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Overview

Task

4 dim. F-theory
compactification

Count (anti)-chiral massless matter
fields in 4d effective theory

Structure

Analyse physics (C. Mayrhofer, T. Weigand, M.B. – 1706.04616)

⇒ Compute sheaf cohomologies of non-pullback line bundles

Developed and implemented algorithms with M. Barakat et al.
(https://github.com/homalg-project/CAP project –
1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028,
1409.6100)
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Schematic Picture: Physics and Geometry of F-theory
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Counting zero modes

From Physics of F-Theory to Line Bundles

a-th state in rep. R↔ matter surface Sa
R =

n∑
i=1

aiP1
i (CR)

G4-flux↔ (complex) 2-cycle A in Y4

Consequence

Sa
R and A intersect in number of points in Y4

⇒ π∗ (Sa
R · A) ↔ number of points in CR

⇒ L (Sa
R,A) := OCR

(π∗ (Sa
R · A)) ∈ Pic (CR)

Zero Modes and Sheaf Cohomology

chiral zero modes of Sa
R ↔ H0 (CR, L (Sa

R,A)⊗Ospin,CR
)

anti-chiral zero modes of Sa
R ↔ H1 (CR, L (Sa

R,A)⊗Ospin,CR
)
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Generalities Of The Implementations In CAP

Why new algorithm?

L (Sa
R,A) = OCR

(D). Extend L (Sa
R,A) by zero outside of CR.

⇒ Coherent sheaf on XΣ

Schematic Picture

idea of mathematician G. Smith et al. (math/9807170,
math/0305214, DOI: 10.4171/OWR/2013/25)

cohomCalg by R. Blumenhagen et al. (1003.5217, 1006.0780,
1006.2392, 1010.3717)

Combine to obtain algorithm which applies

on more general toric spaces (than idea of G. Smith)

to all coherent sheaves (i.e. not ‘only’ line bundles as
cohomCalg)
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From Points to Coherent Sheaves

How to encode OXΣ
(−D)?

XΣ toric variety (without torus factor) with coordinate ring S

divisor D = V (P1, . . . ,Pn) cut out by hom. polynomials

⇒ A := ker (P1, . . . ,Pn) ↔ relations among the Pi

⇒ Look at exact sequence

R2⊕
j=1

S (ej)
A→

R1⊕
i=1

S (di ) � M → 0,

which defines M ∈ S-fpgrmod

Answer

M̃ ∼= OXΣ
(−D) via the sheafification functor

˜ : S-fpgrmod→ CohXΣ , N 7→ Ñ

⇒ Use M ∈ S-fpgrmod as computer model for OXΣ
(−D)
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Sketch of Algorithm in CAP

Input and Output

(smooth, complete) or (simplicial,
projective) toric variety XΣ

M ∈ S-fpgrmod

hi
(
XΣ, M̃

)

Step-by-step

1 Use cohomCalg to compute (0 ≤ k ≤ dimQ (XΣ))

V k (XΣ) :=
{
L ∈ Pic (XΣ) , hk (XΣ, L) = 0

}
2 Find ideal I ⊆ S (along idea of G. Smith) s.t.

H i
(
XΣ, M̃

)
∼= ExtiS (I ,M)0

3 Compute Q-dimension of ExtiS (I ,M)0
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SU(5)× U(1)-Tate model from 1706.04616

Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ M and M defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � M → 0

h1
(
P2
Q, M̃

)
=?

Apply Algorithm

1 V 0(P2
Q) = (−∞,−1]Z , V 1(P2

Q) = Z, V 2(P2
Q) = [−2,∞)Z

2

3

Q37425 → Q27201 �

Ext1
S

(
B

(44)
Σ ,M

)
0

→ 0

Martin Bies Zero Mode Counting in F-Theory via CAP 7 / 10



SU(5)× U(1)-Tate model from 1706.04616

Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ M and M defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � M → 0

h1
(
P2
Q, M̃

)
=?

Apply Algorithm

1 Compute vanishing sets via cohomCalg:
V 0(P2

Q) = (−∞,−1]Z , V 1(P2
Q) = Z, V 2(P2

Q) = [−2,∞)Z

2

3

Q37425 → Q27201 �

Ext1
S

(
B

(44)
Σ ,M

)
0

→ 0

Martin Bies Zero Mode Counting in F-Theory via CAP 7 / 10



SU(5)× U(1)-Tate model from 1706.04616

Input and Output

C5−2 ⊆ P2
Q

L5−2 ↔ M and M defined by
S (−36)⊕ S (−39)⊕ S (−41)⊕
S (−23)⊕ S (−38)→
S (−6)⊕ S (−21) � M → 0

h1
(
P2
Q, M̃

)
=?

Apply Algorithm

1 V 0(P2
Q) = (−∞,−1]Z , V 1(P2

Q) = Z, V 2(P2
Q) = [−2,∞)Z

2 Use vanishing sets to find ideal I (along idea of G. Smith):

I = B
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2
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2

〉
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S

(
B

(44)
Σ ,M

)
0
:
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Ext1
S

(
B

(44)
Σ ,M

)
0

→ 0

Martin Bies Zero Mode Counting in F-Theory via CAP 7 / 10
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Q) = Z, V 2(P2
Q) = [−2,∞)Z

2 I = B
(44)
Σ ≡

〈
x44

0 , x44
1 , x44

2

〉
3 Q37425 → Q27201 � Ext1

S

(
B

(44)
Σ ,M

)
0
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⇒ 28 = dimQ

[
Ext1

S

(
B

(44)
Σ ,M

)
0

]
= h1

(
P2
Q, M̃

)
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‘Scan’ Over Moduli Space

Note

Values of complex structure moduli enter definition of M

Smoothness of matter curves NOT required

⇒ Run computation for different choices of moduli

SU(5)xU(1)-Tate Model from 1706.04616 (R = 5−2)

ã1,0 ã2,1 ã3,2 ã4,3 hi (CR, LR)

M1 (x1 − x2)4 x7
1 x10

2 x13
3 (22, 43)

M2 (x1 − x2) x3
3 x7

1 x10
2 x13

3 (21, 42)

M3 x4
3 x7

1 x7
2 (x1 + x2)3 x12

3 (x1 − x2) (11, 32)

M4 (x1 − x2)3 x3 x7
1 x10

2 x13
3 (9, 30)

M5 x4
3 x7

1 x8
2 (x1 + x2)2 x11

3 (x1 − x2)2 (7, 28)

M6 x4
3 x7

1 x10
2 x8

3 (x1 − x2)5 (6, 27)

M7 x4
3 x7

1 x9
2 (x1 + x2) x10

3 (x1 − x2)3 (5, 26)
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Summary and Conclusion

Have combined cohomCalg by R. Blumenhagen et al.
(1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G.
Smith et al. (math/9807170, math/0305214, DOI:
10.4171/OWR/2013/25)

⇒ Toolkit to compute sheaf cohomologies of all coherent sheaves
on toric varieties (visit https://github.com/HereAround)

Features:

Count zero modes in 4d F-theory compactifications
Matter curves need not be smooth, nor complete intersections!
Of particular interest: hypercharge flux in F-theory GUTs
(applications currently on their way)

Further possible applications

Quite generally zero mode counting in topological string, IIB
or heterotic compactifications
T-branes as coherent sheaves (Collinucci et al. 1410.4178)
. . .
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Thank you for your attention!
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From Divisors to Modules

Input and Output

C = V (g1, . . . , gk) ⊆ XΣ

D = V (f1, . . . , fn) ∈ Div(C )

M s.t. supp(M̃) = C
and M̃|C ∼= OC (−D)

Step 1: S(C ) := S/〈g1, . . . , gk〉, π : S � S(C )⊕
j∈J

S (C ) (j) 0

⊕
i∈I

S (C ) (i) S (C )

AC S (C )

ker (m)

0

m = (π (f1) , . . . , π (fn))

0

∼
ι

∼
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j∈J

S (C ) (j) 0

⊕
i∈I

S (C ) (i) S (C )

AC S (C )

ker (m)

0

m = (π (f1) , . . . , π (fn))

0

∼
ι

∼

Martin Bies Zero Mode Counting in F-Theory via CAP 10 / 10



From Divisors to Modules II

Step 2: Extend by zero to coherent sheaf on XΣ

⊕
j∈J S (j)

⊕
i∈I S (i)

A

ke
r

(m
)′

∼

⊗

⊕
k∈K S (k)

S (C )

B

 g1

...
gk



∼

⇒ M = A⊗ B satisfies Supp(M̃) = C and M̃|C ∼= OC (−D)
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From Divisors to Modules III

Input and Output

C = V (g1, . . . , gk) ⊆ XΣ

D = V (f1, . . . , fn) ∈ Div(C )

M s.t. supp(M̃) = C
and M̃|C ∼= OC (+D)

Strategy

1 Compute AC

2 Dualise via A∨C := HomS(C) (S (C ) ,AC )

3 Extend by zero by considering A∨ ⊗ B

⇒ M∨ := A∨ ⊗ B satisfies Supp(M̃) = C and M̃|C ∼= OC (+D)
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An idea of the sheafification functor

Affine open cover

Toric variety XΣ with Cox ring S

⇒ Covered by affine opens
{
Uσ = Specm(S(x σ̂))

}
σ∈Σ

Localising (↔ restricting) a module

M ∈ S-fpgrmod

⇒ M(x σ̂) is f.p. S(x σ̂)-module

Consequence

M(x σ̂) ↔ coherent sheaf on Uσ = Specm(S(x σ̂))

local sections: M̃(x σ̂) (D (f )) = M(x σ̂) ⊗S
(xσ̂)

(
S(x σ̂)

)
f
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Module M5 from 1706.04616: Quality Check I

e

d
im

Q

[ E
xt

0 S

( B
(e

)
Σ
,M

5

) =
0

]

0 6 12 18 24 30 36 42 48
0

4

8

12

16

20
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Module M5 from 1706.04616: Quality Check II
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How to determine the ideal I in step 2 of algorithm?

Input

M ∈ S-fpgrmod

V k (XΣ) =
{
L ∈ Pic (XΣ) , hk (XΣ, L) = 0

}

How to find ideal I?

Look at spectral sequence Ep,q
2 ⇒ Extp+q

OXΣ

(
˜I (p, e), M̃

)
Some objects Ep,q

2 vanish as seen by V k (XΣ)

Does Ep,q
2 degenerate (on E2-sheet)? Is its limit (co)homology

Hm
(
C0
)

of complex of global sections of vector bundles?

⇒ If no – increase e until this is the case!

Long exact sequence: sheaf cohomology ↔ local cohomology

⇒ Increase e further until Hm
(
C0
) ∼= ExtmS (I (p, e) ,M)0
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