V^{0}(\mathbb{P}^{2}_{\mathbb{Q}}) = (-\infty, -1]_{\mathbb{Z}}, V^{1}(\mathbb{P}^{2}_{\mathbb{Q}}) = \mathbb{Z}, V^{2}(\mathbb{P}^{2}_{\mathbb{Q}}) = [-2, \infty)_{\mathbb{Z}}$$

• $I = B_{\Sigma}^{(44)} \equiv \langle x_{0}^{44}, x_{1}^{44}, x_{2}^{44} \rangle$
• $\mathbb{Q}^{37425} \to \mathbb{Q}^{27201} \twoheadrightarrow \operatorname{Ext}^{1}_{S} \left(B_{\Sigma}^{(44)}, M \right)_{0} \to 0$
 $\Rightarrow 28 = \dim_{\mathbb{Q}} \left[\operatorname{Ext}^{1}_{S} \left(B_{\Sigma}^{(44)}, M \right)_{0} \right] = h^{1} \left(\mathbb{P}^{2}_{\mathbb{Q}}, \widetilde{M} \right)$

Note

• Values of complex structure moduli enter definition of M

Note

- Values of complex structure moduli enter definition of M
- Smoothness of matter curves NOT required

Note

- Values of complex structure moduli enter definition of M
- Smoothness of matter curves NOT required
- \Rightarrow Run computation for different choices of moduli

Note

- Values of complex structure moduli enter definition of M
- Smoothness of matter curves NOT required
- \Rightarrow Run computation for different choices of moduli

$SU(5)$ × $U(1)$ -Tate Model from 1706.04616 ($\mathbf{R}=5_{-2}$)					
	$\widetilde{a_{1,0}}$	$\widetilde{a_{2,1}}$	<i>a</i> _{3,2}	<i>a</i> _{4,3}	$h^{i}(C_{\mathbf{R}}, L_{\mathbf{R}})$
M_1	$(x_1 - x_2)^4$	x_1^7	x ₂ ¹⁰	x ₃ ¹³	(22, 43)
M_2	$(x_1 - x_2) x_3^3$	$x_1^{\bar{7}}$	x2 ¹⁰	x ₃ ¹³	(21, 42)
M_3	x ₃ ⁴	x ₁ ⁷	$x_{2}^{7}(x_{1}+x_{2})^{3}$	$x_3^{12}(x_1-x_2)$	(11, 32)
M_4	$(x_1 - x_2)^3 x_3$	x ₁ ⁷	x ₂ ¹⁰	x ₃ ¹³	(9, 30)
M_5	x ₃ ⁴	x ₁ ⁷	$x_{2}^{8}(x_{1}+x_{2})^{2}$	$x_{3}^{11}(x_{1}-x_{2})^{2}$	(7,28)
M_6	x ₃ ⁴	x_1^7	x ₂ ¹⁰	$x_3^8 (x_1 - x_2)^5$	(6,27)
M ₇	x ₃ ⁴	$x_1^{\bar{7}}$	$x_2^9(x_1+x_2)$	$x_3^{10} (x_1 - x_2)^3$	(5,26)

 Have combined *cohomCalg* by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)

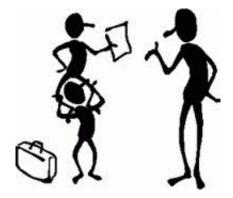
- Have combined *cohomCalg* by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- ⇒ Toolkit to compute sheaf cohomologies of all coherent sheaves on toric varieties (visit https://github.com/HereAround)

- Have combined *cohomCalg* by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- ⇒ Toolkit to compute sheaf cohomologies of all coherent sheaves on toric varieties (visit https://github.com/HereAround)
 - Features:
 - Count zero modes in 4d F-theory compactifications
 - Matter curves need not be smooth, nor complete intersections!
 - Of particular interest: hypercharge flux in F-theory GUTs (applications currently on their way)

- Have combined *cohomCalg* by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- ⇒ Toolkit to compute sheaf cohomologies of all coherent sheaves on toric varieties (visit https://github.com/HereAround)
 - Features:
 - Count zero modes in 4d F-theory compactifications
 - Matter curves need not be smooth, nor complete intersections!
 - Of particular interest: hypercharge flux in F-theory GUTs (applications currently on their way)
 - Further possible applications
 - Quite generally zero mode counting in topological string, IIB or heterotic compactifications

- Have combined *cohomCalg* by R. Blumenhagen et al. (1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G. Smith et al. (math/9807170, math/0305214, DOI: 10.4171/OWR/2013/25)
- ⇒ Toolkit to compute sheaf cohomologies of all coherent sheaves on toric varieties (visit https://github.com/HereAround)
 - Features:
 - Count zero modes in 4d F-theory compactifications
 - Matter curves need not be smooth, nor complete intersections!
 - Of particular interest: hypercharge flux in F-theory GUTs (applications currently on their way)
 - Further possible applications
 - Quite generally zero mode counting in topological string, IIB or heterotic compactifications
 - T-branes as coherent sheaves (Collinucci et al. 1410.4178)
 - . . .

Thank you for your attention!



From Divisors to Modules

Input and Output

•
$$C = V(g_1, \ldots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \ldots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. } \text{supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

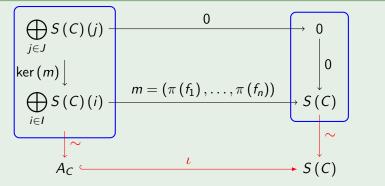
From Divisors to Modules

Input and Output

•
$$C = V(g_1, \dots, g_k) \subseteq X_{\Sigma}$$

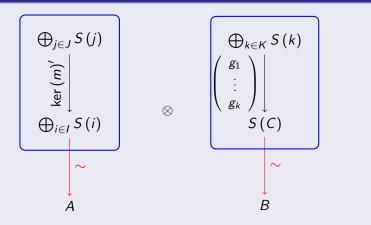
• $D = V(f_1, \dots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. } \text{supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

$\texttt{Step 1: } S(C) := S / \langle g_1, \ldots, g_k \rangle, \ \pi \colon S \twoheadrightarrow S(C)$



From Divisors to Modules II

Step 2: Extend by zero to coherent sheaf on X_{Σ}



 $A \Rightarrow M = A \otimes B$ satisfies $\operatorname{Supp}(\widetilde{M}) = C$ and $\widetilde{M}|_C \cong \mathcal{O}_C(-D)$

Input and Output

•
$$C = V(g_1, \dots, g_k) \subseteq X_{\Sigma}$$

• $D = V(f_1, \dots, f_n) \in \text{Div}(C)$
 $M \text{ s.t. } \text{supp}(\widetilde{M}) = C$
and $\widetilde{M}|_C \cong \mathcal{O}_C(+D)$

Strategy

- Compute A_C
- 2 Dualise via $A_C^{\vee} := \operatorname{Hom}_{S(C)}(S(C), A_C)$
- Solution Extend by zero by considering $A^{\vee} \otimes B$
- $\Rightarrow M^{\vee} := A^{\vee} \otimes B$ satisfies $\operatorname{Supp}(\widetilde{M}) = C$ and $\widetilde{M}|_{C} \cong \mathcal{O}_{C}(+D)$

Affine open cover

• Toric variety X_{Σ} with Cox ring S

$$\Rightarrow \; \mathsf{Covered} \; \mathsf{by} \; \mathsf{affine} \; \mathsf{opens} \; \Big\{ U_\sigma = \mathsf{Specm}(\mathcal{S}_{(x^{\hat{\sigma}})}) \Big\}_{\sigma \in \mathbf{\Sigma}}$$

Affine open cover

• Toric variety X_{Σ} with Cox ring S

$$\Rightarrow \; \mathsf{Covered} \; \mathsf{by} \; \mathsf{affine} \; \mathsf{opens} \; \Big\{ U_\sigma = \mathsf{Specm}(S_{(x^{\hat\sigma})}) \Big\}_{\sigma \in \mathbf{\Sigma}}$$

Localising (\leftrightarrow restricting) a module

• $M \in S$ -fpgrmod

$$\Rightarrow M_{(x^{\hat{\sigma}})}$$
 is f.p. $S_{(x^{\hat{\sigma}})}$ -module

Affine open cover

• Toric variety X_{Σ} with Cox ring S

$$\Rightarrow \; \mathsf{Covered} \; \mathsf{by} \; \mathsf{affine} \; \mathsf{opens} \; \Big\{ \mathit{U}_\sigma = \mathsf{Specm}(\mathcal{S}_{(x^{\hat{\sigma}})}) \Big\}_{\sigma \in \mathbf{\Sigma}}$$

Localising (\leftrightarrow restricting) a module

•
$$M \in S$$
-fpgrmod

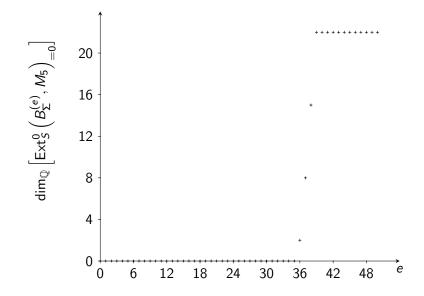
$$\Rightarrow M_{(x^{\hat{\sigma}})}$$
 is f.p. $S_{(x^{\hat{\sigma}})}$ -module

Consequence

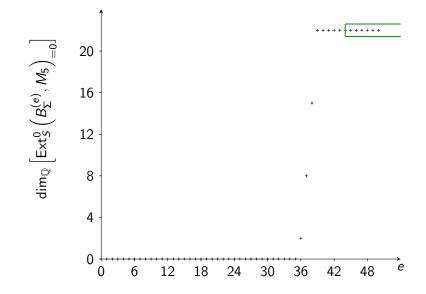
•
$$M_{(x^{\hat{\sigma}})} \leftrightarrow \text{coherent sheaf on } U_{\sigma} = \text{Specm}(S_{(x^{\hat{\sigma}})})$$

• local sections: $\widetilde{M_{(x^{\hat{\sigma}})}}(D(f)) = M_{(x^{\hat{\sigma}})} \otimes_{S_{(x^{\hat{\sigma}})}} (S_{(x^{\hat{\sigma}})})_{f}$

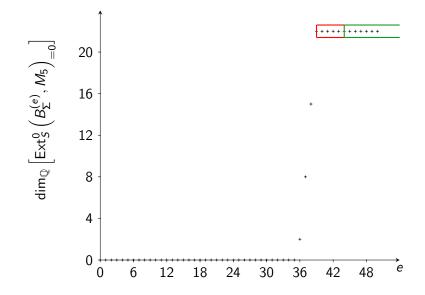
Module M₅ from 1706.04616: Quality Check I



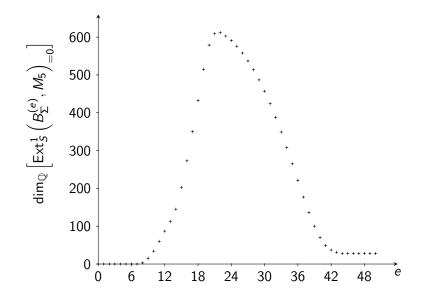
Module M₅ from 1706.04616: Quality Check I



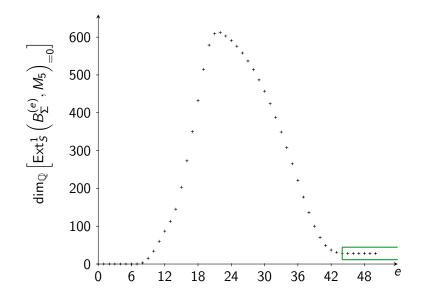
Module M₅ from 1706.04616: Quality Check I



Module M₅ from 1706.04616: Quality Check II



Module M₅ from 1706.04616: Quality Check II



Input

• $M \in S$ -fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

Input

- $M \in S$ -fpgrmod
- $V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$

Preparation

- $p \in Cl(X_{\Sigma})$ ample, $m(p) = \{m_1, \ldots, m_k\}$ all monomials of degree p and $l(p, e) = \langle m_1^e, \ldots, m_k^e \rangle$
- Pick e = 0 and increase it until subsequent conditions are met

Input

• $M \in S$ -fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

• Look at spectral sequence
$$\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$$

Input

• $M \in S$ -fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$

Input

• $M \in S$ -fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- Does E₂^{p,q} degenerate (on E₂-sheet)? Is its limit (co)homology H^m (C⁰) of complex of global sections of vector bundles?

Input

• $M \in S$ -fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- \Rightarrow If no increase *e* until this is the case!

Input

• $M \in S$ -fpgrmod

•
$$V^{k}(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^{k}(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\nabla}}}^{p+q}\left(\widetilde{I(p,e)},\widetilde{M}\right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- \Rightarrow If no increase *e* until this is the case!
 - \bullet Long exact sequence: sheaf cohomology \leftrightarrow local cohomology

Input

• $M \in S$ -fpgrmod

•
$$V^k(X_{\Sigma}) = \left\{ L \in \operatorname{Pic}(X_{\Sigma}) \ , \ h^k(X_{\Sigma}, L) = 0 \right\}$$

- Look at spectral sequence $\mathbb{E}_{2}^{p,q} \Rightarrow \operatorname{Ext}_{\mathcal{O}_{X_{\Sigma}}}^{p+q} \left(\widetilde{I(p,e)}, \widetilde{M} \right)$
- Some objects $\mathbb{E}_{2}^{p,q}$ vanish as seen by $V^{k}(X_{\Sigma})$
- \Rightarrow If no increase *e* until this is the case!
 - \bullet Long exact sequence: sheaf cohomology \leftrightarrow local cohomology
- $\Rightarrow \text{ Increase } e \text{ further until } H^m\left(\mathbf{C}^0\right) \cong \operatorname{Ext}^m_S\left(I\left(p,e\right),M\right)_0$