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Overview

Task

4 dim. F-theory Count (anti)-chiral massless matter
compactification fields in 4d effective theory
Structure

@ Analyse physics (C. Mayrhofer, T. Weigand, M.B. — 1706.04616)
= Compute sheaf cohomologies of non-pullback line bundles
@ Developed and implemented algorithms with M. Barakat et al.
(https://github.com/homalg-project/CAP _project —
1003.1943, 1202.3337, 1210.1425, 1212.4068, 1409.2028,
1409.6100)
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Schematic Picture: Physics and Geometry of F-theory

base B3
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Counting zero modes

From Physics of F-Theory to Line Bundles

n
a-th state in rep. R <> matter surface Sg = Z aiP} (GR)
i=1
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n

a-th state in rep. R <> matter surface Sg = Z aiP} (Cr)
i=1

Gy-flux <> (complex) 2-cycle A in Yy

4

Consequence

@ Sg and A intersect in number of points in Yy
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Counting zero modes
From Physics of F-Theory to Line Bundles
n

a-th state in rep. R <> matter surface Sg = Z aiP} (Cr)
i=1

Gy-flux <> (complex) 2-cycle A in Yy

Consequence

@ Sg and A intersect in number of points in Yy

= 7y (S8 - A) +> number of points in Cg
= L(58,A) == Oc, (7« (S§ - A)) € Pic(Cr)

Zero Modes and Sheaf Cohomology
chiral zero modes of Sg <+ H® (Cr, L (S&, A) @ Ospin.cx)
anti-chiral zero modes of S3 <> H* (Cr, L (S8, A) ® Ospin.cx)

Martin Bies Zero Mode Counting in F-Theory via CAP 3/10



Generalities Of The Implementations In CAP
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Generalities Of The Implementations In CAP

Why new algorithm?

L(Sg,A) = Oc, (D). Extend L(Sg§,A) by zero outside of Cg.
= Coherent sheaf on Xy
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Generalities Of The Implementations In CAP

L(Sg,A) = Oc, (D). Extend L(Sg§,A) by zero outside of Cg.
= Coherent sheaf on Xy

Schematic Picture

@ idea of mathematician G. Smith et al. (math/9807170,
math /0305214, DOI: 10.4171/OWR/2013/25)
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Generalities Of The Implementations In CAP

L(Sg,A) = Oc, (D). Extend L(Sg§,A) by zero outside of Cg.
= Coherent sheaf on Xy

Schematic Picture

@ idea of mathematician G. Smith et al. (math/9807170,
math /0305214, DOI: 10.4171/OWR/2013/25)

@ cohomCalg by R. Blumenhagen et al. (1003.5217, 1006.0780,
1006.2392, 1010.3717)

Combine to obtain algorithm which applies
@ on more general toric spaces (than idea of G. Smith)

e to all coherent sheaves (i.e. not ‘only’ line bundles as
cohomCalg)
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From Points to Coherent Sheaves

How to encode Ox, (—D)?
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How to encode Ox, (—D)?

@ Xs toric variety (without torus factor) with coordinate ring S

e divisor D = V(P4,...,Py,) cut out by hom. polynomials
= A:=ker(P1,...,P,) < relations among the P;

Martin Bies Zero Mode Counting in F-Theory via CAP 5/10



From Points to Coherent Sheaves

How to encode Ox, (—D)?

@ Xs toric variety (without torus factor) with coordinate ring S
e divisor D = V(P4,...,Py,) cut out by hom. polynomials
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From Points to Coherent Sheaves
How to encode Ox, (—D)?

@ Xs toric variety (without torus factor) with coordinate ring S
e divisor D = V(P4,...,Py,) cut out by hom. polynomials
= A:=ker(P1,...,P,) < relations among the P;

Re Ry
= Look at exact sequence @ S(e) A @ S(di) » M —0,
j=1 i=1
which defines M € S-fpgrmod
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From Points to Coherent Sheaves
How to encode Ox, (—D)?

@ Xs toric variety (without torus factor) with coordinate ring S

e divisor D = V(P4,...,Py,) cut out by hom. polynomials
= A:=ker(P1,...,P,) < relations among the P;

Re Ry
= Look at exact sequence @ S(e) A @ S(di) » M —0,
j=1 i=1
which defines M € S-fpgrmod

v
Answer

o M= Ox; (—D) via the sheafification functor

~. S-fpgrmod — €oh Xy , N — N

= Use M € S-fpgrmod as computer model for Ox; (—D)
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Sketch of Algorithm in CAP
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Sketch of Algorithm in CAP

Input and Output

@ (smooth, complete) or (simplicial,
projective) toric variety Xy
e M € S-fpgrmod

Martin Bies Zero Mode Counting in F-Theory via CAP 6/10



Sketch of Algorithm in CAP

@ (smooth, complete) or (simplicial,
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VK (Xg) = {L € Pic(Xg) , h*(Xs, L) = 0}
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Sketch of Algorithm in CAP

@ (smooth, complete) or (simplicial,
projective) toric variety Xy
e M € S-fpgrmod

Step-by-step

@ Use cohomCalg to compute (0 < k < dimg (Xx))
VK (Xg) = {L € Pic(Xg) , h*(Xs, L) = 0}

@ Find ideal | C S (along idea of G. Smith) s.t.
H (Xz, /\71) ~ Extl; (1, M),

@ Compute Q-dimension of Extg (I, M),
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SU(5) x U(1)-Tate model from 1706.04616

Input and Output

] C5_2 - Pé

o Ls , <+ M and M defined by
S(-36)@S(-39) @ S(—41) @
S5(-23)® S(-38) —
S(-6)®S5(-21) » M —0

n (P2, M) =7
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SU(5) x U(1)-Tate model from 1706.04616

Input and Output

] C572 Q P?Q

o Ls , <+ M and M defined by
S(—36)®S(—39) @ S (-41) @
S(—23)® S(—38) —
S(—6)®S(—21) » M =0

pl (%, /\7) —?

Apply Algorithm
@ Compute vanishing sets via cohomCalg:
VO(PR) = (00, ~1]z. VI(PR) = Z, VA(PG) = [-2,00),
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SU(5) x U(1)-Tate model from 1706.04616

Input and Output

4 C5_2 C Pé

o L , <+ M and M defined by
S(-36)@S(-39)d S (—41) @
S(—-23)® S(—38) —
S(-6)®S(-21) »M—0

ht (%, /\71) —?

Apply Algorithm
@ VO(B2) = (—o0, 1], VI(BY) = Z, VA(B3) = [-2,0);
@ Use vanishing sets to find ideal / (along idea of G. Smith):
| = B§44) = <x44,xf4,x§4>
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SU(5) x U(1)-Tate model from 1706.04616

Input and Output

o C5_2 g ]P’(z@

@ Ls , <+ M and M defined by
S(=36)DS(—-39)@S(—41)®
5(—23)® S(—38) —~
S(-6)®S(-21) »M—=0

pl (%, /\7) —?

Apply Algorithm
@ VO(PZ) = (—o0,—1]z, VI(PR) = Z, V*(P3) = [-2,00),

Q@ /= BUY = (x4 x#4, 44
© Compute presentation of Ext% (Bgm), I\/I)O:
Extt (B, /\/1)O
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SU(5) x U(1)-Tate model from 1706.04616

Input and Output

o C5_2 g ]P’(z@

@ Ls , <+ M and M defined by
S(=36)DS(—-39)@S(—41)®
5(—23)® S(—38) —~
S(-6)®S(-21) »M—=0

pl (%, /\7) —?

Apply Algorithm
@ VO(PZ) = (—o0,—1]z, VI(PR) = Z, V*(P3) = [-2,00),

Q@ /= BUY = (x4 x#4, 44
© Compute presentation of Ext% (Bgm), I\/I)O:
Q3745 _, Q27201 _, Exil (B§44)7 M)o 0
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SU(5) x U(1)-Tate model from 1706.04616

nput and Output

o C5_2 g P(2@

o Ls , <+ M and M defined by Ll
S(-36)®S(—39)® S (—41) @ h (P@, M) —?

S(—23) @ S (—38) —
S(—6)®S(=21) » M —0

Apply Algorithm
0 VO(B3) = (—o0,—1l, VI(B) = Z, VA(PE) = [-2,0),
Q /= B§44) = (xg*, xt*, x34)

Q Q3745 _, Q27201 _, Exil ( ng'), M>0 0

= 28 = dimg [Ext},- (Bg‘”, M) O} — pt <1P’2 : /\71)
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‘Scan’ Over Moduli Space
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‘Scan’ Over Moduli Space

@ Values of complex structure moduli enter definition of M

@ Smoothness of matter curves NOT required

= Run computation for different choices of moduli

SU(5)xU(1)-Tate Model from 1706.04616 (R = 5_5)

ao a1 a3 as3 h (Cr, Lr)
My | (xa—x) bl i b (22,43)
My | (x1—x)x8 | x{ 55" s (21,42)
Mz e x| X (3 + x) x32 (x1 — x2) (11,32)
My | (1 —x)" x3 | x{ x30 x33 (9,30)
Ms x5 x| B +x)’ | X (- x) (7,28)
M x5 x{ x30 X8 (x — x0)° (6,27)
My x5 X | 2 a+x) | X0 (xq—x)} (5,26)
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Summary and Conclusion
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Summary and Conclusion

@ Have combined cohomCalg by R. Blumenhagen et al.
(1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G.
Smith et al. (math/9807170, math/0305214, DOI:
10.4171/OWR/2013/25)
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o Features:
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Summary and Conclusion
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(applications currently on their way)
@ Further possible applications
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Summary and Conclusion

@ Have combined cohomCalg by R. Blumenhagen et al.
(1003.5217, 1006.0780, 1006.2392, 1010.3717) and idea of G.
Smith et al. (math/9807170, math/0305214, DOI:
10.4171/OWR/2013/25)

= Toolkit to compute sheaf cohomologies of all coherent sheaves
on toric varieties (visit https://github.com/HereAround)

o Features:
e Count zero modes in 4d F-theory compactifications
e Matter curves need not be smooth, nor complete intersections!
o Of particular interest: hypercharge flux in F-theory GUTs
(applications currently on their way)
@ Further possible applications
e Quite generally zero mode counting in topological string, 11B
or heterotic compactifications
o T-branes as coherent sheaves (Collinucci et al. 1410.4178)
o ...
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Thank you for your attention!

i1

Martin Bies Zero Mode Counting in F-Theory via CAP 10/10




From Divisors to Modules

Input and Output

o C=V(g,...,8) C Xz Ms.t. supp(M) = C
o D=V(f,...,f) € Div(C) and M|c = O¢(-D)
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From Divisors to Modules

Input and Output

o C=V(g,...,8) C Xz M s.t. supp(M) = C
o D=V(f,...,f) € Div(C) and M|c = O¢(-D)

Step 1: S(C):=S/(g1,-.-,8k), m: S — S(C)
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From Divisors to Modules Il

Step 2: Extend by zero to coherent sheaf on Xy

DjesS0) Drex 5 (k)
- 81
g ;
E &
] X
Dici S () 5(C)
A B
= M = A® B satisfies Supp(M) = C and M|¢ = O¢ (-D)
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From Divisors to Modules Il

Input and Output

o C=V(g,....8) S Xz M s.t. supp(M) = C
o D=V(f,...,f) € Div(C) and M|c = O¢(+D)

Strategy

@ Compute Ac

@ Dualise via A¢ := Homg(¢) (S (C), Ac)

© Extend by zero by considering AY ® B

= MY := A ® B satisfies Supp(M) = C and M|¢c = O¢ (+D)
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An idea of the sheafification functor
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An idea of the sheafification functor

Affine open cover

@ Toric variety Xy with Cox ring S
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An idea of the sheafification functor

@ Toric variety Xy with Cox ring S

= Covered by affine opens {Ua = Specm(S(Xa))} s
oc

Localising (<> restricting) a module

e M € S-fpgrmod

= M(X&) is f.p. S(Xa)—module
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An idea of the sheafification functor

@ Toric variety Xy with Cox ring S

= Covered by affine opens {Ua = Specm(S(Xa))} s
oc

Localising (<> restricting) a module
e M € S-fpgrmod

= M(X&) is f.p. S(Xa)—module

Consequence

® M) ¢+ coherent sheaf on U, = Specm(S,+))

o local sections: M(,s) (D (f)) = M) ®5,5) (S(X&))f
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Module M5 from 1706.04616: Quality Check |
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
] Vk Xz {L € PIC(X{) hk X):, = 0}
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod

o VK (X}:) = {L € Pic (Xz) , i ()(z7 L) = 0}

e p e Cl(Xs) ample, m(p) = {my,..., mg} all monomials of
degree p and / (p,e) = (m§,..., mf)

@ Pick e = 0 and increase it until subsequent conditions are met

v
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
] Vk Xz {L € PIC(X{) hk X):, = 0}

How to find ideal /?

o Look at spectral sequence E5'7 = Ext’g;q (/ (p,e), l\~/l)
Y
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
] Vk Xz {L € PIC(X{) hk X):, = 0}

How to find ideal /?

o Look at spectral sequence E5'7 = Ext’g;q (/ (p,e), l\~/l)
Y

o Some objects E5' vanish as seen by V¥ (Xsx)
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
] Vk Xz {L € PIC(X{) hk X):, = 0}

How to find ideal /?

o Look at spectral sequence E5'7 = Ext’g;q (/ (p,e), l\~/l)
Y

o Some objects E5' vanish as seen by V¥ (Xsx)

o Does E5'9 degenerate (on Ep-sheet)? Is its limit (co)homology
H™ (C%) of complex of global sections of vector bundles?
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
] Vk Xz {L € PIC(X{) hk X):, = 0}

How to find ideal /?

o Look at spectral sequence E5'7 = Ext’g;q (/ (p,e), l\~/l)
Y

o Some objects E5' vanish as seen by V¥ (Xsx)

o Does E5'9 degenerate (on Ep-sheet)? Is its limit (co)homology
H™ (C%) of complex of global sections of vector bundles?

= If no — increase e until this is the case!
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] Vk Xz {L € PIC(X{) hk X):, = 0}

How to find ideal /?

o Look at spectral sequence E5'7 = Ext’g;q (/ (p,e), l\~/l)
Y

o Some objects E5' vanish as seen by V¥ (Xsx)

o Does E5'9 degenerate (on Ep-sheet)? Is its limit (co)homology
H™ (C%) of complex of global sections of vector bundles?

= If no — increase e until this is the case!

@ Long exact sequence: sheaf cohomology <> local cohomology
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How to determine the ideal / in step 2 of algorithm?

e M € S-fpgrmod
] Vk Xz {L € PIC(X{) hk Xz, = 0}

How to find ideal /?

o Look at spectral sequence E5'7 = Ext’g;q (/ (p,e), I\N/I)
Y

o Some objects E5' vanish as seen by V¥ (Xsx)

o Does E5'9 degenerate (on Ep-sheet)? Is its limit (co)homology
H™ (C%) of complex of global sections of vector bundles?

= If no — increase e until this is the case!
@ Long exact sequence: sheaf cohomology <> local cohomology
= Increase e further until H™ (C°) = ExtZ (/ (p, e) , M),
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